Lourdes Secondary

School

S1/2

Numeracy Methodology

Booklet 2

Contents

Topic Page
Curriculum for Excellence Levels 1
Terminology and Methodology 2
Decimals 6
Length 15
Ratio 17
Proportion 23
Foreign Exchange 28
Time, Speed and Distance 30
Probability 47
YouTube Video Links 50

How to use this booklet

The purpose of this document is to help you support your child's development in Numeracy and Maths.

There are worked examples with pictorial representation for each topic. If you would like further examples, explanations and the opportunity to try some yourself, there are videos available by scanning the given QR codes.

You will need the use of a QR Scanner to view the videos. This can be downloaded for free from the App Store. If you do not have access to a QR scanner a list of the YouTube video links can be found at the end of this document.

Curriculum for Excellence Levels

The table below is a guide to the Curriculum for Excellence Level at which a pupil should expect to see the topics covered within this booklet in their Primary or Mathematics class. However, please be aware that pupils may experience numeracy topics across the curriculum at different times and not always in the depth covered herein.
(Details of a Curriculum for Excellence can be found at https://education.gov.scot/)

Topic	Early	First	Second	Third	Fourth
Place Value	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Addition	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Subtraction	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multiplication from 1 to 10		\checkmark	\checkmark	\checkmark	\checkmark
Multiplication by a multiple of 10		\checkmark	\checkmark	\checkmark	\checkmark
Long multiplication			\checkmark	\checkmark	\checkmark
Division		\checkmark	\checkmark	\checkmark	\checkmark
Integers			\checkmark	\checkmark	\checkmark
Order of operations			\checkmark	\checkmark	\checkmark
Fractions	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Equivalent fractions		\checkmark	\checkmark	\checkmark	\checkmark
Fractions of a quantity		\checkmark	\checkmark	\checkmark	\checkmark
Mixed numbers and improper				\checkmark	\checkmark
*fractions					
Adding and subtracting fractions				\checkmark	\checkmark
Multiplying fractions					\checkmark
Dividing fractions			\checkmark	\checkmark	\checkmark
Decimals				\checkmark	\checkmark
Percentages				\checkmark	\checkmark
Rounding				\checkmark	\checkmark
Significant figures				\checkmark	\checkmark
Scientific notation		\checkmark	\checkmark	\checkmark	\checkmark
Ratio			\checkmark	\checkmark	\checkmark
Proportion			\checkmark	\checkmark	\checkmark
Time			\checkmark	\checkmark	\checkmark
Angles			\checkmark		\checkmark
Coordinates				\checkmark	\checkmark
Scale and grid references		\checkmark	\checkmark	\checkmark	\checkmark
Averages				\checkmark	
Graph Work				\checkmark	
Equations				\checkmark	\checkmark
Formulae				\checkmark	
Measurement					\checkmark

Terminology and Methodology

We avoid the use of the word 'sum' to mean a maths question

The connection between fractions, percentages and decimals

A quick reminder from our first Numeracy Booklet (Page 30 onwards) on percentages. As stated before, pupils are expected to know these commonly used percentages as fractions and decimals.

Percentage	Fraction	Decimal
1%	$\frac{1}{100}$	$0 \cdot 01$
10%	$\frac{1}{10}$	$0 \cdot 1$
20%	$\frac{1}{5}$	$0 \cdot 2$
$33 \frac{1}{3} \%$	$\frac{1}{3}$	$0 \cdot 333 \ldots=0 \cdot 3$
50%	$\frac{1}{2}$	$0 \cdot 5$
$66 \frac{2}{3} \%$	$\frac{2}{3}$	$0 \cdot 666 \ldots=0 \cdot \dot{6}$
75%	$\frac{3}{4}$	$0 \cdot 75$

Now we are going to look at converting between percentages, fractions and decimals which are not found in the above table.

Converting Percentages to Fractions and Decimals

Since a percentage is always out of one hundred, this can be written as a fraction with the denominator being 100.

