

Specimen Paper F

MATHEMATICS National Qualifications - National 5 Paper 1 (non-calculator) Covering Units 1, 2 and 3

Time allowed - 1 hour

Fill in these boxes and read carefully what is printed below			
Full nam	e of centre	Town	
Forenan	ne(s)	Surname	
Date of Day M	birth Ionth Year Candidate number	Seat number	
Tota	l marks - 40		
1. 2. 3.	You may <u>NOT</u> use a calculator. Use blue or black ink. Pencil may b Write your working and answers in the is provided at the end of the booklet. the question you are attempting	be used for graphs and diagrams only. the spaces provided. Additional space for answer t. If you use this space, write clearly the number c	
 Square ruled paper is provided. Full credit will be given only where the solution contains appropriate working. State the units for your answer where appropriate. Before leaving the examination room you must give up this booklet to the invigilator. If you do not, you may lose all the marks for this paper. 			

National 5

FORMULAE LIST

The roots of
$$ax^{2} + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^{2} - 4ac)}}{2a}$

Sine rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
 or $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$

Area of a triangle: Area = $\frac{1}{2} ab \sin C$

Volume of a sphere: Volume = $\frac{4}{3}\pi r^3$

Volume of a cone: Volume = $\frac{1}{3}\pi r^2 h$

Volume of a Pyramid: Volume = $\frac{1}{3}Ah$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n-1}}$$
, where n is the sample size.

	All questions should be attempted	Marks	write in this margin.
1.	Solve algebraically the system of equations y = 3x + 2 $2x + 3y = 50$	3	
2.	Simplify $\frac{\sqrt{72} - \sqrt{8}}{16}$ expressing your answer as a surd in its simplest form.	2	
3.	The function $f(x)$ is given by the formula $f(x) = 2x^2 - 5$, where x is a real number. (a) Find the value of $f(-3)$. (b) Find the values of a for which $f(a) = 45$.	2 3	
4.	The diagram shows a cone with radius 10 centimetres and height 21 centimetres. Taking $\pi = 3.14$, calculate the volume of the cone.	3	
5.	Simplify $\frac{(x+2)^2}{x^2 - 2x - 8}$	2	

Specimen Paper F

Do not

Do not write in this margin.

Marks m

2

2

2

3

3

Write down the equation of the parabola and state the equation of the axis of symmetry

8. (a) Simplify
$$\frac{6x^3y^{-\frac{2}{3}}}{3xy^{-\frac{1}{3}}}$$

(b) Evaluate the expression if x = -2 and y = 27

9. Given that
$$P = \frac{3b-c}{b}$$
, express b in terms of A and c.

10. Sketch the graph of
$$f(x) = \sin(x - 60)^{\circ}$$
, $0 \le x \le 360$ **3**

6.

(1, 6)

x

0

National 5

Marks

3

4

3

Do not write in this

margin.

11. Sandy found a small photo-frame and decided to put one of her favourite photographs in it. The diagram below shows the dimensions of the frame.

Unfortunately the glass in the centre of the frame was cracked and had to be replaced.

(a) Show that the area of glass needed for the centre of the frame can be given by the formula

$$A = (4x^2 - 42x + 108) \text{ cm}^2$$

(b) If the area of glass needed was 54 cm^2 , find a possible value for x.

