Brackets and Factorising Practice from Lessons

Expanding single and multiple brackets

Expand the brackets and simplify!

- 1. 9(1 g)
- 2. -x(7y 11x)
- 3. 6(z + 2) 2z
- 4. 12 2(x 5)
- 5. 50 13(3x 2)
- 6. 3(m+2)+4(m+1)
- 7. 2(8t-2)+5(2t-4)
- 8. 5(x + 2) 2(x + 3)
- 9. x(8x 2) 2(3x 8)
- 10. 4w 2(1 5w)

Write an expression to represent the area of the rectangle.

2x + 3

3x

Write an expression to represent the total area of the rectangle and the square.

Expanding Double Brackets

Expand the brackets and simplify!

• (x + 3)(x + 4)

• (2x + 3)(x - 7)

• (x-3)(x+4)

• (2x - 3)(2x - 2)

• (x + 3)(x - 4)

• (3 - 2x)(3x + 2)

• (x-3)(x-4)

• (3y - 2x)(3x + 2y)

• (x + 3)(x - 3)

• (-3x - 2)(2x + 4)

Squaring Brackets

1. $(x + 5)^2$

6. $(3x + 2)^2$

2. $(x + 12)^2$

7. $(4x - 2)^2$

3. $(x-5)^2$

8. $(3x + 2y)^2$

4. $(x-11)^2$

9. $(p + 1)^2$

5. $(2x + 1)^2$

Expanding Brackets with Trinomials

1.
$$(x+3)(x^2+2x+4)$$
 2. $(x-2)(2x^2+x-3)$

2.
$$(x-2)(2x^2+x-3)$$

3.
$$(2x-1)(3x^2-x+4)$$

3.
$$(2x-1)(3x^2-x+4)$$
 4. $(2-x^2)(3x^2-2x+5)$

5.
$$(x + 1)(x + 2)(x + 5)$$

5.
$$(x+1)(x+2)(x+5)$$
 6. $(2x+3)(x-1)(x+2)$

Mixed Expanding Brackets

Expand the brackets and simplify!

1.
$$-2(x-3)$$

7.
$$3(x-2)-7(2-4x)$$

2.
$$5(2x + 3) - 4$$

8.
$$(x + 3)(x - 1)$$

3.
$$13 - 2(x + 1)$$

9.
$$(5-2x)(8-5x)$$

4.
$$-2(x-10)+21$$

4.
$$-2(x-10) + 21$$
 10. $(x+3)(x^2 + 4x + 5)$

5.
$$5x - 3(2x + 12)$$

5.
$$5x - 3(2x + 12)$$
 11. $(4 - x)(2 - x + 3x^2)$

6.
$$6(3x-1) + 2(2x+3)$$
 12. $(x+2)(x+3)(x-5)$

12.
$$(x + 2)(x + 3)(x - 5)$$

Factorising by Highest Common Factor (Factorising Pair Game as well)

Factorise these expressions, i.e. put them into a bracket.

1).
$$2x + 6$$

2).
$$4x + 12$$
 3). $3t + 9$

3).
$$3t + 9$$

5).
$$6y + 9$$

7).
$$9g + 15$$

7).
$$9g + 15$$
 8). $8x + 12$

11).
$$xy + 3x$$

12).
$$2ab + ad$$

13).
$$5t + rt$$

Factorise these expressions, they are slightly harder.

1).
$$2x^3 - 4x^2$$

2).
$$x^2y^2 - 6xy$$

3).
$$xy - 4x^2$$

4).
$$2x^2y^2 + 6x^2y$$

5).
$$15p^2q - 3pq^3$$
 6). $16v^2 + 40uv$ 7). $27y^2 - 18xy$ 8). $30t^4 - 6t^3$ 9). $30m^3 - 12m^4$ 10). $16p^3q - 15p^2q$ 11). $15t^3 - 20t^2$ 12). $28y^2 - 35y^3$