60% means 60 out of 100
$\begin{aligned} 60 \% & =\frac{60}{100} \\ & =\frac{3}{5}\end{aligned}$

simplify by dividing numerator and denominator by 20

Written Methodology

Example 1 As a fraction $45 \%=45$ out of 100 $\left.\begin{array}{l}=\frac{45}{100} \\ =\frac{9}{20}\end{array}\right\} \begin{aligned} & \text { simplify by dividing numerator } \\ & \text { and denominator by } 5\end{aligned}$

As a decimal $\quad 45 \%=\frac{45}{100}$
$=45 \div 100 \begin{aligned} & \text { we move all numbers } 2 \\ & \text { places to the right. }\end{aligned}$
$=0.45$

Example 2 As a fraction $7 \%=7$ out of 100
$=\frac{7}{100} \quad \begin{aligned} & \text { This fraction is already in its } \\ & \text { simplest form. }\end{aligned}$

$$
\text { As a decimal } \begin{array}{rlrl}
7 \% & =\frac{7}{100} & \\
& =7 \div 100 & & \\
& \begin{array}{l}
\text { When dividing by } 100 \\
\text { we move all numbers } 2
\end{array} \\
& =0.07 & & \text { places to the right. }
\end{array}
$$

Other Pictorial Method

Example $1 \quad$ Convert 30\% into a fraction and decimal

Example $2 \quad$ Convert 0.35 into a fraction and percentage

Decimals

Multiplying Decimals

Can you:
(a) Multiply whole numbers?
(b) Divide by $10,100,1000$ etc?

If you answered yes to both of these questions then you will be able to multiply decimals just as easily.

Written Methodology

1. Question: 12×0.7

We can calculate 12×7
$12 \times 7=84$
$12 \times 0.7=8.4 \underbrace{}_{\text {We must divide our answer by } 10}$
We have divided 7 by 10
2. Question: 34×0.05

We can calculate 34×5
$34 \times 5=170$
$34 \times 0.5=17 \cdot 0 \underbrace{}_{\text {We must divide our answer by } 10}$
We have divided 5 by 10

$\begin{aligned} &$$$
34 \times 0.05
$$$=1.70 \\ & \text { We have divided by } \overline{10} \text { again }\end{aligned}$

3.

Option 1 Question: 0.52×0.067
We can calculate 52×67

We have divided 52 by 10
$52 \times 67=3484$

We have divided $5 \cdot 2$ by 10 $(0.52 \times 67=34.84)_{\text {We must divide our answer by } 10}$

Since we have reached the first decimal we are looking for in our calculation, we can now deal with our second decimal in the given calculation.

Option 2
Question: $\quad 0.52 \times 0.067$

We can calculate 52×67
We have divided 52 by $100\binom{52 \times 67=3484}{0.52 \times 67=34.84}$ We must divide our answer by 100
Since we have reached the first decimal we are looking for in our calculation, we can now deal with our second decimal in the calculation.

We have divided 67 by $1000(0.52 \times 0.067=0.03484)$ We must divide our answer by 1000

Dividing Decimals

Similar to multiplying decimals, if you can multiply by $10,100,1000$ etc. and are able to divide whole numbers then you will easily be able to divide using decimals.

Let us first of all have a look at what it means to divide by a whole number. If I asked you to show me what does:

look like?

Here we have 20 wholes:

To get the answer to $20 \div 5$ we need to split 20 into groups of 5 as shown below:

Therefore, $20 \div 5=4$ since we can see there are 4 groups of 5 .

We can now apply this same method when dividing by decimals.

What does:
$2 \div 0.5$
look like?

Here we have 2 wholes:

To get the answer to $2 \div 0.5$ we need to split 2 into groups of 0.5 as shown below:

Therefore, $2 \div 0.5=4$ since we can see there are 4 groups of 0.5.

Other Pictorial Method

We can also think about $2 \div 0.5$ as how many jumps of 0.5 are there in 2 ?

Written Methodology

To divide by decimals we can also use equivalent fractions to help us.
Example $1 \quad 2 \div 0.5$

$=4$
Therefore, $2 \div 0.5=4$

Example 2

$$
21 \div 0.07
$$

$=300$
Therefore, $21 \div 0.07=300$

Therefore, $3.6 \div 0.09=40$

Length

It is important that pupils are familiar with the different units used when measuring lengths, weights or volumes.

Conversions of length

Units that pupils will use in Maths to measure length are millimetres (mm), centimetres (cm), metres (m) and kilometres (km). The prefixes 'milli', 'centi' and 'kilo' refer to one thousandth, one hundredth and one thousand respectively and can be applied to many situations both within Maths and Numeracy as well as across other curricular areas.

$$
\begin{aligned}
10 \mathrm{~mm} & =1 \mathrm{~cm} \\
100 \mathrm{~cm} & =1 \mathrm{~m} \\
1000 \mathrm{~m} & =1 \mathrm{~km}
\end{aligned}
$$

We can use this information to help us convert between the given units.