12. Simplify
$$\frac{6-6\sin^2 x}{3\cos x}$$

End of question paper

National 5	Practice Paper F	Paper 1
	1	1

Qu	Give one mark for each ●	Illustrations for awarding mark	
1	ans: $x = 4, y = 14$ 3 marks		
	• substitutes for y in second equation	• $2x + 3(3x + 2) = 50$	
	• solves for x	• ² $11x = 44 \Rightarrow x = 4$	
	• $^{\circ}$ solves for y	• ³ $y = (3 \times 4) + 2 = 14$	
2	ans : $\sqrt[1]{2}_4$ 2 marks		
	1 . 1.0 1		
	• simplifies surds $\frac{2}{3}$ is 1.6 for $\frac{1}{3}$	• $6\sqrt{2} - 2\sqrt{2} = 4\sqrt{2}$	
	• simplifies fraction	$\bullet^2 \sqrt{2}/4$	
3 a	ans: 13 2 marks		
	1		
	• interpret function notation	$\bullet^1 2(-3)^2 - 5$	
	• ² evaluate function	\bullet^2 13	
D	ans: -5, 5 3 marks		
		$a^1 2a^2 - 5 - 45$	
	• substitute correctly	2 $\sqrt{25}$	
	• attempts to solve equation	$ a = \sqrt{25} $	
	• correctly solves equation	• $a = \pm 5$	
4	ans: 2198cm ³ 3 marks		
	• knows how to calculate volume	$\bullet^1 V = \frac{1}{3} \times \pi \times 10^2 \times 21$	
	• ² starts to evaluate	$\bullet^2 V = 314 \times 7$	
	• calculates volume	• ³ 2198cm ³	
5	ans: $(x+2)/(x-4)$ 2 marks		
	• factorises denominator	• $(x-4)(x+2)$	
	• ² simplifies fraction	$e^{2} \frac{(x+2)}{(x-4)}$	
6	ans: $y = (x-1)^2 + 6$; $x = 1$ 2 marks		
	1	1	
	• states equation	• $y = (x-1)^2 + 6$	
	• ² states equation of axis of symmetry	$\bullet^2 x = 1$	
7	ans : 10 cm^2 2 marks		
	• knows to use area formula	• $A = \frac{1}{2} ab \sin C = \frac{1}{2} \times 5 \times 8 \times \frac{1}{2}$	
	• ² calculates area	• 10	
0()	ans: $2x^2 y^{-\frac{1}{3}}$ 2 marks		
8(a)		$1 - c^{3}/2 - c^{2}$	
	\bullet^1 simplifies numbers and terms in x	$6x^3/3x = 2x^2$	
	\bullet^2 simplifies terms in v	$\bullet^2 y^{-\frac{2}{3}} / y^{-\frac{1}{3}} = y^{-\frac{1}{3}}$	
	ans: $\frac{8}{3}$ 3 marks		
	• ¹ substitutes values	• $1 2 \times (-2)^2 \times 27^{-\frac{1}{3}}$	
	\bullet^2 evaluates numerator	\bullet^2 8 ×	
	• ³ evaluates numerator	$\bullet^3 \ldots \times {}^{1/3}$	

Qu	Give one mark for each ●	Illustrations for awarding mark
9	ans: $b = \frac{-c}{P-3}$ or $b = \frac{c}{3+P}$ 3 marks	
	 eliminates the fractions collects like terms and takes c.f. divides to state answer 	• ¹ $Pb = 3b - c$, • ² $Pb - 3b = -c$; $b(P - 3) = -c$, • ³ $b = \frac{-c}{P-3}$ or $b = \frac{c}{3+P}$
10	ans: graph 3 marks	
	 ¹ graph has sine shape ² graph shifted 60° right ³ graph drawn within correct limits 	y 1 60 240 360 x x
11	ans: proof 3 marks	
(a)	 ¹ finding an expression for length ² finding an expression for breadth ³ calculating area and simplifies to answer 	• ¹ 12 - 2x • ² 9 - 2x • ³ $A = (12 - 2x)(9 - 2x)$
(b)	ans: 1.5 cm 4 marks	
	 equating expression to 54 attempting to solve the quadratic equation correctly solving equation selects appropriate solution 	• $4x^{2} - 42x + 54 = 0$ • $2(x - 9)(2x - 3) = 0$ • $x = 1 \cdot 5 \text{ or } 9$ • $1 \cdot 5 \text{ cm}$
12	ans : $2 \cos x^0$ 3 marks	
	 ¹ factorises numerator ² substitutes ³ simplifies 	• $6(1 - \sin^2 x^{\circ})$ • $6\cos^2 x^{\circ}$ • $2\cos x^{\circ}$ Total: 40 marks

Practice Paper F

MATHEMATICS National Qualifications - National 5 Paper 2 (Calculator) Covering Units 1, 2 and 3

Time allowed - 1 hour and 30 minutes

ll in thes	e boxes and read carefully what is printed below		
Full name	of centre Town		
Forename	e(s) Surname		
Data of h			
Date of b Day Mo	onth Year Candidate number Seat number		
Total	marks - 50		
1.	You may use a calculator.		
2.	Use blue or black ink. Pencil may be used for graphs and diagrams only.		
3.	Write your working and answers in the spaces provided. Additional space for answer		
	If you use this space, write clearly the number of the question you are attempting.		
Λ	Square ruled paper is provided		
+. 5	4. Square ruled paper is provided.		
6 State the units for your answer where appropriate			
 Before leaving the examination room you must give up this booklet to the invigilator you do not, you may lose all the marks for this paper. 			

