Fractions

And the four operations!

Starter Questions

05:00

1. A triangle has lengths $8.5 \mathrm{~cm}, 6.4 \mathrm{~cm}$ and 10.5 cm . Is it a right angled triangle?
2. A model plane is similar to a real aircraft. The model plane is 250 times smaller. What is the volume scale factor between the planes?
3. Solve: $5 x+3=2 x+7$

Fractions of a quantity

Fractions of a quantity

$$
\begin{aligned}
& \frac{5}{11} \text { of } 66=66 \div 11 \times 5=30 \frac{3}{5} \times 50=50-5 \times 3=30 \\
& \frac{3}{4} \text { of } 4=4 \div 4 \times 3=3 \quad \frac{4}{7} \times 49<42
\end{aligned}
$$

$$
\frac{5}{6} \times 42=42 \div t \times S=35 \quad \frac{7}{10} \times 110=77
$$

Mixed Numbers <-> Improper Fractions
$3 \frac{3}{4}$
$3 \frac{1}{2}$
\qquad 5
(4)
$10 \frac{2}{5}$

$$
\frac{15}{4}
$$

$$
\frac{7}{2}
$$

(3)

Adding Fractions

$$
\frac{2}{3}+\frac{4}{5}=
$$

Worked Example	Your Turn
$\frac{1}{7} \cdot+\frac{12}{5}$	$\frac{1}{6}+\frac{3}{5}$
$=\frac{5}{35}+\frac{14}{35}$	$=\frac{5}{30}+\frac{18}{30}$
$=\frac{19}{35}$	$=\frac{23}{30}$

$$
\begin{array}{llll}
\text { 1. } \frac{1}{8}+\frac{2}{8} & \text { 6. } \frac{1}{4}+\frac{1}{5} & \text { 05:00 } \\
\text { 2. } \frac{1}{8}+\frac{4}{8} & \text { 7. } \frac{1}{4}+\frac{2}{5} & \text { 11. } \frac{2}{9}+\frac{2}{5} & \text { 16. } \frac{3}{9}+\frac{3}{7} \\
\text { 3. } \frac{1}{8}+\frac{1}{2} & \text { 8. } \frac{1}{4}+\frac{3}{5} & \text { 13. } \frac{3}{9}+\frac{2}{5}+\frac{2}{5} & \text { 17. } \frac{2}{9}+\frac{3}{7} \\
\text { 4. } \frac{1}{4}+\frac{x}{9}+\frac{3}{7} & \text { 9. } \frac{1}{9}+\frac{3}{5} & \text { 14. } \frac{4}{9}+\frac{2}{7} & \text { 19. } \frac{x}{9}+\frac{y}{7} \\
\text { 5. } \frac{1}{4}+\frac{1}{3} & \text { 10. } \frac{1}{9}+\frac{2}{5} & \text { 15. } \frac{4}{9}+\frac{3}{7} & \text { 20. } \frac{x}{9}+\frac{x}{7}
\end{array}
$$

1. $\frac{1}{8}+\frac{2}{8}$
$\frac{3}{8}$
2. $\frac{2}{9}+\frac{2}{5}$
$\frac{28}{45}$
3. $\frac{1}{8}+\frac{4}{8}$
$\frac{5}{8}=\frac{10}{16}$
4. $\frac{1}{8}+\frac{1}{2}$
$\frac{5}{8}$
5. $\frac{1}{4}+\frac{1}{2}$
$\frac{3}{4}$
6. $\frac{1}{4}+\frac{1}{3}$
$\frac{7}{12}$
$\frac{9}{20}$
7. $\frac{1}{4}+\frac{1}{5}$
8. $\frac{1}{4}+\frac{2}{5}$
$\frac{13}{20}$
9. $\frac{1}{4}+\frac{3}{5}$
$\frac{17}{20}$
10. $\frac{1}{9}+\frac{3}{5}$
$4 \frac{32}{45}$
11. $\frac{1}{9}+\frac{2}{5}$
$\frac{23}{45}$
12. $\frac{3}{9}+\frac{2}{5}$
$\frac{33}{45}$
13. $\frac{4}{9}+\frac{2}{5}$
$\frac{38}{45}$
14. $\frac{4}{9}+\frac{2}{7}$
$\frac{46}{63}$
15. $\frac{4}{9}+\frac{3}{7}$
$\frac{55}{63}$
16. $\frac{3}{9}+\frac{3}{7} \quad \frac{48}{63}$
17. $\frac{2}{9}+\frac{3}{7}$
$\frac{41}{63}$
18. $\frac{x}{9}+\frac{3}{7}$
$\frac{7 x+27}{63}$
19. $\frac{x}{9}+\frac{y}{7}$
$\frac{7 x+9 y}{63}$
20. $\frac{x}{9}+\frac{x}{7}$
$\frac{16 x}{63}$