Example 1

Change 3.6 centimetres into millimetres

$$
\begin{gathered}
3.6 \times 10=36 \\
3.6 \mathrm{~cm}=36 \mathrm{~mm}
\end{gathered}
$$

Example 2

Change 237 centimetres into metres

$$
\begin{aligned}
& 237 \div 100=2 \cdot 37 \\
& 237 \mathrm{~cm}=2 \cdot 37 \mathrm{~m}
\end{aligned}
$$

Example 3

Change 2345 metres into kilometres

$$
\begin{aligned}
& 2345 \div 1000=2 \cdot 345 \\
& 2345 \mathrm{~m}=2 \cdot 345 \mathrm{~km}
\end{aligned}
$$

Example 4

Change 5.4 kilometres to millimetres

$$
\begin{aligned}
5 \cdot 4 \times 1000 & =5400 \\
5400 \times 100 & =540000 \\
540000 \times 10 & =5400000
\end{aligned}
$$

Ratio

Ratios are used to show how things are shared. They show you how many of one thing there is compared to another.

The ratio of triangles to circles is
4:8
To separate quantities we use a colon
This reads 8 to 4

The ratio of circles to triangles is $8: 4$
As you can see, it matters which order we write our numbers.

Example 1

(1) What is the ratio of arrows to stars?

$$
\begin{gathered}
\text { arrows: stars } \\
6: 3
\end{gathered}
$$

(2) What is the ratio of stars to arrows?
stars: arrows
$3: 6$

As you can see it can be useful to use a table to ensure the ratio is in the correct order.

Simplifying Ratios

We can simplify ratios in the same way that we simplify fractions by dividing all parts of the ratio by the highest common factor (HCF) of all of the terms. If no common factor exists then the ratio cannot be simplified.

Example 1

If we look back at our ratio of triangles to circles we got:

$$
\begin{aligned}
& \text { triangles : circles } \\
& \qquad 4\binom{4: 8}{1: 2} \div 4
\end{aligned}
$$

The HCF of 4 and 8 is 4 .
This means that we divide both sides of the ratio by 4 .

Example 2

What is the ratio of stars to triangles in its simplest form?

stars: triangles
$\div 2\binom{6: 4}{3: 2} \div 2$

The HCF of 6 and 4 is 2 .
This means that we divide both sides of the ratio by 2 .

Example 3

In a class of 30 pupils, there are 18 boys and 12 girls.
What is the ratio of girls to boys, in its simplest form?

girls : boys
$\div 6\binom{18: 24}{3: 4} \div 6 \quad$The HCF of 18 and 24 is 6. This means that we divide both sides of the ratio by 6.

The ratio of girls to boys is 3:4

Example 4

In a jar of sweets there are 20 blue, 10 red and 15 yellow sweets.

What is the ratio of blue to red to yellow sweets, in its simplest form?

$$
\begin{gathered}
\text { blue : red: yellow } \\
\div 5\binom{20: 10: 15}{4: 2: 5} \div 5
\end{gathered}
$$

The HCF of 20,10 and 15 is 5 This means that we divide all values in the ratio by 5 .

Ratio Calculations

Ratios can be used to calculate unknown quantities or to distribute an amount accordingly.

Example 1

To make a diluting juice drink it is suggested the ratio of water to concentrate is $4: 1$.

How much concentrate is required for 20 litres of water?

Pictorial

$$
\begin{aligned}
& \text { water: concentrate } \\
& 4: 1
\end{aligned}
$$

| W | W | W | W | C |
| :--- | :--- | :--- | :--- | :--- |$\quad 4+1=5$ equal parts

20 is split up equally

between 4 boxes.

$$
20 \div 4=5
$$

Each box is equal to 5

Answer: You need 5 litres of concentrate for 20 litres of water.

Written Methodology

water : concentrate

4:1
We know the new amount of 20 : this directly under the water
part of the ratio.

Just like when dealing with equivalent fractions, you must do the same to both sides to keep the ratio equivalent.

20 divided by 4 is 5 .
This tells us that we have multiplied 4 by 5 to get 20 therefore, we must also multiply the 1 on the right hand side by 5 to get our answer.
water: concentrate

Answer: You need 5 litres of concentrate for 20 litres of water.

