Indices - Lesson 2

Indices - Powers of Powers

LI

- Know how to work out powers of powers.
- Simplify expressions using powers of powers.

<u>SC</u>

• Notation.

Reminder on previous lesson

a equals 1

Powers of Powers

$$(10^{3})^{2} = (10 \times 10 \times 10)^{2}$$

$$= 10 \times 10 \times 10 \times 10 \times 10 \times 10$$

$$= 1000000$$

$$\therefore (10^{3})^{2} = 10^{6}$$

We thus have the 4th Rule of Indices:

$$(a^m)^n = a^{m \times n}$$

(m, n are any numbers)

Example 1

Simplify:

(a)
$$(2^3)^4$$

$$= 2^{3 \times 4}$$

$$= 2^{12}$$

(b)
$$(3^{0})^{-5}$$

$$= 3^{0 \times (-5)}$$

$$= 3^{0}$$

$$= 1$$

(c)
$$(4^{-1})^{-18}$$

$$= 4^{(-1) \times (-18)}$$

$$= 4^{18}$$

(d)
$$(6^5)^8$$

$$= 6^{5 \times 8}$$

$$= 6^{40}$$

Example 2

Simplify:

(a)
$$(2 \times 4)^5$$

= $2^5 \times (x^4)^5$
= $32 \times x^{20}$
= $32 \times x^{20}$

(b)
$$(3y^{-4})^{-3}$$

= $3^{-3} \times (y^{-4})^{-3}$
= $3^{-3} \times y^{12}$
= $\frac{y^{12}}{27}$

(c)
$$(2 a^3 b^4)^5$$

= $2^5 \times (a^3)^5 \times (b^4)^5$
= $32 \times a^{15} \times b^{20}$
= $32 a^{15} b^{20}$

(d)
$$(3c^{-12} \times {}^{15} w^{32})^{-4}$$

= $3^{-4} \times (c^{-12})^{-4} \times (x^{15})^{-4} \times (w^{32})^{-4}$
= $3^{-4} \times c^{48} \times x^{-60} \times w^{-128}$
= $\frac{c^{48} \times {}^{-60} w^{-128}}{81}$

- 1 Simplify the following.
- **a** $(3^4)^5$ **b** $(2^3)^4$ **c** $(10^5)^3$ **d** $(t^3)^{-4}$ **e** $(a^7)^3$

- **2** Simplify the following.

 - **a** $(3y)^2$ **b** $(x^3y^4)^5$ **c** $(ab^3)^4$

- **d** $(3p^4q^2)^3$ **e** $(2t^3u^{-2})^4$ **f** $(10u^{-5}v^{-2})^3$
- 3 Simplify the following.

Answers

1 a 3²⁰

c 10¹⁵

d t^{-12}

 a^{21}

2 a $9y^2$

b $x^{15}y^{20}$

c a^4b^{12} d $27p^{12}q^6$ e $16t^{12}u^{-8} = \frac{16t^{12}}{u^8}$ f $1,000u^{-15}v^{-6} = \frac{1,000}{u^{15}v^6}$

 $3 a 6^{12}$

b 2²⁸

c a^{30}

 $\mathbf{d} \qquad t^{-21} = \frac{1}{t^{21}}$

f $36a^6b^8$ g $16x^{-12}y^{20} = \frac{16y^{20}}{x^{12}}$ h $243a^{30}b^{-15} = \frac{243a^{30}}{b^{15}}$

i $x^{12}y^{-6}z^9$