Worked Example	Your Turn
$\frac{2}{5}-\frac{1}{3}$	$\frac{2}{3}-\frac{1}{5}$
$=\frac{6}{15}-\frac{5}{15}$	$=\frac{10}{15}-\frac{3}{15}$
$=\frac{1}{15}$	$=\frac{7}{15}$

$$
\begin{aligned}
& \text { 1. } \frac{2}{5}-\frac{1}{7} \\
& \text { 6. } \frac{2}{3}-\frac{3}{4} \\
& \text { 2. } \frac{1}{7}-\frac{2}{5} \\
& \text { 3. } \frac{2}{5}-\frac{2}{7} \\
& \text { 4. } \frac{2}{3}-\frac{2}{5} \\
& \text { 5. } \frac{2}{3}-\frac{1}{4} \\
& \text { 7. } \frac{3}{4}-\frac{2}{3} \\
& \text { 8. } \frac{3}{4}-\frac{2}{30} \\
& \text { 9. } \frac{3}{4}-\frac{3}{5} \\
& \text { 10. } \frac{3}{4}-\frac{9}{15}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } \frac{2}{5}-\frac{1}{7}=\frac{9}{35} \\
& \text { 2. } \frac{1}{7}-\frac{2}{5}=-\frac{9}{35} \\
& \text { 3. } \frac{2}{5}-\frac{2}{7}=\frac{4}{35} \\
& \text { 4. } \frac{2}{3}-\frac{2}{5}=\frac{4}{15} \\
& \text { 5. } \frac{2}{3}-\frac{1}{4}=\frac{5}{12}
\end{aligned}
$$

Explain

This can be simplified to $\frac{3}{4} \times \frac{1}{3}=\frac{3}{12}=\frac{1}{4}$

$\frac{1}{3} \times \frac{3}{4}$

Worked Example	Your Turn
$\frac{2}{3} \times \frac{5}{8}$	$\frac{2}{3} \times \frac{7}{10}$
$=\frac{10}{24}$	$=\frac{14}{30} \div 2$
$=\frac{5}{12}$	$=\frac{7}{15}$

1. $\frac{1}{2} \times \frac{2}{5}=$?
2. $\frac{2}{5} \times \frac{1}{2}=$?
3. $\frac{2}{5} \times \frac{1}{3}=$?
4. $\frac{2}{5} \times \frac{1}{4}=$?
5. $\frac{2}{5} \times \frac{3}{4}=$?
6. $\left(\frac{3}{4}\right)^{2}=? \frac{3}{4} \times \frac{3}{4}$
7. $\frac{0}{5} \times \frac{3}{4}=$?
8. $\frac{2}{3} \times \frac{5}{7}=$?
9. $\frac{2}{3} \times \frac{5}{?}=\frac{10}{12}$
10. $\frac{2}{3} \times$? $=\frac{2}{6}$

05:00
11. $\frac{2}{?} \times \frac{5}{?}=\frac{10}{9}$
12. $\frac{2}{3} \times \frac{a}{b}=$?
13. $\frac{a}{b} \times \frac{a}{b}=$?
14. $\frac{b}{a} \times \frac{a}{b}=$?
15. $\frac{2}{3} \times \frac{3}{5} \times \frac{4}{7}=$?
16. $\frac{2}{3} \times \frac{3}{5} \times \frac{9}{11}=$?
17. $\left(\frac{2}{3}\right)^{2}=$?
18. $\frac{2}{3} \times\left(\frac{3}{5}\right)^{2}=$?

