Advanced Trigonometry - Lesson 6

Area of a Triangle

LI

• Calculate the area of a triangle using trigonometry.

<u>SC</u>

• Use a calculator properly.

Area of a Triangle

$$AREA = \frac{1}{2} a b sin C^{\circ}$$

$$AREA = \frac{1}{2} b c sin A^{\circ}$$

$$AREA = \frac{1}{2} a b sin C^{\circ}$$

$$AREA = \frac{1}{2} b c sin A^{\circ}$$

$$AREA = \frac{1}{2} c a sin B^{\circ}$$

Calculate the area of this triangle to 1 d.p.:

$$A^{\circ} = 11^{\circ}$$
 , $\alpha =$
 $B^{\circ} =$, $b = 42$
 $C^{\circ} =$, $c = 32$

$$AREA = \frac{1}{2} b c sin A^{\circ}$$

$$AREA = \frac{1}{2} x 42 x 32 x sin 11^{\circ}$$

$$AREA = 128.2 \text{ units}^2$$

Calculate the area of this triangle to 1 d.p.:

$$W^{\circ} = 24^{\circ}$$
 , $w = 18$ $R^{\circ} = 38^{\circ}$, $r = 27$ $P^{\circ} = 118^{\circ}$, $p =$

$$AREA = \frac{1}{2} r w sin P^{\circ}$$

$$AREA = \frac{1}{2} \times 27 \times 18 \times \sin 118^{\circ}$$

$$AREA = 214.6 \text{ units}^2$$

If the following triangle has an area of 52.2 m^2 , find the length AB (to the nearest metre):

$$A^{\circ} = 42^{\circ}$$
 , $a =$
 $B^{\circ} =$, $b = 12$
 $C^{\circ} =$, $c = p$

$$AREA = \frac{1}{2} b c sin A^{\circ}$$

$$52.2 = \frac{1}{2} \times 12 \times p \times \sin 42^{\circ}$$

$$52.2 = (6 \sin 42^{\circ}) p$$

 $p = 52.2/(6 \sin 42^{\circ})$

$$p = 13 m$$

If the following triangle has an area of 47 cm^2 , find the angle at H (to 1 d.p.):

$$R^{\circ} = , r = 19$$
 $F^{\circ} = , f = 20$
 $H^{\circ} = , p =$

AREA =
$$\frac{1}{2}$$
 f r sin H°
47 = $\frac{1}{2}$ x 20 x 19 x sin H°
47 = 190 sin H°
sin H° = 47/190
H° = \sin^{-1} (47 ÷ 190)
H° = 14 . 3°

Questions

1 Use the area formula to calculate the area of each triangle giving your answers to 1 decimal place.

a

b

C

d

2 A banner for a maths club is being designed in the shape of a triangle. The cost of material for the banner is £3.50 per m². Which of the two designs shown would be cheaper and by how much?

60cm

3 An artist has created a pyramid as part of an installation and has to paint all the triangular faces. Each tin of paint he buys will cover 8 m². How many tins of paint will he require to complete the job?

4 Find the area of the rhombus shown giving your answer to 3 significant figures.

6 The sail for a boat is to be designed as shown. Calculate the area of the sail to 3 significant figures.

7 A manufacturing company needs to makes triangular tiles for a bathroom design. Two possible samples are shown below. Which one would be cheaper assuming both are made using the same material?

8 Calculate the area of the regular pentagon shown.

- 9 Using the same measurements from the centre to a vertex as in Question 8, calculate the area of:
 - a a regular hexagon
 - b a regular octagon
 - c a regular decagon

Answers

- 1 a 119.5 cm²
 - **b** 51.7 cm²
 - $c 34.7 \, cm^2$
 - **d** 92.7 km²
 - e 45.3mm²
 - f 124.4 cm²
- 2 Purple flag cheaper by 58p
- 3 2
- 4 800 cm²

- 5 6.7km²
- 6 11.1 m²
- 7 The triangle on the right
- 8 17.1 cm²
- 9 a $15.6 \, \text{cm}^2$
 - **b** $12.7 \, \text{cm}^2$
 - $c = 10.6 \, \text{cm}^2$

Questions

1 Calculate the missing side in each example shown giving your answers to 2 decimal places.

b

 $area = 25.3 \, m^2$

C

 $area = 136.5 \, mm^2$

d

$$area = 134 cm^2$$

2 Calculate the missing angle in each triangle giving your answers to 1 decimal place.

a

b

C

area = $22.2 \,\text{m}^2$

 $area = 175 \, mm^2$

d

3 A badge is made in the shape of a triangle and has area 46 mm². Calculate the size of angle *MNP* to the nearest degree.

4 The roof of a barn is made of a triangle as shown. Calculate the size of the missing side of the roof *x* if the cross-sectional area of the roof is 4.3 m². Give your answer to 1 decimal place.

5 The two triangles have the same area. Calculate the length of the missing side shown giving your answer to 2 significant figures.

Answers

- 1) (a) 6.00 cm 2) (a) 42.0°
- 3) 45°

- (b) 7.50 cm
- (b) 110.0°
- 4) 3.8 m

- (c) 11.00 cm
- (c) 74.9°
- 5) 11 cm
- (d) 12.21 km (d) 80.1°
- (e) 31.50 mm
 - (e) 63.5°
- (f) 14.00 cm
- (f) 43.0°