National 5

Revison/Assessment Topics

Index

Rev/Assess 1 Percentages
Rev/Assess 3 Time, Distance, Speed
Rev/Assess 5 The Circle (1)
Rev/Assess 7 Integers
Rev/Assess 9 AlgebraRev/Assess 11 RAT Trigonometry
Rev/Assess 13 Graphs, Charts \& Tables
Rev/Assess 15 Simultaneous Equations
Rev/Assess 17 Statistical Analysis
Rev/Assess 19 Patterns
Rev/Assess 21 Money Matters
Rev/Assess 23 Functions \& Graphs
Rev/Assess 25 Quadratic Function (1)
Rev/Assess 27 Surds \& Indices
Rev/Assess 29 Trig Equations
Rev/Assess 2 Pythagoras/Percentages
Rev/Assess 4 Scientific Notation
Rev/Assess 6 Gradients and Lines
Rev/Assess 8 Volumes
Rev/Assess 10 The Circle (2)
Rev/Assess 12 Equations/Inequalities
Rev/Assess 14 Angle Properties
Rev/Assess 16 Fractions
Rev/Assess 18 Further Trigonometry
Rev/Assess 20 Algebraic Operations
Rev/Assess 22 Money Matters (2)
Rev/Assess 24 Similar Figures
Rev/Assess 26 Trig Graphs
Rev/Assess 28 Quadratic Function (2)

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working.

1. Write 85% as a decimal and as a fraction, (in its simplest form).
2. In Auchtermully High School, 55% of the pupils are girls.

If the role at Auchtermully is 640 , how many of the pupils are boys?
3. David scored 19 out of 25 in his History test and 24 out of 30 in his Geography test.

In which test did David do better? (You must support your answer with working).
4. Adsa Stores bought in a box of 24 tins of beans for a total price of $£ 12 \cdot 00$.

They sold all 24 tins for 62 p each.
(a) Calculate the total profit when all the tins were sold.
(b) Express this profit as a percentage of the cost price.
5. Jenny was left $£ 12000$ in her Gran's will. She deposited the money in SCOTIA Bank and left it there for 3 years.

Calculate how much her $£ 12000$ savings were worth at the end of the 3 year period. (Interest rate $=4 \%$ p.a.).
6. I bought my new car three years ago for $£ 10500$.

- It lost 20% of its value in the first year
- It lost a further 10% in the second year
- It also lost 15% of its value this year.

How much is my car now valued at?
7.

The value of my flat rose by 8% during this year. It is now valued at $£ 162000$.

Calculate how much it must have been worth last year.
8. When a jug of water was left in the sun 20% of it evaporated.

There was then 640 millilitres of water left in the jug.
How much water was in the jug before it was left in the sun?
9. Round :-
(a) 37924 to two significant figures. (b) 0.0047049 to three significant figures.

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working. Unless specified, answer correct to 3 significant figures.

1. Calculate the lengths of the sides marked x and y here.
2.

Triangle $A B C$ is isosceles with $A B=A C$.
(a) Calculate the height of triangle $A B C$.
(b) Now calculate its area.
3. Calculate the perimeter of this shape.

4. Draw a set of coordinate axes and plot the two points $P(-6,4)$ and $Q(5,-2)$. Calculate the length of the line PQ to 2 decimal places.
5. Prove that triangle LMN is a right angled triangle.

6. James left $£ 600$ in his building society account where the interest rate was 4.5% p.a. Calculate how much his $£ 600$ savings would be worth if he left it there for 3 years.
7. "Torrisons" bought in a 45 kg bag of onions for $£ 15.00$.

The onions were packed into 3 kg bags and sold for $£ 1.20$ per bag. Calculate the total profit and express it as a percentage of the cost price.

8. Since the beginning of the week, my sunflower has grown by 15% to a new height of 138 cm .

How tall must my sunflower plant have been at the beginning of the week?

You may use a calculator in this revn/assesst, but you must show all working.

Answers must be given in the correct units.

1. Change these times into decimals of an hour :-
(a) 15 minutes
(b) 42 minutes
2. Change these times (given in hours) into hours and minutes :-
(a) 4.2 hours
(b) 1.9 hours
3. Change 5 metres/second into $\mathrm{km} / \mathrm{hr}$.
4. A light aircraft is flying at a speed of 180 kilometres per hour. How far will it travel in $2 \frac{1}{2}$ hours?

5.

Two girls ran 100 metres in 40 seconds.
What was their average speed?
6. A motorcyclist travelled 238 miles at a steady speed of 68 mph . How long did he take? (answer in hours and minutes)

7.

A caravan was towed along for 1 hour 45 minutes at a slow speed of 20 miles per hour.
How far did it go ?
8. A train travelled 126 kilometres at an average speed of $90 \mathrm{~km} / \mathrm{hr}$.

How long was the journey, in hours and minutes?

9. An ocean liner left port at 1455 hours.

At 1910 hours, she was 76.5 kilometres from port.
What was the liner's average speed for that part of its journey?

10. Albert left Duray at 8.30 am and cycled to Sitton. Billy went by car from Duray to Sitton, leaving at 9 am.

(a) Calculate Billy's average speed.
(b) What was the time when Billy overtook Albert?
(c) How far away from Sitton were they at that time?

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working.

1. Write the following numbers in scientific notation, $a \times 10^{n}$:-
(a) 654000
(b) 17.25
(c) 0.0061
(d) 0.00000092
2. Write out these numbers in full, then change them into scientific notation :-
(a) $8 \frac{1}{2}$ million
(b) 235 million
3. Each of the following is written in scientific notation.

Change them back into normal form.
(a) 3.28×10^{3}
(b) 4.001×10^{8}
(c) 5.1×10^{-2}
(d) 6×10^{-7}
4. The roll-over in the Lotto means that Saturday's prize fund stands at $£ 9.225 \times 10^{6}$. Write this amount as we would know it.
5. The population of France is 60660000. Write this number in scientific notation.

6. The mass of a particle of dust is 0.00000000075 kg . Write this number in scientific notation.

7. Work out the following, giving your answers in scientific notation :-
(a) $\left(2.3 \times 10^{3}\right) \times\left(8.5 \times 10^{5}\right)$
(b) $\left(8.55 \times 10^{-3}\right) \div\left(1.9 \times 10^{-2}\right)$
8. The speed of light is $\left(3 \times 10^{8}\right) \mathrm{m} / \mathrm{s}$.

If the sun is $\left(1.5 \times 10^{11}\right)$ metres from the earth, how many seconds does it take light to reach the earth?

Give your answer in scientific notation.
9. How many TOFFOS will be eaten in the year 2008? Give your answer in scientific notation.

TOFFOS

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working.

Give all answers correct to 3 significant figures, with correct units.

1. Calculate the circumference of each of these badges :-
(a)

(b)

2. A semi-circular flower bed has a diameter of 5.25 metres. Calculate the perimeter of the flower bed.

3.

circumference $=173 \mathrm{~cm}$

Calculate the radius of a bicycle wheel, given that its circumference is 173 centimetres.

5.

The side view of a conservatory is shown.
It is made entirely of glass.
Calculate its area.
6. A decorative gate, made of iron rod, consists of a rectangular base with four identical semi-circular loops on top.
(a) Use the figure to help you write down the diameter of each semi-circle and then show that you need 8.40 metres of rod, (to nearest 10 cm) to make it.
(b) The iron rod costs $£ 6.50$ per metre.

A blacksmith also charges $£ 75$ for making the gate.

What is the final cost of the gate?
7. A circular "donut" has area of 1256 square centimetres. Calculate the circumference of the "donut".

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working.

1. A cable car travels from a base point to the top of a mountain as shown.
Find the gradient of the wire which supports the cable car.
Give your answer as a fraction in its simplest form.

2.

A ladder is placed against a wall, two metres out from the wall as shown.

The gradient of the ladder is 0.75 .
How far up the wall the does the ladder reach?
3. Calculate :-
(a) the gradient of the line $P Q$ which passes through the points $P(5,-3)$ and $Q(-1,9)$.
(b) the gradient of the line with equation $y=6$.
4. The equations of two lines are given below.

For each of them, write :-
(a) what the gradient is.
(b) the point where it meets the y-axis.
(i) $y=-2 x$
(ii) $y=\frac{1}{2} x-1$
5. Line KL cuts the y-axis at the point $(0,-7)$ and is parallel to the line with equation $y=-5 x+1$.
(a) Write down the gradient of the line KL.
(b) Write the equation of this line KL.
6. For the line with equation $2 y-8 x+10=0$, write down :-
(a) its gradient.
(b) the point where it meets the y-axis.

Please Turn Over
7. Find the equation of the line $A B$, shown in the diagram below.

8. The line passing through the points $C(6,1)$ and $D(0,4)$ is parallel to another line which passes through the two points $E(0,2)$ and $F(6, k)$.

Calculate the value of k.

A calculator should NOT be used in this revn/assess ${ }^{\dagger}$. All working should be shown.
1.
(a) $(-1)+11$
(b) $(-32)-19$
(c) $(-15)+25-5$
(d) $(-2 x)-9 x$
(e) $8 a+2 b-a-5 b$
(f) $(-2 a)-7 b-8 a+4 b$
(g) $(-3)-(-9)$
(h) $(-30)-(-31)$
(i) $7 p-(-15 p)$
(j) $(-6 m)-(-6 m)$
(k) $\left(-7 x^{2}\right)-13 x^{2}$
(I) $6 w+6 w-(-6 w)$
(m) $3 a+b-(-3 a)-b$
(n) $\quad(-7 g)-7 g-7 g$
(o) $-3 k^{2}-\left(-3 k^{2}\right)$
2. $a=4, b=-1$ and $c=-5$.