1. $\frac{1}{2} \times \frac{2}{5}=\frac{2}{10}=\frac{1}{5}$
2. $\frac{2}{5} \times \frac{1}{2}=\frac{2}{10}=\frac{1}{5}$
3. $\frac{2}{5} \times \frac{1}{3}=\frac{2}{15}$
4. $\frac{2}{5} \times \frac{1}{4}=\frac{2}{20}=\frac{1}{10}$
5. $\frac{2}{5} \times \frac{3}{4}=\frac{6}{20}=\frac{5}{10}$
6. $\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$
7. $\frac{0}{5} \times \frac{3}{4}=\frac{0}{20}=0$
8. $\frac{2}{3} \times \frac{5}{7}=\frac{10}{21}$
9. $\frac{2}{3} \times \frac{5}{4}=\frac{10}{12}$
10. $\frac{2}{3} \times \frac{1}{2}=\frac{2}{6}$
11. $\frac{2}{3} \times \frac{5}{3}=\frac{10}{9}$
12. $\frac{2}{3} \times \frac{a}{b}=\frac{2 a}{3 b}$
13. $\frac{a}{b} \times \frac{a}{b}=\frac{a^{2}}{b^{2}}$
14. $\frac{b}{a} \times \frac{a}{b}=\frac{a b}{a b}=1$
15. $\frac{2}{3} \times \frac{3}{5} \times \frac{4}{7}=\frac{24}{105}$
16. $\frac{2}{3} \times \frac{3}{5} \times \frac{9}{11}=\frac{54}{165}=\frac{18}{33}$
17. $\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$
18. $\frac{2}{3} \times\left(\frac{3}{5}\right)^{2}=\frac{18}{75}$

Dividing fractions

- What is $\frac{2}{3} \div \frac{1}{3}$?

$$
=\frac{2}{3} \times \frac{3}{1}-\frac{6}{3}=2
$$

- What about $\frac{12}{8} \div \frac{4}{8}$?

$$
=\frac{12}{8} \times \frac{8}{4}=\frac{96}{32}=3
$$

Dividing fractions

- We could find a common denominator and then divide the numerators.
- But it's easier to just multiply the first fraction by the reciprocal of the second.

$\frac{3}{4} \div \frac{2}{7}$	$=\frac{3}{4} \times \frac{7}{2}$
	$\frac{3}{4} \div \frac{4}{7}=\frac{3}{4} \times \frac{7}{4}$
	$=\frac{21}{16}$

Starter Questions

1. A rectangle is $\frac{3}{5} \mathrm{~cm}$ long and $\frac{5}{8} \mathrm{~cm}$ high. Find its perimeter and area.
2. One angle of a triangle is 22 degrees. Its sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Find the other 2 angles.
3. Solve: $x+3 \geq 2 x-10$

Division with Fractions Notes

$$
\begin{array}{lll}
\text { 1. } \frac{2}{3} \div \frac{4}{5}= & \text { 8. } \frac{1}{2} \div \frac{3}{4}= & \text { 15. } 5 \div \frac{7}{12}= \\
\text { 2. } \frac{4}{6} \div \frac{4}{5}= & \text { 9. } \frac{1}{2} \div \frac{1}{4}= & \text { 16. } \frac{1}{5} \div \frac{7}{15}= \\
\text { 3. } \frac{4}{3} \div \frac{4}{5}= & \text { 10. } \frac{1}{2} \div 4= & \text { 17. } \frac{1}{5} \div 1 \frac{13}{15}= \\
\text { 4. } \frac{4}{3} \div \frac{2}{5}= & \text { 11. } \frac{1}{3} \div 4= & \text { 18. } \frac{a}{5} \div 1 \frac{13}{15}= \\
\text { 5. } \frac{3}{4} \div \frac{2}{5}= & \text { 12. } 4 \div \frac{1}{3}= & \text { 19. } \frac{1}{b} \div 1 \frac{13}{15}= \\
\text { 6. } \frac{3}{4} \div \frac{5}{2}= & \text { 13. } 4 \div \frac{7}{3}= & \text { 20. } \frac{1}{5} \div 1 \frac{c}{15}= \\
\text { 7. } \frac{3}{4} \div \frac{1}{2}= & \text { 14. } 20 \div \frac{7}{3}= & \text { 21. } \frac{1}{5} \div 1 \frac{13}{d}=
\end{array}
$$

