Indices - Lesson 4

Indices - Expanding Brackets

LI

• Expand brackets with indices.

SC

- Rules of Indices.
- Expanding brackets (inc. using FOIL).

Some Reminders

$$a^m \times a^n = a^{m+n}$$

$$a^{0} = 1$$

$$a^{2}(a^{4} + 1)$$

$$a^{2}(a^{4} + 1)$$

$$= a^{2}(a^{4} + 1)$$

$$x^{-3}(x^{4} + x^{-2})$$

$$x^{-3}(x^{4} + x^{-2})$$

$$= x^{-3}(x^{4} + x^{-2})$$

$$= x^{-3} \times x^{4} + x^{-3} \times x^{-2}$$

$$= x^{-3+4} + x^{-3+(-2)}$$

$$= x^{1} + x^{-5}$$

$$= x + x^{-5}$$

$$2 p^{1/4} (p^{7/4} - 9)$$

$$2 p^{1/4} (p^{7/4} - 9)$$

$$= 2 p^{1/4} x p^{7/4} - 2 p^{1/4} x 9$$

$$= 2 p^{1/4 + 7/4} - 18 p^{1/4}$$

$$= 2 p^{8/4} - 18 p^{1/4}$$

$$= 2 p^{2} - 18 p^{1/4}$$

$$(n^{2} - 3)^{2}$$

$$(n^{2} - 3)^{2}$$

$$= (n^{2} - 3)(n^{2} - 3)$$

$$= n^{4} - 3n^{2} - 3n^{2} + 9$$

$$= n^{4} - 6n^{2} + 9$$

1)a
$$a^2(a^3 + 1)$$

b
$$x^{-4}(x^2 + x^{-1})$$

$$\mathbf{c} \quad \mathbf{y}^3(\mathbf{y}^{-2} + \mathbf{y}^{-3})$$

d
$$m^3(m^{-5}-4)$$

e
$$5a^2(2a^{-2}-7a^3)$$

2)**a**
$$p^{\frac{1}{2}}(p+3)$$

b
$$t^{\frac{1}{2}}(t+t^{-\frac{1}{2}})$$

c
$$3z^{\frac{1}{3}}(z^{\frac{5}{3}}+2)$$

d
$$b^{-\frac{1}{4}} \left(b^{\frac{3}{4}} - b^{-\frac{1}{2}} \right)$$

$$y^{\frac{4}{5}} \left(y^{-\frac{4}{5}} + 3y^{\frac{1}{5}} \right)$$

$$f c^{-\frac{1}{2}} \left(c^{\frac{1}{2}} - c^{\frac{1}{3}} \right)$$

3)a
$$(t^2 - 4)^2$$

b
$$(y^5 + 2)(y^{-3} - 1)$$

$$(x^{\frac{1}{2}} + 3)^2$$

d
$$(m^3 + 1)(m^3 - 1)$$

$$(c^{\frac{2}{3}}+3)(c^{\frac{2}{3}}-3)$$

1)a
$$a^{2}(a^{3} + 1)$$
 | 2)a $p^{\frac{1}{2}}(p + 3)$ | 3)a $(t^{2} - 4)^{2}$ | b $t^{\frac{1}{2}}(t + t^{-\frac{1}{2}})$ | b $(y^{5} + 2)(y^{-3} - 1)$ | c $y^{3}(y^{-2} + y^{-3})$ | c $3z^{\frac{1}{3}}(z^{\frac{5}{3}} + 2)$ | c $(x^{\frac{1}{2}} + 3)^{2}$ | d $(m^{3} + 1)(m^{3} - 1)$ | e $5a^{2}(2a^{-2} - 7a^{3})$ | e $y^{\frac{4}{5}}(y^{-\frac{4}{5}} + 3y^{\frac{1}{5}})$ | e $(c^{\frac{2}{3}} + 3)(c^{\frac{2}{3}} - 3)$ | f $(c^{\frac{1}{2}} - c^{\frac{1}{3}})$ | f $(c^{\frac{1}{3}} - c^{\frac{1}{3}})$

Answers

1) a
$$a^5 + a^2$$

b
$$x^{-2} + x^{-5}$$

$$\mathbf{c}$$
 $y+1$

d
$$m^{-2} - 4m^{2}$$

e
$$10 - 35a^5$$

2) a
$$p^{\frac{3}{2}} + 3p^{\frac{1}{2}}$$

b
$$t^{\frac{3}{2}} +$$

c
$$3z^2 + 6z^{\frac{1}{3}}$$

d
$$b^{\frac{1}{2}} - b^{-\frac{3}{4}}$$

e
$$1 + 3y$$

f
$$1-c^{-\frac{1}{6}}$$

3) a
$$t^4 + 16 - 8t^2$$

b
$$y^2 - y^5 + 2y^{-3} - 2y^{-3} = 2y^{-3} + 2y^{-3} = 2y^{-3} + 2y^{-3} = 2y^{-3} + 2y^{-3} = 2y^{-3} + 2y^{-3} = 2y^{-3}$$

c
$$x + 9 + 6x^{\frac{1}{2}}$$

d
$$m^6 - 1$$

e
$$c^{\frac{4}{3}} - 9$$

Answers

1) a
$$a^{5} + a^{2}$$
b $x^{-2} + x^{-5}$
c $y + 1$
d $m^{-2} - 4m^{3}$
e $10 - 35a^{5}$

2) a $p^{\frac{3}{2}} + 3p^{\frac{1}{2}}$
b $t^{\frac{3}{2}} + 1$
c $3z^{2} + 6z^{\frac{1}{3}}$
d $b^{\frac{1}{2}} - b^{-\frac{3}{4}}$
e $1 - c^{-\frac{1}{6}}$
f $1 - c^{-\frac{1}{6}}$

3) a $t^{4} + 16 - 8t^{2}$
b $y^{2} - y^{5} + 2y^{-3} - 2$
c $x + 9 + 6x^{\frac{1}{2}}$
d $m^{6} - 1$
e $c^{\frac{4}{3}} - 9$
f $c^{\frac{4}{3}} - 9$
f $c^{\frac{4}{3}} - 9$
f $c^{\frac{4}{3}} - 9$