Find the value of :-
(a) $a+b$
(b) $a-b$
(c) $b-c$
(d) $b+2 c$
(e) $3 a-c$
(f) $c+2 a$
(g) $(-a)-c$
(h) $-(-b)-2 c$
3. Work out the answers to the following :-
(a) $(-9) \times 5$
(b) $(-50) \times 0$
(c) $8 \times(-3 x)$
(d) $2 a \times(-5 a)$
(e) $(-40) \div 8$
(f) $(-25 y) \div 5$
(g) $(-21 b) \div 3 b$
(h) $9 \times(-1) \times 3$
(i) $((-5)-2) \times 4$
(j) $((-27)-13) \div 5$
(k) $(-50) \times(-4)$
(I) $(-48) \div(-8)$
(m) $3 \times(-4) \times(-5)$
(n) $\quad((-20)+(-12)) \div(-8)$
(o) $(-3 a) \times(-5 a)$
(p) $(-6)^{2}$
(q) $(-3)^{3}$
(r) $(-5)^{2}-(-2)^{4}$
4. $p=3, q=0$ and $r=-4$.

Calculate the value of :-
(a) $p q r$
(b) $p+q+r$
(c) $p^{2}+q^{2}+r^{2}$
(d) $p q+q r+p r$
(e) $p^{2}-2 r$
(f) $3 p^{2}-2 r^{2}$
(g) $p^{3}-3 r$
(h) $-2 r^{3}$
(i) $(p-r)^{2}$

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working.
The correct formula must be clearly stated in each question.
(Some) Formulae for Areas \& Volumes
(None at all are given in S Grade Credit)
Prism $V=A h$
Pyramid $\quad V=\frac{1}{3} A h$
Sphere $V=\frac{4}{3} \pi r^{3}$
Cylinder $\quad V=\pi r^{2} h$
Cone $V=\frac{1}{3} \pi r^{2} h$
CSA Cylinder CSA $=2 \pi r h$

1. Calculate the area of this kite.

2.

How many litres will this tank hold when full?
3. This cuboid measures 12 cm by 6 cm by 7 cm . Calculate its total surface area.

4. Calculate the volumes of these shapes :-
(a)

(b)

(c)

5. Milk is kept warm in a large cylindrical urn.
(a) Calculate the volume of milk in the urn when the urn is full.
(b) Each cup can hold $\frac{1}{4}$ litre of milk.
How many cups can be filled from the urn?

6. A sweetie manufacturer buys mallows in cubical blocks of side 2 cm which she reshapes into the form of cylinders.

Each cylinder has a base with a diameter of 3 cm .
Calculate the height (h) of the newly formed cylinder.
(Give you answer correct to 3 sig. figs)

7.

The radius of this hemispherical bowl is 20 cm .
(a) Calculate its volume.
(b) How many whole litres of water will it hold when full?
8. For the solid wooden cylinder shown, calculate :-
(a) the area of the top.
(b) the curved surface area.
(c) the total surface area.

1. Simplify :-
(a) $6 p^{2}+q^{2}-5 p^{2}-2 q^{2}$
(b) $2 m \times 5 m$
(c) $(3 k)^{2} \times 4$
(d) $9 p^{2} q^{2} \times 2 p$
(e) $18 x^{2} \div 6 x$
(f) $35 g^{3} h \div 5 g^{2} h$
2. Work out the brackets and tidy up the terms :-
(a) $4(a+2)-7$
(b) $3(5+c)-8 c$
(c) $5-3(x-1)$
(d) $6(m+2)+2(m-1)$
(e) $7 k-3(1-2 k)$
(f) $w(w-2)-3(2 w-1)$
3. Multiply out the brackets and simplify :-
(a) $(e-23)(e+7)$
(b) $(2 x+3)(4 x+5)$
(c)
$(2-5 a)(5-2 a)$
(d) $(3 p-1)^{2}$
(e) $(k-1)^{3}$
(f)
$\left(n^{2}+3\right)^{2}$
(g) $(3 x-2)(2 x-1)-(5 x-1)(x+2)$
(h) $(2 x-1)\left(5 x^{2}+x-2\right)$
4. Factorise fully :-
(a) $18 x-12 y$
(b) $2 a b-10 h b$
(c) $a^{3}-a^{2}$
(d) $p^{2}-64$
(e) $7 q^{2}-63$
(f) $x^{2}-2 x-3$
(g) $4 y^{2}-12 y+9$
(h) $2 p^{2}+7 p q+3 q^{2}$
(i) $8 m^{3} n-32 m^{2} n$
(j) $5 m n^{2}-5 m p^{2}$
(k) $x^{4}-2 x^{2}+1$.
5.

Shown is a picture of a rectangular flower bed with a 2 metre grass border surrounding it.
Write down an expression in x for :-
(a) the length of the flower bed.
(b) the breadth of the flower bed.
(c) the area of the flower bed.
(d) the area of the shaded grass border.

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working.

1. Calculate the length of the $\operatorname{arc} A B$.

2.

Al is replacing the fabric on his garden parasol.

He uses a major sector of a circle, with radius 1.2 metres.

Calculate the area of fabric needed to replace the old material.
3. A door can only open so far into a room due to a television set positioned behind the door.

The door is 75 centimetres wide.

The length of the arc through which the door can rotate is 157 centimetres.

Calculate the size of the angle ($\angle \mathrm{KLM}$) through which the door can rotate.

4.

The striped shaded area shown is called a segment of the circle, centre O.
(a) Calculate the area of the sector JOH .
(b) Calculate the area of the right angled triangle JOH.
(c) Determine the area of the striped segment.
5. $A B$ is a tangent to this circle, centre K and it meets the circle at point T.

MT is a diameter and N is a point on the circumference of the circle.

$$
\angle M N K=65^{\circ}
$$

Make a neat sketch of the diagram and fill in as many angles as you can to help you find the size of \angle NTB.

6.

A swimming pool, in the shape of a semi-circle, has a diameter of 15.9 metres.

Donald walked from A to B.
Sarah swam from A to P to B.
How much further had Sarah travelled than Donald?
(Answer correct to 1 decimal place)
7. Sophie built a small tower, made of bricks, in her back garden. On top of it she fitted a large glass light-bulb holder.

The diagram shows it as part of a circle.
Centre, C, is 20 centimetres above the top of the wall.
(a) Calculate the radius of the circular bulb holder.
(b) Use this to find the total height $(\mathrm{H} \mathrm{cm})$ of the structure.

show all working Unless otherwise instructed, answer correct to 1 decimal place.

1. Calculate the value of x, y and z in the following triangles :-

2.

A telephone pole has a support cable $5 \cdot 3$ metres long attached from its top to a stake on the ground.
The cable makes an angle of 72.5° with the ground.
Calculate the height of the telephone pole.
3. Triangle $A B C$ is isosceles with sides $B C=40.6 \mathrm{~m}$ and $A C=65 \mathrm{~m}$.

Calculate the size of angle $A B C$.

A ship leaves port P and travels 38 miles due North and then 15 miles due West to an island.

On what bearing must it travel to return to port ? (answer to nearest degree)
5.

The figure shows a right angled triangle RQT with angle $Q R T=50^{\circ}$ joined to a rectangle PQRS. $P T=84 \mathrm{~cm}$ and $S R=56 \mathrm{~cm}$.
(a) Write down the length of line QT.
(b) Calculate the length of line PS.

A calculator should NOT be used in this revn/assess ${ }^{\dagger}$. All working should be shown.

1. Copy each equation and solve to find the value of the letter.
(a) $6+x=5$
(b) $4 y=30$
(c) $3 a+5=18$
(d) $12 g-1=3 g+26$
(e) $8(2 k-1)=11 k+27$
(f) $5(3 u+1)-2(u-3)=2 u$
2. Multiply out the brackets and solve for x :-
(a) $4 x(x+5)=4 x^{2}+10$
(b) $(x-3)^{2}=(x+1)^{2}$
3. Both pictures shown opposite have the same area.
(All sizes are in centimetres).
(a) Form an equation in x.
(b) Solve the equation to find the dimensions of each picture.

4. Solve these equations by firstly removing the fractions :-
(a) $\frac{1}{2} x+6=11$
(b) $\frac{2}{5} x+1=\frac{1}{3} x-2$
(c) $\frac{5 x+1}{6}-\frac{x-4}{3}=10$
5. Solve the following inequalities :-
(a) $p+5 \leq 0$
(b) $-3 p>12$
(c) $3 p-9 \geq-15$
(d) $8-p<-22$
(e) $5 p+3 \leq 15-p$
(f) $22-5 p>3 p+6$
(g) $10-(1-p) \geq-1$
(h) $4(1-p)<2(4 p+2)$
6. (a) Write down the cost of tennis for h hours with 2 racquets at :-
(i) Robertson Park
(ii) Brodie Park.
(b) Make an inequality if tennis at Brodie Park is said to cost less than Robertson Park for h hours, and solve it.

Robertson Park
$£ 1$ per hour
PLUS
£2.50 per Racquet
(c) Suggest a reason why most people play at Robertson Park

A calculator should NOT be used in this revn/assess ${ }^{\dagger}$. All working should be shown.

1. Use this table to construct a Comparative Bar Graph showing the number of Arsenal and Chelsea football tops sold one day in three High St. stores in London.

Arsenal	10	18	6
Chelsea	16	3	17

2. (a) Construct a Comparative Line Graph showing the average number of hours of sunshine per week in two French villages over a period of five weeks during the summer.

(b) On how many occasions is the temperature at La Mere higher than at La Paz?
3. Shown below are the Physics and Chemistry percentage marks of ten pupils who sat S3 exams in both subjects.