Example 2

The ratio of males to female teachers in a school is $3: 2$.
If there are 21 male teachers, how many teachers are female?

Pictorial

$$
\begin{gathered}
\text { male: female } \\
3: 2
\end{gathered}
$$

M	M	M	F	F
$\quad 3+2=5$ equal parts				

> 21 is split up equally between 3 boxes.

$$
21 \div 3=7
$$

Each box is equal to 7

Answer: There are 14 female teachers.

Written Methodology

male: female

$$
3: 2
$$

We know the number of males
is 21 , so we can write this directly under the male part 21 :
of the ratio.

21 divided by 3 is 7 .
This tells us that we have multiplied 3 by 7 to get 21 therefore, we must also multiply the 2 on the right hand side by 7 to get our answer.

Answer: There are 14 female teachers.

Sharing Ratio

Example 1

The ratio of boys to girls in second year is 4 : 3 . If there are 322 pupils, how many girls are there?

Pictorial
boys: girls

$$
4: 3
$$

Answer: There are 138 girls.

Written Methodology

boys: girls

$$
4: 3
$$

$4+3=7$ equal parts
Calculate the value of 1 part $=322 \div 7=46$

$$
\left.\begin{array}{rl}
\text { boys : girls } \\
\times 46\left(\begin{array}{c}
4 \\
184
\end{array}\right. & : 138
\end{array}\right) \times 46
$$

Answer: There are 138 girls.

Proportion

Direct Proportion

Two quantities are said to be in direct proportion if they increase or decrease in the same ratio.

Example 1

If one packet of crisps costs 55 p, how much will three packets cost?

Pictorial

1 packet

55p

1 packet 1 packet 1 packe \dagger

$3 \times 55 p=£ 1.65$
Answer: Three packets will cost $£ 1.65$ (165p).

Written Methodology

1 packet: 3 packets

We have multiplied 1 by 55 therefore, we must also multiply the 3 on the right hand side by 55 .

Answer: Three packets will cost $£ 1.65$ (165p).

Sometimes it is necessary to work out the value of a single item before working out multiple items.

Example 2

The weight of 3 rubbers is 51 grams. What is the weight of 8 rubbers?

Pictorial

> 51 is split up equally between 3 boxes.

$$
51 \div 3=17
$$

17	17	17	17	17	17	17	17

8 boxes $=8 \times 17=136$

Answer: 8 rubbers weigh 136 grams.

Written Method

no of rubbers : weight (9)

$$
\div 3\left(\begin{array}{l}
3: 51 \\
1:
\end{array}\right.
$$

To get 1 rubber we have divided 3 by 3 therefore, we must also divide the 51 on the right hand side by 3 .
no of rubbers : weight (g)

$$
\begin{aligned}
& \div 3\binom{3: 51}{1: 17} \div 3 \\
& \times 8\left(\begin{array}{r}
8: 136
\end{array}\right) \times 8
\end{aligned}
$$

To get 8 rubbers we have multiplied 1 by 8 therefore, we must also multiply the 17 on the right hand side by 17 .

Answer: 8 rubbers weigh 136 grams.

Example 3

A 75 millilitre (ml) bottle of an isotonic drink contains 21 calories.
How many calories would there be in 500 ml of the isotonic drink?
For this particular example you would not want to draw out 75 boxes and then 500 boxes. The easiest way would be to use the written methodology as shown in the previous example.

Written Methodology

$$
\begin{array}{r}
\text { volume (ml) : calories (kcal) } \\
\div 75\binom{75: 21}{1: 0.28} \div 75 \\
\times 500(500: 140) \times 500
\end{array}
$$

Answer: 500 ml of isotonic drink contains 140 calories.

Indirect Proportion

If two quantities are inversely proportional to each other then as the value of one increases the value of the other decreases.

Example 1

It takes three men 1 hour to paint a garden fence.
Working at the same speed, how long would it take 4 men to paint the same fence?

Pictorial

3 boxes each
representing 60 minutes
$3 \times 60=180$

1 man would take 180 minutes altogether

180			
45	45	45	45

between 4 boxes. $180 \div 4=45$

4 men would take 45 minutes each

Written Methodology

```
3men = 60 minutes
1 man = 60 < (it would take him 3 times as long on his own)
    = 180 minutes
4men=180\div4
    = 45 minutes
```


Example 2

Four friends went to a restaurant for dinner and they agreed to pay $£ 32.70$ each for the bill. Since it was one of their birthdays, they decided to split the bill between only three of them. How much did they end up paying each?

