Simultaneous Equations - Lesson 1

# Simultaneous Equations 1 (No Multiplying)

## LI

• Solve a pair of equations for 2 missing variables.

## <u>SC</u>

- Add or subtract the equations.
- 2-step equations.

Simultaneous Equations (in N5) - 2 letters, 2 equations :

$$a \times + b y = e$$

$$c \times + d y = f$$

In actual questions, a, b, c, d, e and f will be numbers.

## How to Solve:

- Elimination
- Substitution
- Graph

# Reminders about Algebra

Coefficient (aka multiplier) - number attached to a letter.

$$2 x + 3 x =$$

$$2 \times + (-3 \times) =$$

$$17 y - 9 y =$$

$$17 y - (-9 y) =$$

Elimination involves 'getting rid' of one of the letters to work out the other one.

#### Detailed Strategy:

- Make sure the coefficients of one of the letters are the same.
- If the signs of that letter are the same, subtract one equation from the other .
- If the signs of that letter are different, add one equation to the other.

#### Example 1

Solve,

$$x + y = 59$$
 1

$$x - y = 31$$
 (2)

Signs of 
$$y$$
 are different, so add:  $1 + 2$ 

$$2 \times = 90$$

$$\Rightarrow \qquad \qquad \mathbf{x} = \mathbf{45}$$

Substitute x = 45 into 2:

$$x - y = 31$$

$$\therefore \qquad 45 - y = 31$$

$$\Rightarrow$$
  $-y = -14$ 

$$\Rightarrow \qquad \qquad \mathbf{y} = \mathbf{14}$$

$$\therefore \quad \mathbf{x} = 45, \mathbf{y} = 14$$

### Example 2

Solve,

$$2c - d = 5$$

$$2c + 3d = -7$$
 (2)

Signs of c are the same (+), so subtract: (1) - (2)

$$-4d = 12$$

$$\Rightarrow$$
 d = -3

Substitute d = -3 into 1:

$$2c - d = 5$$

$$\therefore$$
 2 c - (-3) = 5

$$\Rightarrow$$
 2 c + 3 = 5

$$\Rightarrow$$
 2 c = 2

$$\Rightarrow$$
 c = 1

$$\therefore \quad c = 1, d = -3$$

## Example 3

Solve,

$$\mathbf{w} - \mathbf{p} = 10$$

$$- w + 3 p = -12$$
 2

Signs of 
$$w$$
 are different, so add:  $1 + 2$ 

$$2 p = -2$$

Substitute p = -1 into (1):

$$w - p = 10$$

$$\therefore \quad \mathbf{w} - (-1) = 10$$

$$\Rightarrow$$
 w + 1 = 10

$$\Rightarrow$$
  $w = 9$ 

$$\therefore | w = 9, p = -1$$

## Questions

Solve each of the following pairs of equations by either adding or subtracting.

**a** 
$$x + y = 10$$

$$2x - y = 8$$

**d** 
$$x + 5y = 11$$

$$2x + 5y = 1$$

$$\mathbf{g} - x - 3y = -9$$

$$x - 2y = 1$$

**b** 
$$2x - y = 10$$

$$4x + y = 14$$

**e** 
$$x - 2y = 6$$

$$3x - 2y = 2$$

**h** 
$$4x - y = 20$$

$$3x - y = 17$$

c 
$$3x + y = -1$$

$$3x - 2y = -7$$

$$-2x - y = -7$$

$$6x + 5y = 9$$

$$x - 5y = 19$$

#### Answers

Solve each of the following pairs of equations by either adding or subtracting.

**a** 
$$x + y = 10$$

$$2x - y = 8$$

**d** 
$$x + 5y = 11$$

$$2x + 5y = 1$$

$$g -x - 3y = -9$$

$$x - 2y = 1$$

**b** 
$$2x - y = 10$$

$$4x + y = 14$$

**e** 
$$x - 2y = 6$$

$$3x - 2y = 2$$

**h** 
$$4x - y = 20$$

$$3x - y = 17$$

c 
$$3x + y = -1$$

$$3x - 2y = -7$$

$$f 2x + 5y = 3$$

$$-2x - y = -7$$

i 
$$6x + 5y = 9$$

$$x - 5y = 19$$

a 
$$x = 6, y = 4$$

**b** 
$$x = 4, y = -2$$

c 
$$x = -1, y = 2$$

**d** 
$$x = -10, y = \frac{21}{5}$$

e 
$$x = -2, y = -4$$

$$f x = 4, y = -1$$

$$\mathbf{g} \quad x = \frac{21}{5}, \ y = \frac{8}{5}$$

**h** 
$$x = 3, y = -8$$

i 
$$x = 4, y = -3$$