Name	Phy	Chem
Ann	60	80
Brian	40	70
Claire	10	10
Dean	50	75
Eck	70	90

(a) Construct a scattergraph to represent this information.
(b) Comment on the correlation in this example.
(c) Comparing both subjects, there is one pupil who has scored differently from the others who is it? Explain your answer.
(d) Draw a Line of Best Fit on your scattergraph.
(e) An eleventh pupil scored 55 for physics but was given an estimated mark for chemistry. Estimate that chemistry mark using your line.
4. This pie chart shows the different kinds of holidays which people choose to take.
(a) What fraction of the people prefer to go on a cruise?
(b) What percentage of the people like to go on a beach holiday?
(c) If 240 people took part in this survey, how many preferred to tour whilst on holiday.

5. The number of fish caught by two 8-man Fishing Teams in a competition was recorded. One team used worms to fish, the other used flies.

Worm Fishing	27	13	17	29	38	24	41	9
Fly Fishing	43	26	33	27	21	26	30	20

(a) Draw an ordered back to back stem and leaf diagram to represent this information.
(b) Find the median number of fish caught by the team using worms.
(c) Write down the modal number of fish caught by the team using flies.
(d) Fishermen who caught more than 35 fish received a silver medal.

How many fishermen received a silver medal ?
6. This dot plot shows the age of each second-hand car which is on display at Arnold's Motors.

(a) How many cars are 4 years old or under?
(b) How many cars in total are on display?
(c) What is the modal age of the cars?
(d) Find the median age.

A calculator should NOT be used in this revn/assess ${ }^{\dagger}$. All working should be shown.

1. Make a neat sketch of each diagram and find the size of the angles marked with a letter.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

2. Name the figure shown opposite.

- Copy the diagram.
- Fill in the sizes of the other eleven missing angles.

3.

Calculate the size of the OBTUSE angle between the minute hand and the hour hand of a clock at half past nine.

A calculator should NOT be used in this revn/assess ${ }^{\dagger}$. All working should be shown.

1. Sketch the line with equation $y=5-4 x$ on a coordinate diagram.
2. Solve this pair of simultaneous equations graphically :-

$$
\begin{aligned}
& 2 y+3 x=12 \\
& 2 y=x+4
\end{aligned}
$$

3. Solve each pair of simultaneous equations using elimination :-
(a) $\begin{aligned} 5 y+4 x & =14 \\ 3 y-4 x & =2\end{aligned}$
(b) $3 x+2 y=3$
$5 x+4 y=7$
(c) $2 x+7 y=-24$ $3 x+3 y=-6$
$3 y-4 x=2$
4. Rearrange this pair of simultaneous equations and then solve :-

$$
\begin{aligned}
4 x+y-17 & =0 \\
3 x & =13-y
\end{aligned}
$$

5. 3 coffees and 2 slices of cake costs $£ 7$.

For $£ 8.50$ I can buy 4 coffees and 2 slices of cake.

What is the price of a cup of coffee?

6. The bill for five adults and three children for an overnight stay at The Castle Hotel is $£ 500$. $£ 310$ is the charge for three adults and two children staying overnight at this hotel.
(a) Write down two equations to represent this information.
(b) Calculate the tariff for four adults and four children to stay overnight at The Castle.
(c) How much would it cost in total for a family of two adults and six children to stay overnight for 2 nights if, for the 2nd night only, the adults paid full price and the children stayed for free that night?

A calculator should NOT be used in this revn/assess ${ }^{\dagger}$. All working should be shown.

1. Change to a mixed number and simplify where required :- (a) $\frac{17}{3} \quad$ (b) $\frac{58}{8}$.
2. Write $6 \frac{5}{7}$ as a top heavy fraction.
3. How many $\frac{1}{5}$ litre milk cartons can be filled from an urn containing $4 \frac{3}{5}$ litres?
4. Copy and complete the following additions and subtractions, giving your answers in fully simplified form :-
(a) $\frac{5}{9}+\frac{2}{9}$
(b) $2 \frac{1}{3}+1 \frac{1}{4}$
(c) $5 \frac{5}{6}+3 \frac{1}{2}$
(d) $\frac{8}{11}-\frac{3}{11}$
(e) $5 \frac{2}{3}-2 \frac{1}{5}$
(f) $6 \frac{1}{2}-1 \frac{4}{7}$
5. Carry out the following multiplications and divisions, giving your answers in fully simplified form :-
(a) $\frac{3}{4} \times \frac{3}{5}$
(b) $1 \frac{1}{2} \times 2 \frac{1}{3}$
(c) $\frac{5}{6} \div \frac{2}{3}$
(d) $3 \frac{1}{2} \div 1 \frac{1}{6}$
6. Billy's first attempt at the long jump was $10 \frac{3}{4}$ metres.

His second attempt was $1 \frac{2}{5}$ metres longer.
How long was Billy's second jump?

7.

A box of chocolate cremes weighs $1 \frac{5}{8}$ kilograms.
Work out the weight of 5 boxes.
8. A crate, filled with 7 identical watermelons, weighs $5 \frac{3}{4}$ kilograms.

The crate itself when empty weighs $\frac{1}{2} \mathrm{~kg}$.
Calculate the weight of one watermelon.

9. Divide 100 by $\frac{1}{2}$;

Divide your answer by $3 \frac{1}{3}$;
then finally find four fifths of that answer.

You may use a calculator in this revn/assess ${ }^{\dagger}$, but you must show all working.

1. The ages of some of the children who attended a disco in a village hall were :-

17	13	11	12	11	13	11	10	13	14	11	15

Calculate :-
(a) the range of ages
(b) the modal age
(c) the median age

(d) the mean age (to 1 decimal place).
2. The mean height of a group of 4 girls was 1.65 metres.

When Daisy, (who is 1.72 metres tall) and Mandy joined them, the mean height of the six girls then became 1.67 metres.
How tall was Mandy?

3. A group of people were asked how many phones, including mobile phones, they possessed.
The results are shown in the table.
(a) Write down the mode.
(b) Copy the table and add a third column to enable you to calculate the mean number of phones (to 1 decimal place).

No. of Phones x	Freq f
2	1
3	11
4	7
5	3
6	4

4. In a tournament, a group of golfers recorded the following scores :-

74	72	70	75	71	71	73	76
75	74	71	72	72	70	72	73

(a) Construct a frequency table from the above data and add a cumulative frequency table.

(b) Calculate the median score.
(c) What is the probability that a golfer, chosen at random, scored more than 71 ?
5. A hotel books taxis from a taxi firm called ClydeCars.

The receptionist notes the waiting time for every cab ordered over a two week period.
These times are recorded in the stem and leaf diagram shown below.
(a) Calculate :-
(i) the median
(ii) the lower quartile
(iii) the upper quartile

Waiting Time (minutes)					
0	6	7			
1	2	3	4		
2	5	6	9		
3	2	5	7		
4	2	4		\quad	$1 \mid 5=15$ minutes
:---					
$n=14$					

(b) Calculate the semi-interquartile range.

In another two week period, the hotel books taxis from another company called WhiteCabs.
The semi-interquartile range for WhiteCabs is found to be 10.4 minutes.
(c) Which company provides the more consistent service?

Give a reason for your answer.
6. A sample of third year pupils was asked how many DVD's they watch per week.

The results are shown opposite.

4	3	5	4	4	4	1	1	4	6	
3	3	1	2	2	2	3	4	1	1	2

(a) From the data, find the median, the lower quartile and the upper quartile.
(b) Construct a boxplot for the data.
(c) A sample of second year pupils was asked the same question.

The boxplot shows their answers.
Compare the two boxplots, making TWO comments.

7. (a) The price, in pence, of a carton of orange juice in six different supermarkets is shown below.

70	66	75	89	59	79

Calculate the mean and the standard deviation of these prices.
(b) In six local shops, the mean price of a carton of orange juice is 73 pence with a standard deviation of 17.7 .
Compare the supermarket prices with those of the local shops.

You may use a calculator in this revn/assesst, but you must show all working. Unless otherwise instructed, answer correct to 3 significant figures.

1. The car park at Troscos Supermarket is triangular in shape. The management decide it needs resurfacing. Calculate the exact cost of doing this if they are quoted a price of $£ 8$ per square metre.

2.

This is a replica of USA's World Cup soccer pennant.

Calculate the area of the pennant.
3. The area of a triangle $P Q R$ is $657 \mathrm{~cm}^{2}$.
$Q P=40 \mathrm{~cm}$ and $P R=35 \mathrm{~cm}$.
Calculate the size of obtuse angle QPR.

4.

Find the size of acute $\angle B C A$ in $\triangle A B C$.
5. A coastguard station at S picks up a distress message from a ship at T which is 80 kilometres away on a bearing of 070°.

The ship leaves T and travels on a bearing of 155° towards U.
(a) Prove that $\angle S T U=95^{\circ}$.

(A sketch will help)
The coastguard station sends a rescue craft to intercept the ship at U.
The bearing of \mathbf{U} from \mathbf{S} is 115°.
(b) What distance, to the nearest $k m$, does the rescue craft have to travel to reach U ?
6.

Bonny Rose

The Bonny Rose leaves harbour bound for Bekenridge 50 miles away.
Due to an error in its navigation system, it steers in a straight line but 40° off course.
It travels 35 miles before the error is noticed.
How far from Bekenridge is the Bonny Rose when the error is discovered?
7. The pair of compasses shown opposite is used to draw the circle which has a radius of 4.6 cm .
The legs of the compasses measure 8.5 cm and 7.8 cm .
Calculate the angle marked which one leg makes with the other.

8. The idea in the computer game below is to position the two men so that they can shoot the alien as it appears from the spaceship.
In a frame from one such game, the alien was exterminated when :-

- the two men were standing 30 metres apart
- the angle of elevation of Bob's gun was 53°
- the angle of elevation of Joe's gun was 62°.

Calculate the height (Hm) of the alien above the spaceship when he was hit.

Patterns

A calculator should NOT be used in this exercise. All working should be shown.