Pictorial

$£ 130.80$			
32.70	32.70	32.70	32.70

> 4 boxes each
> representing $£ 32.70$
> $4 \times 32.70=£ 130.80$

1 person would pay $£ 130.80$ altogether

3 people would pay $£ 43.60$ each

Written Methodology

$$
\begin{aligned}
\text { Total bill for } 4 \text { people } & =4 \times 32.70 \\
& =£ 130.80 \\
\text { Split between } 3 \text { people } & =130.80 \div 3 \\
& =£ 43.60
\end{aligned}
$$

Foreign Exchange

Foreign Exchange is the conversion of one currency into a different currency.
The exchange rate will tell you the amount of foreign currency you will receive for every one pound ($£$ sterling). The exchange rate changes constantly throughout the day.

To change $£$ Sterling into another foreign currency we multiply the required amount by that country's exchange rate.

To change back into $£$ Sterling from another foreign currency we divide the required amount by that country's exchange rate.

Example 1

Example 2

Using these exchange rates, convert $£ 300$ into Canadian Dollars
Pounds (£) : Exchange (Can. Dollars)

Example 3

Using these exchange rates, convert \$340 (US Dollars) into pounds.

Exchange (US \$) : Pounds (£)
340 : £241.02

$\div 1.4107$

Example 4
Which one is the best deal for the fitness tracker?

We need to convert each price into pounds to allow us to compare the price in each of the countries.

Exchange (US \$) : Pounds (£)

| Exchange (Euros) : Pounds (£) |
| :---: | :---: |
| $114: \quad £ 98$ |
| <1.1633 |

The best deal is from France for 114 Euros which converts into £98 which is less than $£ 100$ (Scotland) and £114.84 (USA).

Time

Pupils will need to recall basic facts about time:

1 year	$=365$ days (366 in a leap year)
	$=52$ weeks
	$=12$ months

1 day	$=24$ hours
1 hour	$=60$ minutes
1 minute	$=60$ seconds

Time is measured using either the 12 or 24 hour clock.

12 hour clock
a.m \longrightarrow midnight to noon
p.m noon to midnight
Midnight $\longrightarrow 00: 00 \longrightarrow 23: 59$
:---:
Always contains four digits
12 noon $\longrightarrow 12: 00$
The hours after 12 noon are:
$1 \mathrm{pm} \longrightarrow 13: 00$
$2 \mathrm{pm} \longrightarrow 14: 00 \mathrm{etc}$

Time Intervals

We use an empty number line and addition to teach time.

Example 1

How long is it from 3.45pm to 6:57pm?

This is an empty number line with the start and finish values marked in at opposite ends.

$$
3.45 \mathrm{pm}
$$

6.57 pm

We then add on hours/minutes and move along the line until we reach the end time.

Answer: 3 hours and 12 minutes

You can decide to move along the empty number line in bigger increments. It is a personal choice on how you move from your starting time to the finishing time.

Example 2

How long is it from 10:19pm to 5:13am?

Answer: 6 hours and 54 minutes.

Converting minutes into hours

Converting minutes to hours can be shown pictorially using a bar model as shown below.
Pictorial

We know that one hour is equal to sixty minutes
1 hour

The bar model above has been split up into 10 equal parts.
Each part represents 6 minutes since $60 \div 10=6$.
1 hour

We can also show this as 1 hour (1 whole) being split up into 10 equal parts.
Each part represents 0.1 of an hour since $1 \div 10=0.1$.

This proves that 6 minutes is equal to 0.1 hours.

Example 1

Convert 24 minutes into hours.

Answer:
24 minutes $=0.4$ hours

Example 2

Convert 21 minutes into hours.

Answer: $\quad 21$ minutes $=0.35$ hours

Written Methodology

Converting minutes to hours can also be completed by writing the number of minutes as a fraction of an hour.

Example 1

Convert 24 minutes into hours.

24 minutes can be written as a fraction of 1 hour.
24 out of 60 minutes.

step $124 \div 10=2.4$
step $2.4 \div 6=0.4$

Answer: $\quad 24$ minutes $=0.4$ hours

Example 2

Convert 21 minutes into hours.