FORMULAE LIST

The roots of
$$ax^{2} + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^{2} - 4ac)}}{2a}$

Sine rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
 or $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$

Area of a triangle: Area = $\frac{1}{2} ab \sin C$

Volume of a sphere: Volume = $\frac{4}{3}\pi r^3$

Volume of a cone: Volume = $\frac{1}{3}\pi r^2 h$

Volume of a Pyramid: Volume = $\frac{1}{3}Ah$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n-1}}$$
, where n is the sample size.

		Marks	Do not write in this margin.
4.	Brendan's golf fees have increased by 14% from last year and he now has to pay £741		
	How much did he have to pay last year?	2	
5.	Solve the equation $3x^2 + 4x - 3 = 0$. Give your answers correct to 1 decimal place	4	
6.	Two vectors are defined as $V_1 = 4\mathbf{i} + \mathbf{j} + \sqrt{8}\mathbf{k}$ and $V_2 = 8a\mathbf{i} + 6a\mathbf{k}$, where <i>a</i> is a constant and <u>all</u> coefficients of \mathbf{i} , \mathbf{j} and \mathbf{k} are greater than zero Given that $ V_2 = 2 V_1 $, calculate the value of <i>a</i> .	3	
7.	Solve, algebraically , the equation		
	$3\tan x^0 + 4 = 3$, for $0 \le x < 360$.	3	
8.	Two ships leave port at exactly the same time. Ship A travels at 12 kilometres per hour on a bearing of 073° . Ship B sets out on a bearing of x° , where $90 \le x \le 180$, at 15 kilometres per hour. After 3 hours the two ships are 30km apart. Calculate, correct to three significant figures, the bearing Ship B must have followed when leaving port. Port P	5	

- A triangular shaped poster is split into a black section and a white section as shown 12. in the diagram. BE is parallel to CD. BE = 7cm and CD = 20cm.

Given that the area of the black section is 147cm^2 , calculate the area of the white section.

4

End of Question Paper

Do not write in this margin.

Qu	Give one mark for each ●		Illustrations for awarding mark
1	ans: $x^3 + 10x^2 - 8x$ 3 m	irks	
	 terms correctly evaluated applies negative sign simplifies 	• ¹ • ² • ³	$2x^{3} - 10x^{2} + 8x$ -2x ³ + 10x ² - 8x x ³ + 10x ² - 8x
2	ans : 1309-1 cm ³ 6 ma	irks	
	 ¹ knows to calculate volume of hemisphe ² substitutes radius correctly ³ evaluates volume of hemisphere ⁴ calculates percentages ⁵ knows to subtract ⁶ evaluates remaining volume 	ere $\begin{bmatrix} 0^1 \\ 0^2 \\ 0^3 \\ 0^4 \\ 0^5 \\ 0^6 \end{bmatrix}$	$V_{\text{hemisphere}} = \frac{1}{2} \times \frac{4}{3} \pi \times r^{3}$ $V_{\text{hemisphere}} = \frac{1}{2} \times \frac{4}{3} \pi \times 9^{3}$ 1526.8 cm ³ 76.5, 72.5, 68.9 1451.5, 1378 1309.1
3(a)	ans: 18·2 1 n	ark	
(b)	 ¹ calculating mean ans : 1·2 3 ma 	• ¹	$\frac{182}{10} = 18 \cdot 2$
	\bullet^1 knowing how to calculate sd	• ¹	$\sum x = 182 \sum x^2 = 3325 \cdot 68$
	\bullet^2 correctly calculating sd	•2	$sd = \sqrt{\frac{3325 \cdot 68 - \frac{182^{-1}}{10}}{9}}$
	• ³ rounding	•3	answer
(c)	ans : Yes as mean and sd < standard set 1 n	ark	
	• ¹ makes comparison	\bullet^1	suitable answer
4	ans: £650 2 ma	irks	
	 ¹ suitable strategy ² answer 	• ¹ • ²	£741 ÷ 1·14 £650
5	ans: 0.5 and -1.9 4 ma	rks	
	 ¹ knows to use quadratic formula ² calculates discriminant ³ finds first solution ⁴ finds second solution 	• ¹ • ² • ³ • ⁴	evidence $b^2 - 4ac = 52$ x = 0.5 x = -1.9