1. The sides of bridges can be made by joining together identical triangular plates, each with a base length of 1 metre.

This diagram shows one side of a bridge 3 metres long, which needs 5 plates.

(a) COPY and COMPLETE the table.

Length of bridge in metres (L)	3	4	5	6	7
Number of plates for one side (N)	5	copy \& complete			

(b) Write down a formula for the number of plates, N, needed to make one side of a bridge L metres. $N=$ \qquad
(c) Can one side of a bridge of this design have exactly 90 plates? Explain your answer clearly.
(d) A bridge with 2 sides has a total of 250 plates.

How long is this bridge?
2. The following number pattern can be used to sum consecutive square whole numbers:-

$$
\begin{array}{ll}
1^{2}+2^{2} & =\frac{2 \times 3 \times 5}{6} \\
1^{2}+2^{2}+3^{2} & =\frac{3 \times 4 \times 7}{6} \\
1^{2}+2^{2}+3^{2}+4^{2} & =\frac{4 \times 5 \times 9}{6}
\end{array}
$$

(a) Express $1^{2}+2^{2}+3^{2}+\ldots \ldots . .+10^{2}$ in the same way.
(b) Express $1^{2}+2^{2}+3^{2}+\ldots \ldots . .+n^{2}$ in the same way.
(c) Write an expression for $11^{2}+12^{2}+13^{2}+\ldots \ldots . .+n^{2}$.

A calculator should NOT be used in this exercise. All working should be shown.

1. Simplify each fraction, giving your answer in its simplest form.
(a) $\frac{p q^{2}}{q}$
(b) $\frac{(5 a+1)^{2}}{(a-5)(5 a+1)^{2}}$
(c) $\frac{8 m^{2}}{12 m^{3}(m+n)}$
2. Factorise these expressions fully, then simplify :-
(a) $\frac{6 x+18}{x+3}$
(b) $\frac{2 w-12}{w^{2}-36}$
(c) $\frac{x^{2}-6 x+8}{4 x-8}$
(d) $\frac{p^{2}+3 p q-4 q^{2}}{(p+4 q)^{2}}$
3. Simplify these additions and subtractions:-
(a) $\frac{1}{a}+\frac{2}{b}$
(b) $\frac{3}{9}+\frac{2-g}{g^{2}}$
(c) $\frac{x-1}{4}-\frac{x-2}{5}$
4. Simplify the following multiplications and divisions :-
(a) $\frac{21}{12 p} \times \frac{6 p}{7}$
(b) $\frac{4}{y^{2}} \div \frac{12}{y}$
(c) $\frac{5 x^{2}}{y} \times \frac{3 y}{10 x^{3}}$
(d) $\frac{5 m}{18 m^{2} n} \div \frac{m}{6 n^{2}}$
5. Change the subject of each formula to x.
(a) $x-a=c$
(b) $y=g-2 x$
(c) $k=m(x+h)$
(d) $y=\frac{z-x}{p}$
(e) $\quad W=a+\frac{5}{x}$
6. For the formula $P=\frac{6}{q^{3}}$ what happens to P if:-
(a) q is doubled?
(b) q is halved?

You may use a calculator in this exercise, but you must show all working.

1. Mr Don Briggs is a bus driver and gets paid each week.

Miss Hazel Jones is an estate agent. She receives a cheque each month.
Don's annual salary is $£ 16926$.
Hazel's annual salary is $£ 29808$.
(a) What does Don get in his weekly pay packet?
(b) How much does Hazel get in her monthly cheque?
2.

Sandra is paid $£ 10 \cdot 80$ an hour basic rate as a salesperson for Lynx Deodorant, working 10 am to 4.30 pm (Mon to Fri).
She also works 10 am-3 pm on a Saturday (paid at time and a half).

Sandra also earns 7.5% commission on all sales. Last week she sold $£ 1250$ worth of goods.
What was her total wage for the week?
3. Dean earned $£ 2624$ in total last month. His basic wage of $£ 2189$ is supplemented by a percentage commission on all sales.

Last month his total sales were $£ 14500$.
What percentage commission does Dean receive?

4. The table shows the income tax rate calculations.

Calculate the total amount of income tax a person has to pay if his/her taxable income is $£ 46400$.

Rate of Tax on

 first $£ 2020$ of taxable income 10\% next $£ 29380$ of taxable income 22%all remaining taxable income 40%
5.

A make of car appears in a showroom priced at £16850 + VAT @ 17.5\%.

How much did Mr Davis pay for one of the cars, including VAT, if he was given a complementary 12% discount off the advertised price of the car.

50
You may use a calculator in this exercise, but you must show all working.

1. The flat screen TV shown was bought in Makro for $£ 1173.59$ including 17.5% VAT.
Makro had stated that this TV actually cost less than $£ 1000$ before the VAT was added on.

Is Makro's claim true ? Explain with working.
2.

Cara paid $£ 850$ for an intel pentium laptop. She paid a 10\% deposit and agreed to pay equal monthly payments over a period of a year and a half.

How much was each payment?
3. The table opposite shows the monthly premiums per $£ 10000$ which have to be made when insuring a house or its contents. Calculate the total insurance cost for a group 3 house whose building is worth $£ 245000$ and whose contents are estimated to be worth £38000.

House and Contents Insurance
(Monthly premiums per £10000)

Group	Buildings Ins.	Contents Ins.
1	$£ 1 \cdot 08$	$£ 7 \cdot 80$
2	$£ 1 \cdot 78$	$£ 8.24$
3	$£ 2 \cdot 10$	$£ 9 \cdot 00$

5. Chelsea had $\$ 2500$ to spend on her round the world trip. She spent $£ 820$ in the UK and 47196 Rupees in India.

How many dollars did she have left when she returned home to USA?

Functions

You may use a calculator in this exercise, but you must show all working.

1. The function $f(x)$ is given by the formula $f(x)=3 \sqrt{x}+8$.
(a) Find the positive value of $\mathcal{A}(25)$.
(b) Find the negative value of $\mathcal{A}(9)$.
(c) Find the value of p for which $f(p)=38$.
2. If $h(x)=2 x^{2}$, write down an expression for $h(4 w)$ in terms of w and determine the values of w given that $h(4 w)=32$.
3. Consider the function $g(x)=x^{2}-2 x-3$ and the set of values $\{-2 \leq x \leq 4\}$.
(a) Find $g(-2), g(-1)$, \qquad $g(4)$.
(b) Draw the parabola corresponding to the function.
(c) What are the two roots of the function?
(d) Write down the equation of the line of symmetry of the parabola.
(e) Write down the coordinates of its minimum turning point.

You may use a calculator in this exercise, but you must show all working.
1.

A birthday cake is baked in two sizes, both similar.
The larger cake has a 30 cm base and is 36 cm in height.

Calculate the height of the smaller cake which has a 20 cm base.
2. In the triangle shown below, $B C$ is parallel to $D E$.

All units are centimetres.

(a) Prove, with reasoning, that $\triangle A B C$ is similar to $\triangle A D E$.
(b) Calculate the value of x.
3. In the triangle shown below, calculate the length of the side marked y.

4. The diagram shows two tubes of toothpaste.

The two tubes are mathematically similar and the cost of a tube of toothpaste depends only on the volume of paste in the tube.

If a large one costs $£ 2$, what should a small one cost?
5. The two "number 2's" are similar.

If the large "two" has a surface area of $80 \mathrm{~cm}^{2}$ and the small "two" has a surface area of $45 \mathrm{~cm}^{2}$, calculate the height of the small "two".

A calculator should NOT be used in this exercise. All working should be shown.

1. Shown is the graph of $y=x^{2}+4 x-5$.

Use the graph to write down :-
(a) the solution to the quadratic equation

$$
x^{2}+4 x-5-0
$$

(b) the equation of the axis of symmetry of the parabola.
(c) the coordinates of M, the minimum turning point of the graph.

2. Solve the following quadratic equations using factorisation :-
(a) $7 x-x^{2}=0$
(b) $5 x^{2}-20 x=0$
(c) $x^{2}-100=0$
(d) $2 x^{2}=18 x$
(e) $x^{2}-6 x+5=0$
(f) $2 x^{2}+5 x-3=0$.
3. The parabola $f(x)=x^{2}-2 x-3$ cuts the x-axis at the two points A and B and intersects with the y-axis at point C.
(a) Calculate the coordinates of point A and point B.
(b) Work out the coordinates of point C.
(c) Make a neat sketch of the parabola.
(d) Write down the equation of the axis of symmetry.
(e) Determine the coordinates of the minimum turning point of the parabola.
(f) Describe briefly what the parabola $g(x)=3+2 x-x^{2}$ looks like, without actually drawing it. (2 comments !)
4. Calculate the coordinates of the two points where the parabola $y=x^{2}-4 x-10$ and the line $y=2 x-3$ meet.

A calculator should NOT be used in this exercise. All working should be shown.

1. Write down the equations of the following graphs :-
(a)

(b)

(c)

(d)

(e)

$$
-3 \mid
$$

(f)

-6
(g)

(h)

2. Make a neat sketch of the function $y=5 \sin 3 x^{\circ}, 0 \leq x \leq 360$, showing the shape, scale and all important values on the graph.
3. A pump releases releases fuel according to the formula

$$
P=0.7 \sin (21 t)^{\circ}+2.5
$$

where P millilitres is the volume of fuel released and t is the time. in seconds, after the point at which the pump is switched on.
(a) Calculate the volume of fuel released 10 seconds after the pump is switched on.
(b) What is the difference between the largest and the smallest amount of fuel which can be released?

A calculator should NOT be used in this exercise. All working should be shown.

