$\begin{aligned} & \text { D} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Whole Number	Rounding	Round to the nearest whole number (revision)
		Rounding	Round to the nearest 10, 100, 1000 (revision)
		Rounding	Multiply and divide whole numbers by single digit or by 10,100, 1000
		Communicating Methods	Use add (+), subtract (-), multiply (x) or divide (\div) to solve problems (revision)
		BODMAS	Order of operations (BODMAS) plus use of brackets
	Fractions, Decimals and Percentages	Terminology	Use correct terminology to describe fractions and place value for decimals (revision)
$\text { Oł 孔sno̊n } \forall \text { - โ Wyヨ1 }$		Decimals	Add, subtract, multiply and divide a decimal by a whole number and decimal
		Rounding	Round to number of decimal places (max 3)
			Equivalent conversion between common fractions, decimals and percentages
		Equivalent fractions and	Equivalent fractions
			Simplify fractions
		Fraction of a quantity	Calculate fraction of a quantity
		Add and subtract fractions	Add and subtract fractions with same denominator (revision)
		Mixed number fractions	Convert between mixed number and improper (top heavy) fractions
		Add, subtract, multiply \&	Add and subtract fractions with different denominators, including mixed numbers
		divide - with/without mixed numbers	Multiply and divide fractions including mixed numbers
			Calculate the percentage of a number with and without a calculator
		Percentages	Express a quantity as a percentage of another.
			Calculate percentage increase and decrease

S1 COURSE PLAN

UQE$U$$U$0	Integers	Rules of negative numbers	Rules to add (+), subtract (-), multiply (x) and divide (\div) negative (-ve) and positive (+ve) numbers
		Scales with negative numbers	Read and use a scale with negative numbers on it
		Problem solving using negative numbers	Problem solving using negative numbers including real life examples
	Factors \& Multiples	Multiples	Lowest Common Multiple
\square		Factors	Highest Common Factor
$\underline{+}$			Prime Factors
亿̀	Powers \& Roots	Powers	Understand whole number powers and calculate them, with and without calculator
ـا		Roots	Understand roots and calculate with and without calculator
$\sum_{\substack{\sim \\ \sim}}^{N}$	Expressions and Equations	Collect like terms and simplify expressions	Collect like terms involving more than one variable
		Evaluate substitutions	Substitute values into expressions, including multiple terms and squares and square roots
		Constructing and solving simple equations	Solve simple equations - term on one side only e.g., $5 x+6=31$
			Solve equations with term on both sides e.g., $3 x+4=2 x-5$
	Problem Solving	Problem Solving	Problem Solving

$\begin{aligned} & \text { 든 } \\ & \frac{1}{x} \end{aligned}$	Time	Time intervals	Calculate time intervals -12 and 24 time (revision)
		Convert units of time	Convert hours and minutes to hours in decimal form (and reverse)
			Calculate speed, distance or time given the other two using simple time periods
		Speed, Distance \& Time	Calculate speed, distance or time given the other two using time intervals and/or hours and minutes within problems
	Angles	Terminology	Types of angles (revision) - acute, straight, obtuse, right, reflex, full turn
		Naming angles	Name angles using 3 letters (revision)
		Angles in 2D shapes	Draw and measure angles using a protractor
	Symmetry	Line/reflection symmetry	Line/reflection symmetry - line on or out with shape
		Rotational symmetry	Rotational symmetry - using centre as axis of rotation
TERM 3 - January to		Rotational symmetry	Rotational symmetry - using point out with shape as axis of rotation
		Tessellation	Tessellation of simple 2D shapes to produce tiling patterns
		Transformation of point or shape	Reflect, translate, or rotate a point or simple 2D shape within a set of axes and describe coordinates
	Properties of 2D shapes	Draw/properties of 2D shapes (revision)	Identify and draw 2D shapes
		Properties of 2D shapes	Properties of 2D shapes - square, rectangle, parallelogram, rhombus, kite, triangles (scalene, equilateral, isosceles)
	Perimeter	Convert between metric units of measurement	Know metric units of measurement ($\mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$) and convert between
		Perimeter of 2D shapes	Calculate perimeter of 2D shapes including composite shapes
	Area	Terminology of area units	Know metric units of measurement ($\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}$)
		Area of 2D shapes - using formulae	Use a formula to find the area of 2D shapes - square, rectangle, triangle, kite, parallelogram, rhombus
		Area of composite 2D shapes	Calculate the area of composite 2D shapes, including parallelogram, kite and trapezium approached as composite shapes

| | Weight
 Volume | Convert between grams and kilograms |
| :---: | :---: | :---: | :---: |
| | | Know metric units of measurement $\left(\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}, \mathrm{~km}^{3}\right)$ |
| | | Know properties of 3D shapes and draw nets of cubes, cuboids, triangular prisms |
| | Volume of 3D shapes -
 using formulae | Use a formula to find the volume of 3D shapes - cube, cuboid, prisms |
| | Convert between solid and
 liquid volumes | Know that $1 \mathrm{~cm}^{3}=1 \mathrm{ml}$, and therefore 1 litre $=1000 \mathrm{~cm}^{3}$ and use in problems |

| | $\begin{array}{c}\text { Terminology }\end{array}$ | Revision - axes are labelled x and y ; coordinates are in the form (x, y); the 'origin' |
| :---: | :---: | :---: | :---: |
| | | |$]$