Qu	Give one mark for each ●	Illustrations for awarding mark
6	ans: $a = 1$ 3 marks	
	 finds magnitude of V₁ finds expression for magnitude of V₂ equates 2V₁ = V₂ and solves for <i>a</i> 	• ¹ $ V_1 = 5$ • ² $ V_2 = 10a$ • ³ $2 \times 5 = 10 \times a; a = 1$
7	ans: 161.6° , 341.6° 3 marks	
	• ¹ rearranging to find $\tan x =$ • ² finds first solution	• $\tan x = -\frac{1}{3}$ • $2 161.6^{\circ}$
	• finds second solution	• 341.6
8	ans: 115° 5 marks	
	 ¹ interpreting information ² using suitable formula 	• triangle with sides 36, 45 & 30 • cosine rule $\cos a = \frac{b^2 + c^2 - a^2}{2bc}$
	• ³ substituting correctly	• ³ $\cos a = \frac{36^2 + 45^2 - 30^2}{2 + 26 + 45}$
	 ⁴ calculating interior angle ⁵ stating bearing 	• ⁴ angle = 42^{0} • ⁵ answer
9(a)	ans: proof 2 marks	
	 ¹ knowing to use Converse of Pythagoras ² completing proof 	• ¹ If Δ is R.A. then $a^2 = b^2 + c^2$ • ² LHS = RHS = 1521
(b)	ans : 13.8cm 3 marks	
	 ¹ knowing to use area of Δ ² knowing QP(base) and RM(height) 	• $\frac{1}{2}b \times h = 270$ • $\frac{1}{2} \times 39 \times \text{RM} = 270$
	\bullet^3 calculations	a ³ answer
10	ans: 112° 2 marks	
(a)	 •¹ identifying R.A. triangle •² finding angle at apex 	• ¹ 10 18 • ² $\cos x^{\circ} = \frac{10}{18} \Rightarrow x = 56^{\circ}, 2x = 112^{\circ}$
(b)	ans: 14195 cm ³ 4 marks	
	• ¹ calculating area of sector	• sector = $\frac{112}{360} \times \pi \times 18^2 = 317 \mathrm{cm}^2$
	• ² calculating area of triangle	• ² $\frac{1}{2} \times 18 \times 18 \times \sin 112 = 150 \text{ cm}^2$
	 ⁴ calculating cross sectional area calculating volume of fuel 	• ³ $CSA = 317 - 150 = 167 \text{ cm}^2$ • ⁴ 14195 cm ³

Qu	Give one mark for each ●		Illustrations for awarding mark
11	ans: real, unequal, irrational	4 marks	
	• ¹ knows to calculate discriminant		• ¹ evidence
	\bullet^2 calculates discriminant		$\bullet^2 b^2 - 4ac = 76$
	\bullet^3 chooses any two suitable words		\bullet^3 real, unequal
	• ⁴ chooses a third suitable word		• ⁴ irrational
12	ans: 1053 cm ²	4 marks	
	• ¹ finds linear scale factor		• ¹ linear scale factor = $\frac{20}{7}$
	• ² calculating area scale factor		• ² area scale factor = $\left(\frac{20}{7}\right)^2$
	• ³ calculating area of whole poster		• ³ area(poster) = $\left(\frac{20}{7}\right)^2 \times 147 = 1200$
	• ⁴ calculating area of larger section		• ⁴ area(section) = answer
			Total 50 marks