1. Simplify these surds, giving your answers in their simplest form :-
(a) $7 \sqrt{7}-\sqrt{7}$
(b) $\sqrt{500}$
(c) $\sqrt{3} \times \sqrt{8}$
(d) $(1+4 \sqrt{3})(2-\sqrt{3})$
(e) $\quad(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})$
(f) $\sqrt{18}-\sqrt{2}$
2. Simplify, giving your answers with positive indices:-
(a) $2 y^{2} \times 3 y^{3}$
(b) $\frac{p}{p^{4}}$
(c) $\left(a^{4}\right)^{-1}$
3. (a) $g(x)=3 \sqrt{x}$.

Find the exact value of $g(12)$, giving your answer as a surd in its simplest form.
(b) A function f is given by $f(x)=4^{x}$.

Find the value of $f\left(\frac{3}{2}\right)$
4. Express in its simplest form :-
(a) $\frac{y^{4} \times y}{y^{-2}}$
(b) $\frac{b^{\frac{1}{2}} \times b^{\frac{3}{2}}}{b}$
(c) $\frac{x^{8}}{\left(x^{3}\right)^{-2}}$
5. Remove the brackets and simplify $a^{\frac{1}{2}}\left(a^{\frac{1}{2}}+a^{-\frac{1}{2}}\right)$.
6. Simplify $\frac{\sqrt{3}}{\sqrt{24}}$, expressing your answer with a rational denominator.

You may use a calculator in this exercise, but you must show all working.

1. Consider the quadratic equation $y=(x+3)^{2}-5$.
(a) Does the parabola which represents this equation have a maximum or a minimum turning point?
(b) Write down the coordinates of this turning point.
(c) Write down the equation of the axis of symmetry of the parabola.
(d) Calculate the coordinates of the y-intercept.
2. Make a neat sketch of the parabola $y=1-(x-3)^{2}$ highlighting :-
(a) its turning point with coordinates.
(b) its axis of symmetry with its equation stated.
3. The parabola with equation $y=k x^{2}$ passes through the origin and the point $(-3,-18)$.
Calculate the value of k.

4. Solve the equation $2 x^{2}-x-5=0$, giving your answers correct to two decimal places.

You may use a calculator in this exercise, but you must show all working.

1. Solve the following trigonometric equations, where $0 \leq x \leq 360$. Give your answers correct to 3 significant figures where necessary.
(a) $\sin x^{\circ}=0.749$
(b) $\cos x^{\circ}=-0.928$
(c) $\tan x^{\circ}=9.51$
(d) $6 \cos x^{\circ}-3=0$
(e) $7 \sin x^{\circ}+1=3 \sin x^{\circ}$
(f) $5 \tan x^{\circ}+2=\tan 40^{\circ}$
2. Calculate the eight values for a when $\sin ^{2} a^{\circ}=0 \cdot 25$, where $0 \leq a \leq 720$.
3. The curve with equation $y=4 \cos x^{\circ}-2$, $0 \leq x \leq 360$, meets the line with equation $y=-3$ at the points A and B where B is to the right of A.
Calculate the coordinates of A and B.
4. Calculate the size of obtuse angle $P Q R$
 in a plan of the golf course shown below.

5. $\quad \cos W=-\frac{4}{5}$, and angle W is obtuse.
Find the EXACT value of :-
(a) $\sin W$
(b) $\tan W$.

ANSWERS

and

TEST 1 PERCENTAGES

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1	$$	6	ans: $£ 6426$. 1 yrl Loss $=£ 2100$. 2 End Yr $1=£ 8400$. 3 End Yr 2 =£7560
2	ans: 288 boys . 155% of 640 .2 352 girls or boys 45% etc . 3288 boys 3 marks		$4 \text { marks }$
		7	ans: $£ 150000$. $108 \%=£ 16200$. $21 \%=£ 1500$
3	ans: Geography . 1 History 76% . 2 Geography 80% . 3 Geography better 3 marks		. $3100 \%=£ 150000$ 3 marks
		8	ans: 800 ml . $180 \%=640 \mathrm{ml}$.2 $1 \%=8 \mathrm{ml}$
4a	ans: £2.88 -1 $24 \times 62 p=£ 14 \cdot 88$. 2 Profit $£ 14 \cdot 88-£ 12=£ 2 \cdot 88$ 2 marks		$\begin{aligned} & .3 \quad 100 \%=800 \mathrm{ml} \\ & \underline{3 \text { marks }} \end{aligned}$
		$9 \mathrm{a}$	$\begin{array}{ll} \text { ans: } & \mathbf{3 8 0 0 0} \\ 1 \text { mark } & \\ \hline \end{array}$
4b	ans: 24% . 1 288/1200 . $2 \quad 288 / 1200 \times 100$. $3 \quad 24 \%$ 3 marks	9b	$\begin{array}{ll} \text { ans: } & 0.00470 \\ \underline{1 \text { mark }} & \\ \hline \end{array}$
5	ans: $£ 13498 \cdot 37$. 1 yrl Interest $=£ 480$. 2 End Yr $1=£ 12480$. 3 End Yr $2=£ 12979 \cdot 20$. 4 End Yr $3=£ 13498.37$ 4 marks		MARK OUT OF 29 RECORD as a \%

TEST 2 PYTHAGORAS / PERCENTAGES

TEST 3 TIME, DISTANCE \& SPEED

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1a	$\begin{aligned} & \text { ans: } 0.25 \\ & \underline{1 \text { mark }} \\ & \text { ans: } 0.7 \\ & 1 \text { mark } \end{aligned}$	8	ans: 1 Hour 24 Minutes . $1 \quad 126 / 90$. 21.4 hours . 3 1 Hour 24 Minutes
2 a	ans: 4 Hours $\mathbf{1 2}$ Minutes 1 mark		3 marks
2b	1 mark ans: 1 Hour 54 Minutes 1 mark	9	ans: $18 \mathrm{~km} / \mathrm{hr}$. 14 hours 15 minutes . $276 \cdot 5 / 4 \cdot 25$. $3 \quad 18$. 4 correct units $\mathrm{km} / \mathrm{hr}$ 4 marks
3	ans: $18 \mathrm{~km} / \mathrm{hr}$. 1 Attempts a correct method . $218 \mathrm{~km} / \mathrm{hr}$ 2 marks		
		10a	ans: $32 \mathrm{~km} / \mathrm{hr}$ 1 mark
4	ans: $\quad 450 \mathrm{~km}$. $1 \quad 180 \times 2.5$. 2450 km 2 marks		
		10b	$\begin{array}{ll} \text { ans: } & 9.30 \mathrm{am} \\ \underline{1 \text { mark }} & \end{array}$
		10c	ans: $\quad 8 \mathrm{~km}$
5	ans: $2.5 \mathrm{~m} / \mathrm{sec}$. $1 \quad 100 / 40$. 22.5 - 3 correct units $\mathrm{m} / \mathrm{sec}$ 3 marks		$1 \text { mark }$
			MARK OUT OF 26 RECORD as a \%
6	ans: $\mathbf{3}$ Hours $\mathbf{3 0}$ Minutes . $1 \quad 238 / 68$. 23.5 hours . 3 Hours 30 Minutes 3 marks		
7	ans: $\quad 35$ miles - $1 \quad 20 \times 1.75$. 235 miles 2 marks		

TEST 4 SCIENTIFIC NOTATION

Qu	Marking Scheme Give 1 mark for each	Qu	Marking Scheme Give 1 mark for each -
1	ans: as follows :- .1 6.54 .2 $\times 10^{5}$.3 1.725 .4 $\times 10^{1}$.5 6.1 .6 $\times 10^{-3}$.7 9.2 .8 $\times 10^{-7}$ 8 marks	5	ans: $\quad 6.066 \times 10^{7}$. 16.066 $.2 \times 10^{7}$ 2 marks
		6	ans: 7.5×10^{-10} . 17.5 . 2×10^{-10} 2 marks
		7a	ans: 1.955×10^{9}
2a	$\begin{aligned} & \text { ans: } \quad \text { as follows :- } \\ & .18500000 \\ & .28 .5 \end{aligned}$	7b	$\begin{aligned} & \underline{1 \text { mark }} \\ & \text { ans: } 4.5 \times 10^{-1} \\ & 1 \text { mark } \end{aligned}$
2b	ans: \quad as follows :-•1. 235000000.•$\quad \times 10^{8}$3 marks	8	ans: 5×10^{2} . 1 shows DIVISION Dist \div Speed . 25×10^{2} Must be in Sci Not 2 marks
		9	ans: $\quad 5 \cdot 2704 \times 10^{9}$. 1 shows Multiplication
3a	$\begin{aligned} & \text { ans: } \quad 3280 \\ & 1 \text { mark } \end{aligned}$. $2 \quad 5 \cdot 2704 \times 10^{9}$ Must be in Sci Not 2 marks
3b	ans: 400100000 1 mark		
3c 3d	ans: 0.051 1 mark ans: 0.0000006 1 mark		
4	ans: $£ 9225000$ 1 mark		MARK OUT OF 29 RECORD as a \%

TEST 5 THE CIRCLE

TEST 6 GRADIENTS \& LINES

TEST 7 INTEGERS

TEST 8 VOLUMES (continued)
3.14 has been used for π in this marking scheme. Watch for pupils using π button

TEST 9 ALGEBRA

TEST 9 ALGEBRA continued

TEST 10 THE CIRCLE (2)