21 minutes can be written as a fraction of 1 hour.
21 out of 60 minutes.
$\frac{21}{60}=21 \div 60 \sim \begin{aligned} & 2 \text { steps } \\ & \\ & \text { * divide by } 10 \text { then } \\ & \\ & \text { * divide by } 6\end{aligned}$
step $1 \quad 21 \div 10=2.1$
step $22.1 \div 6=0.35$

Answer: $\quad 21$ minutes $=0.35$ hours

Example 3

Convert 3 hours and 39 minutes into hours.

39 minutes can be written as a fraction of 1 hour.
39 out of 60 minutes.

step $1 \quad 39 \div 10=3.9$
step $23.9 \div 6=0.65$

Answer: $\quad 3$ hours and 39 minutes $=3.65$ hours

Converting hours into minutes

When you convert minutes to hours you divide by sixty.
To convert in the opposite direction, hours to minutes we do the opposite operation, multiply by sixty.

Written Methodology

Example 1

Convert 0.3 hours into hours and minutes.

When multiplying by 60 we can do this in two steps:

$$
60=10 \times 6
$$

$$
0.3 \times 10=3 \quad \text { and } \quad 3 \times 6=18
$$

Multiply by 10 and then multiply by 6

Answer: $\quad 0.3$ hours $=0$ hours and 18 minutes

Example 2

Convert 0.65 hours into minutes

When multiplying by 60 we can do this in two steps:

$$
60=10 \times 6
$$

Answer: $\quad 0.65$ hours $=0$ hours and 39 minutes

Example 3

Convert 4.45 hours into hours and minutes.

When multiplying by 60 we can do this in two steps:

$$
60=10 \times 6
$$

Answer:

Calculating Distance, Speed and Time.

When calculating speed, distance and time we use the strategies we have already looked at within this booklet on ratio. We tend to stay clear of using the DST triangle that some of you may be familiar with.

Calculating Distance

What does 40 mph actually mean?

This means that something travels 40 miles every hour.

Knowing this can then help us to calculate the distance travelled for a given amount of time.

Example 1

A car travels for 2 hours at a speed of 30 mph .
How far does it travel?

We have multiplied 1 by 2 to get 2 , we must also multiply the 30 on the right hand side by 2 .
time : distance

Answer: The car travels 60 miles.

Example 2

A car travels for 3 and a half hours at a speed of $40 \mathrm{~km} / \mathrm{h}$.
How far does it travel?

Answer: The car travels 140 miles. $(120+20)$

Calculating Speed

We know that 50 mph means that something travels fifty miles every one hour.
If we use ratio to show how far something travels in one hour then this is the equivalent to calculating the average speed.

Example 1

A car travels 180 miles in 3 hours.

What is the average speed of the car?

time: distance

We have divided 3 by 3 to get 1 , we must also divide the 180 on the right hand side by 3 .
time: distance $\div 3\left(\begin{array}{ccc}3 & : & 180 \text { miles } \\ 1 & : & 60 \text { miles }\end{array}\right)$

We have shown that the car travels 60 miles in one hour.
Therefore, the average speed is 60 mph .

Answer: The average speed of the car is 60 mph .

Example 2

A cyclist travels 14 miles in 20 minutes.

What is the average speed of the cyclist?

$\times 3 C$| time : | distance |
| ---: | :--- |
| 20 minutes : | 14 miles |
| 1 hour : | |

We have multiplied 20 minutes by 3 to get 1 hour (60 minutes).
We must also multiply the 14 on the right hand side by 3 .

We have shown that the cyclist travels 42 miles in one hour.
Therefore, the average speed is 42 mph .

Answer: The average speed of the cyclist is 42 mph .

A car travels 150 miles in 2 and a half hours.

What is the average speed of the car?

There are five 30 minutes in 2.5 hours so we have divided 2.5 hours by 5 to get 0.5 hours (30 minutes).

We must also divide the 150 on the right hand side by 5 .
time : distance

Now that we have the distance covered in 30 minutes we can multiply both sides by 2 to get the distance covered in 1 hour.
time : distance

We have shown that the car travels 60 miles in one hour.
Therefore, the average speed is 60 mph .

Answer: The average speed of the car is 60 mph .

Calculating Time

We will continue to use ratio to help us calculate the time that something takes to travel at a given speed and distance.

Example 1

A car travels 200 miles at an average speed of 40 mph . How long does the journey take?

Pictorial Method

We know that 40mph means that the car will travel forty miles every one hour. We can then show this pictorially by counting how many jumps of 40 it would take to get from 0 miles to 200 miles.

