Brackets and Factorising Practice from Lessons

Expanding single and multiple brackets

Expand the brackets and simplify!

1. $\quad 9(1-\mathrm{g})$
2. $-x(7 y-11 x)$
3. $6(z+2)-2 z$
4. $12-2(x-5)$
5. $50-13(3 x-2)$
6. $3(m+2)+4(m+1)$
7. $2(8 t-2)+5(2 t-4)$
8. $5(x+2)-2(x+3)$
9. $x(8 x-2)-2(3 x-8)$
10. $4 w-2(1-5 w)$

Write an expression to represent the area of the rectangle.

X
$3 x$

$$
2 x+3
$$

Write an expression to represent the total area of the rectangle and the square.

Expand the brackets and simplify!

- $(x+3)(x+4)$
- $(2 x+3)(x-7)$
- $(x-3)(x+4)$
- $(2 x-3)(2 x-2)$
- $(x+3)(x-4)$
- $(3-2 x)(3 x+2)$
- $(x-3)(x-4)$
- $(3 y-2 x)(3 x+2 y)$
- $(x+3)(x-3)$
- $(-3 x-2)(2 x+4)$

Squaring Brackets

1. $(x+5)^{2}$
2. $(x+12)^{2}$
3. $(x-5)^{2}$
4. $(x-11)^{2}$
5. $(2 x+1)^{2}$
6. $(3 x+2)^{2}$
7. $(4 x-2)^{2}$
8. $(3 x+2 y)^{2}$
9. $(p+1)^{2}$
10. $(x+3)\left(x^{2}+2 x+4\right)$
11. $(x-2)\left(2 x^{2}+x-3\right)$
12. $(2 x-1)\left(3 x^{2}-x+4\right)$
13. $\left(2-x^{2}\right)\left(3 x^{2}-2 x+5\right)$
14. $(x+1)(x+2)(x+5)$
15. $(2 x+3)(x-1)(x+2)$

Mixed Expanding Brackets

Expand the brackets and simplify!

1. $-2(x-3)$
2. $3(x-2)-7(2-4 x)$
3. $5(2 x+3)-4$
4. $(x+3)(x-1)$
5. $13-2(x+1)$
6. $(5-2 x)(8-5 x)$
7. $-2(x-10)+21$
8. $(x+3)\left(x^{2}+4 x+5\right)$
9. $5 x-3(2 x+12)$
10. $(4-x)\left(2-x+3 x^{2}\right)$
11. $6(3 x-1)+2(2 x+3)$
12. $(x+2)(x+3)(x-5)$

Factorise these expressions, i.e. put them into a bracket.
1). $2 x+6$
2). $4 x+12$
3). $3 t+9$
4). $5 a-20$
5). $6 y+9$
6). $4 f-10$
7). $9 \mathrm{~g}+15$
8). $8 x+12$
9). $14 \mathrm{r}-21$
10). $12 \mathrm{e}-15$
11). $x y+3 x$
12). $2 a b+a d$
13). $5 \mathrm{t}+\mathrm{rt}$
14). 5 ry - rf
15). $3 \mathrm{gh}-2 \mathrm{~g}$

Factorise these expressions, they are slightly harder.
1). $2 x^{3}-4 x^{2}$
2). $x^{2} y^{2}-6 x y$
3). $x y-4 x^{2}$
4). $2 x^{2} y^{2}+6 x^{2} y$
5). $15 p^{2} q-3 p q^{3}$
6). $16 \mathrm{v}^{2}+40 \mathrm{uv}$
7). $27 y^{2}-18 x y$
8). $30 t^{4}-6 t^{3}$
9). $30 \mathrm{~m}^{3}-12 \mathrm{~m}^{4}$
10). $16 p^{3} q-15 p^{2} q$
11). $15 t^{3}-20 t^{2}$
12). $28 y^{2}-35 y^{3}$