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1	ans: 16 cm .1 $C=\pi d$. $2 \quad C=3 \cdot 14 \times 16=50 \cdot 24$. 3 115/360 x 416 cm 4 marks	5	ans: 65° . $1 \angle \mathrm{KNT}=90^{\circ}-65^{\circ}=25^{\circ}$. $2 \angle \mathrm{KTN}=25^{\circ}$. $3 \angle \mathrm{NTB}=65^{\circ}$ 3 marks
		6	ans: 4.4 (m)
2	ans: $\mathbf{3 . 8 9}$ (sq m) -1 $A=\pi r^{2}$. $2=3.14 \times 1.2 \times 1.2=4.52 \ldots$. . $3 \quad 310 / 360 \times \ldots \ldots$. . $4 \quad 3.89$ 4 marks		-1 $\mathrm{PB}^{2}=15 \cdot 9^{2}-15^{2}$ Pythagoras! . $2 \quad \mathrm{~PB}=5.27$. 3 Sarah $=20.27$. 4.4 (approx.) further 4 marks
		7a	ans: 25 (cm) -1 uses 15 cm in Pythagoras - $2 \mathrm{r}^{2}=20^{2}+15^{2}$ Pythagoras Plus ! . $3 \mathrm{r}=25$ 3 marks ans: 100 (cm) -1 knows to add the radius just found - $25+20+25$ - 3100 3 marks
3	ans: 120° approx. . $1 C=\pi d \quad=3 \cdot 14 \times 150=471$. $2 x / 360=157 / 471$. $3 \quad 120^{\circ}$ approx. 3 marks		
4a	ans: $\quad 314$ (sq cm) - $1 A=\pi r^{2}=3 \cdot 14 \times 20 \times 20=1256$.2 $1256 \div 4=314$ 2 marks	7b	
4b	ans: $\quad 200$ (sq cm) . $1 A=0.5 \times 20 \times 20$. $2 \quad 200(\mathrm{sq} \mathrm{cm})$ 2 marks		MARK OUT OF 29 RECORD as a \%
4c	$\begin{aligned} & \text { ans: } \quad 114(\mathrm{sq} \mathrm{~cm}) \\ & 1 \text { mark } \end{aligned}$		Dinna worry aboot UNITS in this test!

TEST 11 RAT TRIGONOMETRY

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1a	ans: $\mathbf{8 . 5} \mathbf{~ c m}$ Incorrect use of ROUNDING loses 1 mark OVERALL $\|$.1 $\operatorname{Cos} 32^{\circ}=x / 10$ NOT each time .2 $x=10 \cos 32^{\circ}$. 3 8.5 cm 3 marks uses sin or tan O marks	4	ans: 158° (approx) . $1 \quad \operatorname{Tan} x^{\circ}=38 / 15$. $2 x=68 \cdot 5^{\circ}$.3 Bearing $=90+68 \cdot 5=158^{\circ}$..... 3 marks
1b	$\begin{aligned} & \text { ans: } \quad 26 \cdot 6^{\circ} \\ & .1 \quad \operatorname{Tan} y^{\circ}=6 / 12 \\ & .2 \quad 26 \cdot 6^{\circ} \\ & 2 \text { marks } \\ & \text { ans: } \quad 9.8 \mathrm{~cm} \\ & .1 \quad \text { Uses } \operatorname{Sin} \\ & .2 \quad \operatorname{Sin} 55^{\circ}=8 / z \\ & .4 \quad 9.8 \mathrm{~cm} \end{aligned}$	5a 5b	ans: $\mathbf{2 4} \mathbf{~ c m}$ 1 mark ans: $\quad \mathbf{2 0 . 1} \mathrm{cm}$. 1 Notices $\mathrm{PS}=\mathrm{RQ}$ - $\operatorname{Tan} 50^{\circ}=24 / \mathrm{RQ}$ -3 $\mathrm{RQ}=24 / \operatorname{Tan} 50^{\circ}$. $4 \quad 20.1 \mathrm{~cm}$ 4 marks
2	ans: $\quad \mathbf{5 . 1} \mathrm{m}$. $1 \quad \operatorname{Sin} 72 \cdot 5^{\circ}=h / 5.3$. $2 x=5.3 \operatorname{Sin} 72.5^{\circ}$. $3 \quad 5.1 \mathrm{~m}$ 3 marks		MARK OUT OF 23 RECORD as a \%
3	ans: $\quad 71.8^{\circ}$. 1 Uses 20.3 cm . $2 \quad \operatorname{Cos} B=20 \cdot 3 / 65$ $.371 .8^{\circ}$ 3 marks		

TEST 12 EQUATIONS / INEQUALITIES continued

\begin{tabular}{|c|c|c|c|}
\hline Qu \& \begin{tabular}{l}
Marking Scheme \\
Give 1 mark for each -
\end{tabular} \& Qu \& \begin{tabular}{l}
Marking Scheme \\
Give 1 mark for each -
\end{tabular} \\
\hline 4b

4c \& | ans: $x=-45$ |
| :--- |
| . 1 (x by 15$) ~ 6 x+15=$ \qquad |
| $.2 \quad$........... $=5 x-30$ |
| . $3 \quad 6 x-5 x=-30-15$ |
| . $4 x=-45$ |
| 4 marks |
| ans: $x=17$ |
| . 1 (x by 6) $5 x+1-2 x \ldots .=\ldots$. |
| . $2 \quad+8=60$ |
| -3 $3 x=51$ |
| . $4 x=17$ |
| 4 marks | \& $\mathbf{5 f}$

$\mathbf{5 g}$

$\mathbf{5 h}$ \& $$
\begin{aligned}
& \text { ans: } p>2 \\
& .1 \quad-5 p-3 p>6-22 \\
& .2 \quad-8 p \leq-16 \\
& .3 \quad p>2 \\
& .3 \text { marks } \\
& \text { ans: } p \geq-10 \\
& .1 \quad 10-1+\ldots \ldots=\ldots \ldots . \\
& .2 \quad \ldots \ldots+p \geq-1 \\
& .3 \quad p \geq-10 \\
& .3 \text { marks } \\
& \text { ans: } p>0
\end{aligned}
$$

\hline 5a

5b \& \begin{tabular}{l}
$$
\text { ans: } p \leq-5
$$

1 mark

ans: $p<-4$

1 mark

 \& 5 h \&

ans: $p>0$

. $14-4 p+\ldots \ldots . .<\ldots \ldots$

. $2 \quad$.......... $+\ldots .<8 p+4$

. $3 \quad-12 p \geq 4-4$

. $4 \quad p>0$

4 marks
\end{tabular}

\hline 5 c \& | ans: $p \geq \mathbf{- 2}$ |
| :--- |
| -1 $3 p \geq-15+9$ |
| . $23 p \geq-6$ |
| . $3 \quad p \geq-2$ |
| 3 marks | \& 6a

$\mathbf{6 b}$ \& $$
\begin{aligned}
& \text { ans: } \boldsymbol{h}+\mathbf{5} \quad \mathbf{1} \cdot \mathbf{5} \boldsymbol{h}+\mathbf{4} \\
& .1 \quad h+5 \\
& .2 \quad 1 \cdot 5 h+4 \\
& 2 \text { marks } \\
& \text { ans: } \quad \mathbf{1} \cdot \mathbf{5} \boldsymbol{h}+\mathbf{4}<\boldsymbol{h}+\mathbf{5}
\end{aligned}
$$

\hline 5d

5e \& \begin{tabular}{l}
ans: $p>30$

. $1 \quad-p<-22-8$

.2 $\quad p>30$

2 marks

ans: $p \leq 2$

 \& 6 c \&

. $1 \cdot 5 h+4<h+5$

.2 $h<2$

2 marks

ans: eg Better value if you play $2+h r s$
\end{tabular}

\hline \& | . $1 \quad 5 p+p \leq 15-3$ |
| :--- |
| . $2 \quad 6 p \leq 12$ |
| .3 $p \leq 2$ |
| 3 marks | \& \& MARK OUT OF 68 RECORD as a \%

\hline
\end{tabular}

TEST 13 GRAPHS / CHARTS / TABLES

\begin{tabular}{|c|c|c|c|}
\hline Qu \& \begin{tabular}{l}
Marking Scheme \\
Give 1 mark for each -
\end{tabular} \& Qu \& \begin{tabular}{l}
Marking Scheme \\
Give 1 mark for each
\end{tabular} \\
\hline 1 \& \& 3a

3b \&

\hline 2 a \& ans: Line Graph \& 3c
3d

3e \& | 1 mark |
| :--- |
| ans: Fran |
| 1 mark |
| ans: Line similar to one on graph above |
| 1 mark |
| ans: 70 |
| 1 mark |

\hline 2b \& | . 1 scale |
| :--- |
| . 2 correct height of lines |
| . 3 set up of lines for comparative graph |
| . 4 some indication of La Paz \& La Mere |
| . 5 labels on graph |
| 5 marks |
| ans: 2 occasions |
| 1 mark | \& $4 a$

$4 b$

$4 c$ \& $$
\begin{aligned}
& \text { ans: } 1 / 5 \\
& 1 \text { mark } \\
& \text { ans: } 40 \% \\
& 1 \text { mark } \\
& \text { ans: } 60 \\
& .1 \quad 25 \% \text { of } 240 \\
& .2 \quad 60 \\
& 2 \text { marks }
\end{aligned}
$$