6).
$$16v^2 + 40uv$$

11).
$$15t^3 - 20t^2$$

12).
$$28y^2 - 35y^3$$

Factorising by difference of two squares

Factorise, using the difference of two squares :-

(a)
$$x^2 - 4$$

(b)
$$a^2 - 16$$

(c)
$$b^2 - 25$$
 (d) $x^2 - 1$

(d)
$$x^2 - 1$$

(e)
$$1 - k^2$$

(f)
$$81 - w^2$$

(g)
$$64 - h^2$$

(g)
$$64 - h^2$$
 (h) $100 - x^2$

(i)
$$x^2 - b^2$$

(j)
$$w^2 - v^2$$

(k)
$$4a^2 - 1$$

(i)
$$x^2 - b^2$$
 (j) $w^2 - v^2$ (k) $4a^2 - 1$ (l) $x^2 - 25y^2$

(m)
$$36 - 49p$$

(n)
$$81a^2 - 4b^2$$

(m)
$$36-49p^2$$
 (n) $81a^2-4b^2$ (o) $121v^2-100w^2$ (p) $64p^2-81q^2$

(p)
$$64p^2 - 81a^2$$

(q)
$$1 - 16a^2$$

(r)
$$25 - 81x^2$$

(s)
$$49 - 4k^2$$

(r)
$$25 - 81x^2$$
 (s) $49 - 4k^2$ (t) $1 - 144y^2$.

1.
$$2b^2 - 32$$
 2. $27 - 3b^2$ 3. $5y^2 - 125$ 4. $363 - 75b^2$

Shown is a square with side 5 centimetres cut out from a square of side k centimetres.

(a) Prove that the pink area can be expressed as :- (k-5)(k+5) cm².

(b) Find the area when k = 8.5.

Factorising Trinomials

Practice:

$$a^2 + 12a + 11$$

Now complete these in your jotter:

$$d^2 - 10d + 24$$
 $e^2 + 24e + 63$

$$10 - 20g + g^2$$

$$34 + 19h + h^2$$
 $k^2 + 4k + 4$

$$k^2 + 4k + 4$$

$$b^2 - 9b + 20$$

Now try these by considering a **HCF** first:

$$2m^2 + 4m + 2$$
 $3n^2 - 18n + 24$

$$c^2 - 11c + 28$$

$$4p^2 + 20p + 24$$

$$4p^2 + 20p + 24$$
 $5q^2 - 10q + 40$

$$a^2 + a - 12$$

$$c^2 - 2c - 63$$

$$e^{2} - e - 6$$

$$f^2 + 2f - 3$$

$$10 + 3g - g^2$$

$$2i^2 + 4i - 30$$

$$4j^2 - 32j + 60$$

Task 1: Factorise the following

1.
$$2x^2 + 5x + 3$$

3.
$$12m^2 - 8m + 1$$

5.
$$8u^2 + 10u - 3$$

Task 2: Check your answers to the questions above by multiplying back out the brackets.

Mixed Factorising

(a)
$$x^2 + 3x + 2$$

(b)
$$m^2 - 36$$

(a)
$$x^2 + 3x + 2$$
 (b) $m^2 - 36$ (c) $x^2 + 6x + 5$

(d)
$$x^2 + 7x + 10$$
 (e) $y^2 + 6y$

(e)
$$v^2 + 6v$$

$$(f) t^2 + 9t + 8$$

(g)
$$a^2 + 5a$$

(h)
$$x^2 - 4$$

(i)
$$2x + 3xy$$

(j)
$$v^2 - 10v + 16$$

(k)
$$7ab + 21b$$
 (l) $1 - a^2$

(I)
$$1 - a^2$$

(m)
$$a^2 - 6a - 7$$
 (n) $4x^2 - 9$ (o) $6st + 3s$

(n)
$$4x^2 - 9$$

(o)
$$6st + 3s$$

(p)
$$x^2 - 2x - 24$$

(q)
$$9b^2 - 16$$
 (r) $3x^3 - x^2$

(r)
$$3x^3 - x^2$$

(s)
$$x^2 + x - 2$$

(t)
$$c^2 - 13c + 12$$
 (u) $64y^2 - 25$

(u)
$$64y^2 - 25$$

Completing the Square

For each of the following, write in the form $(x + p)^2 + q$

$$x^2 + 4x$$

$$x^2 - 8x$$

$$x^2 - 6x$$

$$x^2 + 14x$$

$$x^2 + 2x + 7$$

$$x^2 + 10x + 27$$

$$x^2 + 6x + 2$$

$$x^2 + 8x + 9$$

$$x^2 + 4x - 8$$

$$x^2 + 16x - 3$$

$$x^2 - 14x - 15$$

$$x^2 - 8x + 8$$

$$x^2 - 20x - 6$$

$$x^2 - 2x + 5$$

$$x^2 - 6x + 11$$

$$x^2 - 12x + 21$$