Factorising by difference of two squares

Factorise, using the difference of two squares :-
(a) $x^{2}-4$
(b) $a^{2}-16$
(c) $b^{2}-25$
(d) $x^{2}-1$
(e) $1-k^{2}$
(f) $81-w^{2}$
(g) $64-h^{2}$
(h) $100-x^{2}$
(i) $x^{2}-b^{2}$
(j) $w^{2}-v^{2}$
(k) $4 a^{2}-1$
(l) $x^{2}-25 y^{2}$
(m) $36-49 p^{2}$
(n) $81 a^{2}-4 b^{2}$
(o) $121 v^{2}-100 w^{2}$
(p) $64 p^{2}-81 q^{2}$
(q) $1-16 a^{2}$
(r) $25-81 x^{2}$
(s) $49-4 k^{2}$
(t) $1-144 y^{2}$.

1. $2 b^{2}-32$
2. $27-3 b^{2}$
3. $5 y^{2}-125$
4. $363-75 b^{2}$

Shown is a square with side 5 centimetres cut out from a square of side k centimetres.
(a) Prove that the pink area can be expressed as :- $\quad(k-5)(k+5) \mathrm{cm}^{2}$.
(b) Find the area when $k=8.5$.

Practice:

$$
a^{2}+12 a+11
$$

Now complete these in your jotter:

$$
\begin{array}{ll}
d^{2}-10 d+24 & e^{2}+24 e+63 \\
f^{2}-11 f+18 & 10-20 g+g^{2} \\
34+19 h+h^{2} & k^{2}+4 k+4
\end{array}
$$

$$
b^{2}-9 b+20
$$

$$
c^{2}-11 c+28
$$

Now try these by considering a HCF first:

$$
\begin{array}{ll}
2 m^{2}+4 m+2 & 3 n^{2}-18 n+24 \\
4 p^{2}+20 p+24 & 5 q^{2}-10 q+40
\end{array}
$$

$$
a^{2}+a-12
$$

$$
b^{2}-3 b-18
$$

$$
c^{2}-2 c-63
$$

$$
d^{2}-5 d-36
$$

$$
e^{2}-e-6
$$

$$
f^{2}+2 f-3
$$

$$
10+3 g-g^{2}
$$

$$
20-8 h-h^{2}
$$

$$
2 i^{2}+4 i-30
$$

$$
4 j^{2}-32 j+60
$$

Task 1: Factorise the following

1. $2 x^{2}+5 x+3$
2. $12 m^{2}-8 m+1$
3. $8 u^{2}+10 u-3$

Task 2: Check your answers to the questions above by multiplying back out the brackets.

Mixed Factorising

(a) $x^{2}+3 x+2$
(b) $m^{2}-36$
(c) $x^{2}+6 x+5$
(d) $x^{2}+7 x+10$
(e) $y^{2}+6 y$
(f) $t^{2}+9 t+8$
(g) $a^{2}+5 a$
(h) $x^{2}-4$
(i) $2 x+3 x y$
(j) $v^{2}-10 v+16$
(k) $7 a b+21 b$
(I) $1-a^{2}$
(m) $a^{2}-6 a-7$
(n) $4 x^{2}-9$
(o) $6 s t+3 s$
(p) $x^{2}-2 x-24$
(q) $9 b^{2}-16$
(r) $3 x^{3}-x^{2}$
(s) $x^{2}+x-2$
(t) $c^{2}-13 c+12$
(u) $64 y^{2}-25$

Completing the Square

For each of the following, write in the form $(x+p)^{2}+q$

$$
\begin{aligned}
& x^{2}+4 x \\
& x^{2}-8 x \\
& x^{2}-6 x \\
& x^{2}+14 x \\
& x^{2}+2 x+7 \\
& x^{2}+10 x+27 \\
& x^{2}+6 x+2 \\
& x^{2}+8 x+9 \\
& x^{2}+4 x-8 \\
& x^{2}+16 x-3 \\
& x^{2}-14 x-15 \\
& x^{2}-8 x+8 \\
& x^{2}-20 x-6 \\
& x^{2}-2 x+5 \\
& x^{2}-6 x+11 \\
& x^{2}-12 x+21
\end{aligned}
$$