There are 5 jumps of 40 to get from 0 miles to 200 miles.

Answer: The journey will take 5 hours

Written Methodology

$40 \mathrm{mph} \longrightarrow 40$ miles every one hour
$\left.\begin{array}{rl}\text { Time : } & \text { Distance } \\ \text { 1hr } & : 40 \\ : & 200\end{array}\right) \times 5\left(\begin{array}{l}\text { Is } 200 \text { a multiple of } 40 ? \\ 200 \div 40=5 \\ \text { yes }\end{array}\right.$

We have multiplied 40 by 5 to get 200. We must
also multiply the 1 on the left hand side by 5 .
Time: Distance
$\times 5\left(\begin{array}{cc}1 \mathrm{hr} & : \\ 5 \mathrm{hrs}: & 200\end{array}\right) \times 5$

Answer: The journey takes 5 hours.

Example 2

A cyclist travels 105 kilometres at an average speed of $30 \mathrm{~km} / \mathrm{hr}$.
How long are they cycling for?

Pictorial Method

There are 3 full jumps of 30 to get from 0 kilometres to 90 kilometres.
If we were to add on another 30 it would take us over 105. Therefore, we have added on 15 (half of 30).

There are 3 and a half jumps of 30 to get from 0 km to 105 km .

Answer: The journey takes 3 hours and 30 minutes.

Written Methodology

$30 \mathrm{~km} / \mathrm{hr} \longrightarrow 30 \mathrm{~km}$ every one hour

We have multiplied 30 by 3 to get 90 . We must also multiply the 1 on the left hand side by 3 .

Now add these together to get the final answer

Answer: The journey takes 3 hours and 30 minutes.

Example 3

Sean runs 27 kilometres at an average speed of $12 \mathrm{~km} / \mathrm{hr}$.
How long was he running for?

Pictorial Method

There are 2 full jumps of 12 to get from 0 km to 24 km .
If we were to add on another 12 it would take us over 27.
Therefore, we have added on 3 (one quarter of 12).
There are 2 and one quarter jumps of 12 to get from 0 km to 27 km .

Answer: The journey takes 2 hours and 15 minutes.

Written Methodology

$$
12 \mathrm{~km} / \mathrm{hr} \longrightarrow 12 \mathrm{~km} \text { every one hour }
$$

We have multiplied 12 by 2 to get 24 . We must also multiply the 1 on the left hand side by 2 .

> Time : Distance

Now add these together to get the final answer

Answer: The journey takes 2 hours and 15 minutes.

Probability

Probability is a measure of the likelihood of an event happening.

- We measure probability on a scale of zero to one.
- Probability of 0 means that the event is impossible.
- Probability of 1 means that the event is certain.

The greater the probability, the more likely an event will occur.

To calculate a value for the probability we use the following equation:

Probability $=$ No. of favourable outcomes All possible outcomes

Example 1

There is a bag of 13 marbles.
There are 3 blue marbles, 8 red marbles and 2 green marbles.
What is the probability that you choose a red marble?

Probability $=\frac{\text { No. of favourable outcomes }}{\text { All possible outcomes }}$

The probability of choosing a red marble is $\frac{8}{13}$.

Example 2

What is the probability of rolling a die and landing on an even number?

Probability $=$ No. of favourable outcomes
 All possible outcomes

$=\frac{3}{6} \longleftarrow$ No. of even numbers $(2,4,6)$
$=\frac{1}{2}$ (simplest form)

We can also convert our answer for probability from a fraction into a decimal. We have previously learned how to do this in the 'Decimals section' at the beginning of this booklet.

This is very useful when we want to compare probabilities against each other.

Example 3

There are two raffles being held in school.
The S 1 raffle has 100 tickets available, while the S 2 raffle has 80 tickets available.
Mary bought 23 tickets for the S1 raffle and Scotty bought 18 tickets for S 2 raffle.

Who has a better chance of winning?

Answer: Mary has a better chance of winning since 0.23 is greater than 0.225 .

YouTube Video Links

Topic	
Converting between fractions, decimals and percentages	
Multiplying decimals	
Dividing Decimals	
Conversion of lengths	
Simplifying ratio	
Ratio calculations	
Sharing ratio	
Proportion	
Time intervals	
Converting hours to minutes	
Converting minutes to hours	
Calculating Distance	
Calculating Speed	
Calculating Time	