\hline \& \& \& continued over

\hline
\end{tabular}

TEST 15 SIMULTANEOUS EQUATIONS

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each
1	ans: Diagram - 1 coords chosen - 2 line sloping down . 3 passing thro' $(0,5)$ 3 marks	4	ans: $(\mathbf{4 , 1})$. 1 rearranges to $4 x+y=17$. 2 rearranges to $3 x+y=13$
2	ans: $(2,3)$. 1 points chosen for both lines . 2 line sloping up thro' $(0,2)$. 3 line sloping down thro' $(0,6)$. 4 intersection at $(2,3)$ 4 marks		. 4 plugs in to get $y=1$ 4 marks
		5	ans: £1.50 -1 sets up 2 equations $3 x+2 y=7 \quad \& \quad 4 x+2 y=8 \cdot 5$. 2 shows solving
3a	ans: (1,2) -1 adds to lose x 's . $2 \quad y=2$ -3 plugs in to get $x=1$ 3 marks		$\begin{aligned} & .3 \quad £ 1 \cdot 50 \\ & \underline{3 \text { marks }} \end{aligned}$
		6a	$\begin{aligned} & \text { ans: } \mathbf{5 x + 3 y =} \mathbf{5 0 0} \& \quad \mathbf{~} x+\mathbf{2 y}=\mathbf{2 1 0} \\ & .1 \text { sets up } 2 \text { equations } \\ & 1 \text { mark } \end{aligned}$
3b	ans: $(-1,3)$. 1 multiplies to lose y 's (or x 's) - 2 shows solving . $3 x=-1$.4 plugs in to get $y=3$ 4 marks	6b	ans: $£ 480$. 1 multiplies both equations by numbers . 2 shows solving . $3 x=70$. $4 \quad y=50$. $5 \quad 4 x+4 y=480$
3c	ans: $(2,-4)$ -1 multiplies one equation by a number .2 multiplies other equation by a number . 3 shows solving . $4 x=2$. 5 plugs in to get $y=-4$	6 c	5 marks ans: $£ 580$ -1 2 adults for 2 nights $£ 280$ - 26 children paying for only 1 night $£ 30$. 3 total $=£ 580$ 3 marks
	-5 marks		MARK OUT OF 35 RECORD as a \%

TEST 16 FRACTIONS

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1a 1b	ans: $5 \frac{2}{3}$ -1 answer ans: $7 \frac{1}{4}$. 1 answer 2 marks	4 f	ans: $4 \frac{3}{14}$. 10 to fourteenths . $114 \frac{21}{14}-\frac{8}{14}$.12 answer
2	$\begin{aligned} & \text { ans: } \frac{47}{7} \\ & \text {-1 answer } \\ & 1 \text { mark } \end{aligned}$		12 marks
		5a	$\text { ans: } \frac{9}{20}$
3	ans: 23 . 1 answer 1 mark	5b	$\text { ans: } 3 \frac{1}{2}$
4a	$\begin{aligned} & \text { ans: } \frac{7}{9} \\ & .1 \quad \text { answer } \end{aligned}$	5c	. 3 answer ans: $1 \frac{1}{4}$
4b	ans: $3 \frac{7}{12}$. 2 to twelfths . 3 answer	5d	. 4 to multiplication \& back one changed . 5 answer ans: $\frac{5}{11}$
4c	ans: $9 \frac{1}{3}$. 4 to sixths . $5 \quad 8 \frac{8}{6}$. 6 to mixed nos. . 7 to multiplication \& back one changed . 8 answer 8 marks
	. 6 answer	6	$\text { ans: } 12 \frac{3}{20}$
4d	$\begin{aligned} & \text { ans: } \quad \frac{5}{11} \\ & .7 \quad \text { answer } \end{aligned}$. 1 adding . 2 to twentiieths
4e	ans: $3 \frac{7}{15}$. 8 to fifteenths . 9 answer		$.3 \quad 11 \frac{23}{20}$
			. 4 answer
			4 marks
			Continued

TEST 16 FRACTIONS continued

TEST 17 STATISTICAL ANALYSIS

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1a 1b 1c	ans: 7 . 1 answer ans: 11 . 2 answer ans: $\mathbf{1 2 . 5}$. 3 arrange in order . 4 answer	4b 4c	ans: 72 . 1 answer 1 mark ans: $11 / 16$. 11 . 2 answer 2 marks
	. 5 total 151 . $6151 \div 12$. 7 answer 7 marks	5ai 5aii	$\begin{aligned} & \text { ans: } 27 \cdot 5 \\ & .1 \text { answer } \\ & 1 \text { mark } \\ & \text { ans: } 13 \end{aligned}$
2	ans: $\mathbf{1 . 7}$ (m) . $1 \quad 1.65 \times 4=6.6$. $21.67 \times 6=10.02$ -3 $10 \cdot 2-6 \cdot 6=3 \cdot 42$.4 $3.42-1.72=$ answer 4 marks	5aiii 5b	1 mark ans: $\mathbf{3 5}$. 1 answer 1 mark ans: 11 -1 knowing formula for SIQR
3a 3b	ans: 3 (NOT 11 !) . 1 answer 1 mark ans: $\mathbf{3 . 9}$	$5 c$	```.2 answer 2 marks ans: WhiteCabs with reason .1 answer 1mark```
	. 2 total $102 \div 26$. 3 total 26 .4 $102 \div 26=$ answer 4 marks	6a	ans: median $3 \quad \mathrm{Q}_{1}=1.5 \quad \mathrm{Q}_{3}=4$. 1 arrange numbers in order . 2 median . 3 lower quartile
4a	ans: table . 1 freq of $2342221=16$ -2 Cum freq of 25911131516 2 marks		. 4 upper quartile $4 \text { marks }$
			Continued

TEST 17 STATISTICAL ANALYSIS continued

TEST 18 FURTHER TRIGONOMETRY

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1	ans: $£ 19680$ - $10.5 \times 120 \times 82 \sin 30^{\circ}$. $2 \quad 2460$ sq m . 3 answer 3 marks	5b	ans: 124 (km) . 1 uses sine rule .2 $\frac{t}{\sin 95^{\circ}}=\frac{80}{\sin 40^{\circ}}$. $3 t=\underline{80 \sin 95^{\circ}}$
2	ans: 234 (sq cm) -1 missing angle $=60^{\circ}$. $20.5 \times 120 \times 82 \sin 60^{\circ}$ -3 answer 3 marks		$\begin{aligned} & .4 \text { answer } \\ & \underline{4 \text { marks }} \end{aligned}$
		6	ans: $\mathbf{3 2 . 3}$ (miles)
3	ans: 110° . $10.5 \times 40 \times 35 \sin X^{\circ}=657$. $2 \sin \mathrm{X}^{\circ}=657 / 700$. $3 \mathrm{X}=70$. $4 \mathrm{X}=110$ OBTUSE 4 marks		. $235^{2}+50^{2}-2 \times 35 \times 50 \cos 40^{\circ}$ - 3 square roots . 4 answer 4 marks
		7	ans: $\mathbf{3 2 . 4}{ }^{\circ}$
4	ans: 18° .1 uses sine rule . $\frac{25}{\sin C}=\frac{72}{\sin 117^{\circ}}$. $3 \quad \sin C=\frac{25 \sin 117^{\circ}}{72}$. 4 answer 4 marks		$.2 \quad \operatorname{Cos} A=\frac{8.5^{2}+7.8^{2}-4.6^{2}}{2 \times 8.5 \times 7.8}$. 3 Inv $\operatorname{Cos} 0.844$. 4 answer 4 marks
		8	ans: $\mathbf{2 3 \cdot 3}$ (m)
5a	ans: Proof . $1 \quad$ Uses 70° (Z shape) . 2 Uses $180^{\circ}-155^{\circ}=25^{\circ}$ - 3 Adds to get 95° 3 marks		.2 other side $=26 \cdot 4 \mathrm{~m}$.Can be done using other triangle. 4 Uses SOHCAHTOA. $\sin 62^{\circ}=\frac{h}{26 \cdot 4}$.5 answer5 marks

TEST 19 PATTERNS

TEST 20 ALGEBRA

Qu	Marking Scheme Give 1 mark for each -	Qu	Marking Scheme Give 1 mark for each -
1a	ans: $\quad p q$. 1 answer 1 mark ans: $\frac{1}{a-5}$	2d	ans: $\frac{p-q}{p+4 q} \quad \begin{aligned} & \text { lose } 1 \text { mark for } \\ & \text { further cancelling }\end{aligned}$.1 $(p+4 q)(p-q)$ - 2 answer 2 marks
lc	-1 answer 1 mark ans: $\frac{2}{3 m(m+n)}$. $1 \quad 2 / 3$ - 2 answer 2 marks	3a	ans: $\frac{b+2 a}{a b}$ -1 $b+2 a$. $2 a b$ 2 marks ans: $\frac{2 g+2}{g^{2}}$
2a	ans: 6 -1 $6(x+3)$ -2 answer 2 marks		- denominator g^{2} -2 $3 g+2-g$ - 3 answer 3 marks
2b	ans: $\frac{2}{w+6}$ -1 $2(w-6)$ -2 $(w+6)(w-6)$. 3 answer 3 marks	3c	ans: $\quad \frac{x+3}{20}$. 1 denominator 20 -2 $5(x-1)-4(x-2)$. $35 x-5-4 x+8$. 4 answer 4 marks
2c	ans: $\frac{x-4}{4}$. $(x-4)(x-2)$. $24(x-2)$ -3 answer 3 marks	4a	ans: $\frac{3}{2}$. 1 numerator 3 . 2 denominator 2 2 marks

TEST 20 ALGEBRA (contd)

\begin{tabular}{|c|c|}
\hline Qu \& \begin{tabular}{l}
Marking Scheme \\
Give 1 mark for each •
\end{tabular} \\
\hline \begin{tabular}{|c|}
4b \\
\\
\hline
\end{tabular} \& \begin{tabular}{l}
ans: \(\frac{1}{3 y}\) \\
-1 change to multiply \\
.2 numerator 1 \\
- 3 denominator \(3 y\) \\
3 marks \\
ans: \(\frac{3}{2 x}\) \\
-l numerator 3 \\
. 2 denominator \(2 \ldots\) \\
- 3 denominator \(2 x\) \\
3 marks \\
ans: \(\frac{5 n}{3 m^{2}}\) \\
-1 numerator \(5 n\) \\
. 2 denominator 3.... \\
. 3 denominator \(3 m^{2}\) \\
3 marks
\end{tabular} \\
\hline 5a
\(\mathbf{5 b}\)