Plenary

$$
\begin{aligned}
& \frac{3}{4}+\left(\frac{5}{2}-\frac{4}{5}\right)=\frac{3}{4}+\left(\frac{25}{10}-\frac{8}{10}\right) \\
&=\frac{3}{4}+\frac{17}{10}=\frac{15}{20}+\frac{34}{20} \\
&=\frac{49}{20} \\
& 1 \frac{2}{3} \times 3 \frac{5}{6}=\frac{5}{3} \times \frac{23}{6} \\
&=\frac{115}{18}=6 \frac{7}{18}
\end{aligned}
$$

Percentage Change

Recap

- How do we find:

Decimal Multipliers

Increase by 5\%

$$
\begin{aligned}
& 100 \%+5 \% \\
&= 1+0.05=1.05 \\
& \text { Decrease by } 2.3 \% \\
&= 100 \%-2.3 \%=97.7 \% \\
&= 1-0.023 \\
&= 0.977
\end{aligned}
$$

Worked Example	Your Turn
	Increase 40 by 10%
$=$	Increase 90 by 10%
$=$	40×1.1
$=90 \times 1.1$	
$100 \%+10 \%$	$=99$
$=$	
$=$	10%

Worteed Bample	Vour Tum
	Decrease 70 by 25%
$=$	Decrease 40 by 45%
$=$	52.5
	$=40 \times 0.75$
	$=22$
$100 \%-25 \%$	$100 \%-45 \%$
$=75 \%$	$=55 \%$
$=$	0.75

1. Increase 30 by 10\%
2. Decrease 30 by 20\%
3. Increase 60 by 20\%
4. Decrease 60 by 10\%
5. Increase 74 by 10%
6. Decrease 74 by 50%
7. Increase 84 by 50\%
8. Decrease 84 by 10\%
9. Increase 84 by 5%
10. Increase 44 by 5\%
11. Decrease 44 by 10\%
12. Increase 44 by 20%
13. Decrease 44 by 50\%
14. Increase 44 by 60%
15. Decrease 88 by 60\%
16. Increase 88 by 30%
17. Decrease 88 by 15\%
18. Increase 88 by 10%
19. Increase 30 by $10 \% \quad 33 \quad$ 10. Increase 44 by $5 \% \quad 46.2$
20. Decrease 30 by 20\% 2
21. Increase 60 by 20\% 72
22. Decrease 60 by 10\% 54
23. Increase 74 by $10 \% 81.4$
24. Decrease 74 by 50\% 37
25. Increase 84 by $50 \% 126$
26. Decrease 84 by 10\% 75.6
27. Increase 84 by 5\%
28. Increase 88 by 10\% 96.8

Use these 12 numbers, once each, in the gaps below.

10, 20, 25, 35, 40, 50, 60, 70, 75, 80, 90, 100

Notes Page 39

1. A golf professional gives 5% of his winnings to his caddy. How much does the professional keep for himself if he wins $\mathbf{£ 1 2 0 , 0 0 0}$?

$$
\begin{array}{lll}
100 \% & 120000 \times 0.95 \\
=95 \% & =0.95 & =
\end{array}
$$

2. The cost of a washing machine before VAT is $\mathbf{£ 2 4 0}$. Calculate the price after VAT at 20% is added.

$$
\begin{aligned}
& 100 \%+20 \% \\
= & 120 \%=1.2
\end{aligned}
$$

3. A TV is reduced by 15% in the sale. It originally cost $£ 600$. How much does it cost now?

$$
600 \times 0.85=6510
$$

4. The population of a small town grew by 6.5% over the course of a year. At the start of the year there were $\mathbf{1 2 4 0 0}$ people. How many were there at the end of the year? Round your answer to 2 SF.

$$
12400 \times 1065=13200=13000
$$

Worked exampleSimple interest

- $£ 600$ is invested for 3 years at 3% simple interest per year.
- How much will they have at the end of the 3 years?
$600 \times 0.03=\alpha 18$
$600+18+18+18=6654$

Your turn

- $£ 650$ is invested in a bank account for 2 years at 1.5\% simple interest per year.
- How much is in the account at the end of the 2 years?

Worked exampleCompound interest Christian invested $£ 6500$ for 2 years in a savings account.
He was paid 4\% per annum compound interest.
How much money did Christian have in his savings account at the end of 2 years? $\epsilon 6500 \times 1.04=66760$ HZ, $66760 \times 1.04=67030.40$
\qquad

Your turn $=102.5 \%$ $=1.02 \mathrm{~s}$
Ben invests $£ 400$ in a bank account.
The account pays compound interest at a rate of 2.5% per year.
At the end of two years, how much will
Ben have in his account? Ben have in his account?
VI
$\$ 400 \times 1.025=\$ 410$
Yo
$E 410 \times 1.025=E 420.25$

Worked exampleCompound interest
Christian invested $£ 6500$ for 2 years in a savings account.
He was paid 4\% per annum compound interest.
How much money did Christian have in his savings account at the end of 2 years?
$66500 \times(1.04)^{2}$ $=\AA 7030.40$

Your turn

Ben invests $£ 400$ in a bank account
The account pays compound interest at a rate of 2.5% per year.
At the end of two years, how much will Ben have in his account?

$$
\begin{gathered}
E 400 \times(1.025)^{2} \\
= \pm 420.25
\end{gathered}
$$

Worked exampleCompound interest

The value of a second-hand car is £6000.

Each year it loses 20% of its value. Work out its value in 3 years' time.

Your turn

Emma bought a car for $£ 10,000$
Each year the car depreciates by 15\%

How much will the car be worth in 2 years' time?

Worked exampleCompound interest

The value of a second-hand car is £6000.

Each year it loses 20% of its value. Work out its value in 3 years' time.

Your turn

Emma bought a car for $£ 10,000$
Each year the car depreciates by 15\%

How much will the car be worth in 2 years' time?

Notes Page 40

1. City Police aim to reduce crime figures by 8% each year for the next 3 years. If the current number of crimes committed each year is 25,000, how many do they hope for in 3 years time? Give your answer to the nearest hundred.
2. The number of bacteria in a Petri dish increases at a rate of 3% every hour. If there are 12,000 bacteria at the start, how many will there be in 4 hours? Give your answer to 2SF.
3. The number of subscribers to a new magazine is expected to increase by 24% every year. This year there are 16,500 subscribers. How many subscribers are there expected to be in $\mathbf{3}$ years time? Give your answer to $\mathbf{3}$ significant figures.
4. The amount of serum in a patient's bloodstream decreases by 20% every hour. A patient is injected with 6 mg of the serum at 9am. How many milligrams will remain in his bloodstream at 1pm? Give your answer to the nearest tenth of a milligram.
5. Jamie bought a house for $£ 120,000$. It appreciated in value by $\mathbf{3 . 7 \%}$ for each of the next four years. How much was the house worth after four years?

Plenary

Sam wants to invest $£ 2000$ for 2 years in the same bank.

At the end of 2 years, Sam wants to have as much money
as possible.
Which bank should Sam use?

Bonus Bank
Compound Interest
5\% for the first year
0.5% for each extra year

Super Savings Bank Compound Interest 4% for the first year 1% for each extra year

Reverse Percentages

1. City Police aim to reduce crime figures by 8% each year for the next 3 years. If the current number of crimes committed each year is 25,000, how many do they hope for in 3 years time? Give your answer to the nearest hundred. $1100^{\circ} / 0-8 \%$

2. The number of bacteria in a Petri dish increases at a rate of 3% every hour. If there are 12,000 bacteria at the start, how many will there be in 4 hours? Give your answer to 2SF.

3. The number of subscribers to a new magazine is expected to increase by $\mathbf{2 4 \%}$ every year. This year there are 16,500 subscribers. How many subscribers are there expected to be in $\mathbf{3}$ years time? Give your answer to $\mathbf{3}$ significant figures.
4. The amount of serum in a patient's bloodstream decreases by 20% every hour. A patient is injected with 6 mg of the serum at 9am. How many milligrams will remain in his bloodstream at 1pm? Give your answer to the nearest tenth of a milligram.
5. Jamie bought a house for $£ 120,000$. It appreciated in value by $\mathbf{3 . 7 \%}$ for each of the next four years. How much was the house worth after four years?