5c \& | ans: $x=c+a$ |
| :--- |
| .1 answer |
| 1 mark |
| ans: $\quad x=\frac{g-y}{2}$ |
| -1 $2 x=$ \qquad |
| .2 $\ldots \ldots=g-y$ |
| .3 answer |
| 3 marks |
| ans: $\quad x=\frac{k-m h}{m}$ |
| lose 1 mark for further cancelling |
| -1 $m x+m h$ |
| .2 $m x=k-m h$ |
| 2^{2} marks answer |

\hline
\end{tabular}

Qu	Marking Scheme Give 1 mark for each -
5d 50	ans: $x=z-p y$ -1 knows to cross multiply -2 $p y=z-x$ - 3 answer 3 marks ans: $\quad x=\frac{5}{W-a}$.1 $W-a=\frac{5}{x}$. $2 x(w-a)=5$ -3 answer 3 marks
6a	ans: x by $1 / 8$ or equiv .1 $p=\frac{6}{(2 q)^{3}}$ some working must be shown .2 $p=\frac{6}{8 q^{3}}$ -3 answer 3 marks ans: x by 8 .1 $p=\frac{6}{(0.5 q)^{3}}$ $.2 p=\frac{6}{\frac{1}{8} q^{3}}$ -3 answer MARK OUT OF 53 3 marks RECORD as a \%

Qu	Marking Scheme Give 1 mark for each •	Qu	Marking Scheme Give 1 mark for each -
la		5	$\begin{aligned} & \text { • } 3 \text { Discount }=£ 2375-85 \\ & \text { •4 } \begin{array}{l} \text { answer } \\ 4 \text { marks } \end{array} \quad \mathbf{2 1} \text { MARKS } \end{aligned}$
1b	ans: £2484 -1 $29808 \div 12$ - 2 answer 2 marks		
2	ans: $£ 525.75$. $16.5 \times 10.80 \times 5$. 2 f 351 . $3 \quad 5 \times 1.5 \times 10.80$ -4 $£ 81$. $5 \quad 7.5 \%$ of $£ 1250=£ 93-75$. 6 Total $=£ 525-75$ 6 marks		
3	ans: $\quad \mathbf{3 \%}$. 1 Commission $£ 435$. $2435 / 14500 \times 100$ -3 answer 3 marks		
4	ans: $£ 12665 \cdot 60$.l $£ 202$. 2 £6463-60 - 36000 .4 answer 4 marks		
5	ans: \quad £17422.90 .l $\mathrm{VAT}=£ 2948.75$. $2 \quad$ £19798-75		

TEST 22 MONEY (2)

1	ans: Makro Correct £998.80 below £1000 . $1 \quad 117-5 \%=£ 1173-59$. $21 \%=£ 9.98(8)$. $3100 \%=£ 998-80$. 4 answer 4 marks
2	ans: $£ 42.50$. 1 Deposit $£ 85$ -2 $£ 765$ left to pay - $3 \quad £ 765 \div 18$. 4 answer 4 marks
3	ans: £85.65 .1 $24-5 \times £ 2-10$. $2 \quad £ 51-45$ -3 $3-8 \times £ 9=£ 34-20$ -4 answer 4 marks
4	ans: $£ 670 \cdot 24$ Euros -1 $472 \times £ 1-42$ -2 answer 2 marks
5	ans: \$86 -1 Rupees $=£ 600$.2 Total $£=£ 1420$.3 $=\$ 2414$ - 4 answer 4 marks 18 MARKS

TEST 23 FUNCTIONS AND GRAPHS

Qu	Marking Scheme Give 1 mark for each -
1a 1b 1c	ans: 23 .l answer ans: -1 -1 answer ans: 100 .1 $3 \sqrt{\mathbf{x}}+8=38$ -2 $3 \sqrt{\mathbf{x}}=30$. $3 \quad \sqrt{\mathbf{x}}=10$.4 $\mathbf{x}=100$ 6 marks
2	ans: $32 w^{2}+1-1$ -1 $32 w^{2}$. $2+1$. $3-1$ 3 marks
3a	ans: $5,0,-3,-4,-3,0,5$. 13 correct . 2 rest correct $\underline{2}$ marks
3b	ans: V Parabola -l correct shape thro' points -2 neatness 2 marks
3c	ans: $-1,3$. 1 -1 .23 2 marks
3d	ans: $x=1$.l $x=\ldots$. . 2 answer 2 marks
3 e	ans: (1,-4) .l 1 . $2-4$ 19 MARKS

TEST 24 SIMILAR FIGURES

\begin{tabular}{|c|c|}
\hline Qu \& \begin{tabular}{l}
Marking Scheme \\
Give 1 mark for each -
\end{tabular} \\
\hline 1 \& \begin{tabular}{l}
ans: 24 cm \\
-1 S.F. \(=20 / 30\) \\
. \(2 \quad 20 / 30 \times 36\) \\
-3 answer \\
3 marks
\end{tabular} \\
\hline 2a

2b \& | ans: Proof |
| :--- |
| -1 Proof with F shapes and common angle mentioned. |
| . 2 "Equiangular" and so similar |
| 2 marks |
| ans: $x=12$ |
| . 1 S.F. $=1.5$ |
| . $2 x=1-5 \times 8$ |
| . 3 answer |
| 3 marks |

\hline 3 \& | ans: $y=4.8$ |
| :--- |
| . $1 \quad$ S.F. $=1.4$ |
| . 2 large side $1.4 \times 12=16.8$ |
| . 3 answer |
| 3 marks |

\hline 4 \& | ans: 25p |
| :--- |
| .l S.F. length $=0.5$ |
| .2 S.F. volume $=0.5 \times 0.5 \times 0.5$ |
| - $3 \quad 0-125 \times £ 2$ |
| . 4 answer |
| 4 marks |

\hline 5 \& | ans: 15 cm |
| :--- |
| -1 S.F. area $=45 / 80$ |
| . 2 S.F. length $=0.75$ |
| - $3 \quad 0.75 \times 20 \mathrm{~cm}$ |
| -4 answer |
| 19 MARKS |
| 4 marks |

\hline
\end{tabular}

TEST 25 QUADRATIC FUNCTIONS (1) (continued)

TEST 27 SURDS \& INDICES

Qu	Marking Scheme Give 1 mark for each •
3a	ans: $\quad 6 \sqrt{3}$. $13 \sqrt{ } 12$ - $23 \sqrt{ }(4 \times 3)$. 3 answer 3 marks
3b	ans: 8 . $143 / 2$. 2 answer 2 marks
4a 4b $4 c$	ans: y^{7} .1 $y^{5} y^{-2}$. 2 answer 2 marks ans: b .1 b^{2} / b . 2 answer 2 marks ans: \boldsymbol{x}^{14} -1 x^{8} / x^{-6} . 2 answer 2 marks
5	ans: $\quad a+1$. $1 a$ $.2 \quad a^{0}$. $3 a+1$ 3 marks
6	ans: $\sqrt{2} / 4$.1 $1 / \sqrt{ } 8$ or equiv -2 $1 / 2 \sqrt{ } 2$. $3 x^{\sqrt{ } 2 / \sqrt{ } 2}$. $4 \quad \sqrt{ } / 2 / 4$ 4 marks

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Marking Scheme Give 1 mark for each - \& Qu \& Marking Scheme Give 1 mark for each -

\hline 1a
1b

1c \& \begin{tabular}{l}
ans: $48.5^{\circ} \& 131.5^{\circ} \quad$ (accept 132°)

-1 answer Quad 1

. 2 answer Quad 2

ans: $158^{\circ} \& 202^{\circ}$ (accept 201.9${ }^{\circ}$)

-1 answer Quad 2

. 2 answer Quad 3

ans: $84^{\circ} \& 264^{\circ}$

 \& 3 \&

ans: $\quad \mathbf{A}\left(104^{\circ},-3\right) \quad \mathbf{B}\left(256^{\circ},-3\right)$

.l $4 \cos x^{\circ}-2=-3$

. $2 \quad \cos x^{\circ}=-0.25$

-3 answer Quad 2

-4 answer Quad 3

. 5 Coordinates (right way round !)

5 marks
\end{tabular}

\hline 1d

1e \& \begin{tabular}{l}
-1 answer Quad 1

-2 answer Quad 3

ans: $60^{\circ} \& 300^{\circ}$

.l $6 \cos x^{\circ}=3$

. $2 \quad \cos x^{\circ}=0-5$

-3 answer Quad 1

-4 answer Quad 4

ans: $\quad 194.5^{\circ} \& 345 \cdot 5^{\circ} \quad\left(195^{\circ} \& 346^{\circ}\right)$

 \& 4 \&

ans: $101.9^{\circ} \quad\left(102^{\circ}\right)$

-1 attempts to use Cos rule for finding angle

. $2 \cos Q=\frac{200^{2}+130^{2}-260^{2}}{2 \times 200 \times 130}$

-3 Angle $\mathrm{Q}=78.1^{\circ}$

-4 Obtuse Angle $\mathrm{Q}=101.9^{\circ}$

4 marks
\end{tabular}

\hline lf \& | $.2 \quad \sin x^{\circ}=-0.25$ |
| :--- |
| -3 answer Quad 3 |
| -4 answer Quad 4 |
| ans: $167^{\circ} \& 347^{\circ}$ (go easy on rounding) |
| .1 $5 \tan x^{\circ}+2=0.839$ |
| . $25 \tan x^{\circ}=-1-16$ |
| - $3 \tan x^{\circ}=-0.232$ |
| .4 answer Quad 2 |
| . 5 answer Quad 4 | \& 5a

56 \& | ans: $3 / 5$ |
| :--- |
| -1 uses formula or otherwise |
| . 2 answer is positive |
| . 3 answer |
| ans: $\quad-3 / 4$ |
| -1 uses formula or otherwise |
| - 2 answer is negative |
| . 3 answer |
| 6 marks |
| 37 MARKS |

\hline
\end{tabular}