Starter Questions

1. Find the mean of the following numbers:

$$
1,4,7,7,90,101
$$

2. Solve the system of equations:

$$
\begin{aligned}
& 5 x+2 y=54 \\
& 2 x+2 y=24
\end{aligned}
$$

3. $6 x+3-x=5 x+15$

Comment.

$$
\begin{array}{r}
6 \div-6-=1 \\
15 \div-15=1 \\
22.5 \div-22.5=1 \\
37 \div-37=1 \\
72 \div-72=1 \\
88 \div 88=1 \\
94 \div-94=1 \\
104 \div 104=1 \\
117.5 \div 117.5=1
\end{array}
$$

$$
\begin{aligned}
& E 50 \div 10 \\
& =\angle 5 \\
& E 5 \times 7 \\
& =K 35
\end{aligned}
$$

$$
-88
$$

y100

$$
\begin{aligned}
& 70 \%=£ 35 \\
& \div 70 \\
& \times 100 \\
& 100 \%=\AA 50 \\
& 35 \%=\text { £ } 23.80 \\
& 1 \% \text { = . } 50.68 \\
& 100 \%=k \in 8
\end{aligned}
$$

Rob is buying a new car and has seen this advert:
He got a discount of 25% off the price of the car.
He paid $£ 7200$ for the car.
Work out the price of the car before the discount.

$$
\begin{aligned}
75 \% & =\not 7200 \div 75 \\
1 \% & =\not 796 \\
100 \% & =\neq 9600 \times 100
\end{aligned}
$$

Another example

The price of a washing machine is reduced by 17.5%.
The reduced price is $£ 264$.
By how much has the original price been reduced?

$$
\begin{array}{cl|l}
825 \% & =6264-82.5 & 100 \% \\
-17.5 \% \\
1 \% & =23.20 \times 100 & \\
100 \% & =6320
\end{array}
$$

Reverse Percentages

Find 100\% when...
a)

15 represents 50\%
d)

6 represents 5\%
g)

A coat is reduced by 15% to $£ 68$
j)

John gets a raise of 10% to $£ 7.48 / \mathrm{hr}$
b)

12 represents 10%
e)
15% of an amount is 36
h)

A top is reduced by 6% to $£ 47$
k)

A house depreciates by 0.3% to $£ 249,250$
c)

8 represents 20\%
f)
35% of an amount is 21
i)

A sofa is reduced by 17% to $£ 1,162$ I)

Population increases by 0.04% to 718,262

Notes P41

Practice makes permanent!

Worded Questions.

1). A camera is reduced by 5% in a sale. The sale price is $£ 15.20$. What was the original price?
2). An antique clock's price increases by 40% in a year. It now costs $£ 112$. What was it worth?
3). Jean puts some money into shares. After a year the share price has increased by 16%. It is now worth $£ 139.20$. How much was originally spent on shares?
4). Ian buys a second-hand car. The price falls by 24%. He sells it for $£ 2356$. How much did he pay for it?
5). A season ticket for Bolton F.C. this season is to go up by 20%. It will cost $£ 288$. How much was a season ticket last season?

6). A shirt is slightly shop soiled so it is reduced by 25%. It is now $£ 12$, how much was it to be sold for?
7). The bill for a meal came to the cost of the meal plus 15% service charge. The total cost was $£ 80.50$. What was just the cost of the meal ?
8). In Durry's winter sale the following items where offered at 35% reductions. Here is the sale price, find the original price.
a). Stereo $£ 130$
b). Television $£ 351$
d). Walkman $£ 9.10$ e). Camcorder $£ 520$
c). Video recorder $£ 97.50$
9). A salesperson is offered a rise of 12%. She will now earn $£ 268.80$ weekly.

Answers

Page 6. Worded Questions.
1). £16 2). £80 3). £120 4). £3100 5). £240 6). £16 7). £70
8). a). £200 b). £540 c). £150 d). £14 e). £800 f). £9 9). £240
10). 64 Kg 11). 700 12). 85000 13). 2100 14). £80000 15). 22000
16). 32 17). 62 Kg 18). 42 m

Recap Lesson

SMART Notebook

