
Fife Digital Learning and Literacy
Progression – Computing Science

COPYRIGHT AND DISCLAIMER

Fife Council is the owner of the copyright in this work and all
rights are reserved.

No part of this work may be edited, copied, or otherwise
reproduced, whether electronically or mechanically without the
written permission of Fife Council.

This work is intended for use in accordance with the wider
professional learning programme provided by Fife Council’s
Professional Learning Team. Only authorised Fife Council users or
authorised licensees under the said programme are permitted to
use these materials. All other uses of this work are prohibited.

Enquiries about the Council’s professional learning programme
and the use of this work should be directed to: Fife Council
Professional Learning Team at professional.learning@fife.gov.uk

mailto:professional.learning@fife.gov.uk

CONTENTS

Acknowledgement - 4
Guidance - 5
Implementation - 6
Overview - 7
Early Level - 11

Computational Thinking - 13
Analysing Computing Technology - 15
Design, build and test - 17

First Level - 19
Computational Thinking - 21
Analysing Computing Technology - 23
Design, build and test - 25

Second Level - 27
Computational Thinking - 29
Analysing Computing Technology - 31
Design, build and test – 33

Third Level - 35
Computational Thinking - 37
Analysing Computing Technology - 39
Design, build and test - 41

Fourth Level - 43
Computational Thinking - 45
Analysing Computing Technology - 47
Design, build and test - 49

ACKNOWLEDGEMENT

This programme is extensively based on the guidance and recommendations of the Curriculum for Excellence and
Benchmarks set out by Education Scotland.

These progressions allow for a fluidity of approaches that facilitate the opportunity for learners to think creatively
and independently, whilst at the same time supporting practitioners to plan in a structured and coherent way. Using these
shared standards and expectations within Schools, Clusters and Local Improvement Forums across Fife will ensure that all
learners have an equitable experience to develop skills for their learning, life, and work.

The Fife Digital Learning and Literacy Progression has been developed from the PICT (Progression in Information
Communication Technology) in collaboration with the Fife Digital Learning Team and BTS Education staff. This programme
supersedes the previous PICT v3 content to reflect the developments since its launch, both in terms of technology and
their applications. Consideration has been given to sustainable resources that are also GDPR compliant, with scope for future
changes.

We would like to acknowledge the efforts of Fife practitioners in supporting the development of the Fife Computing Science
Progression through engaging with consultations and providing feedback on the programme. This has been crucial in
ensuring that the programme is cohesive, progressive and practical.

GUIDANCE

The Technologies Curriculum has been split into five curricular organisers, two of which are related
to digital learning. These are Digital Literacy (including Cyber Security and Internet Safety) and
Computing Science.

This progression pathway is intended to provide a framework for practitioners as they plan and
deliver Computing Science to ensure all learners have the skills and experiences required to use
digital tools safely to support their learning across the curriculum.

Within the Progression Pathways, developmental stages of learning are clearly outlined. These amalgamate both Experiences and Outcomes
with the national Benchmarks. These are not prescribed in a hierarchical way but rather enable practitioners to be responsive and flexible in
their planning of learning pathways as appropriate to the needs of their learners. Though knowledge and skills at the base are often required
for further learning to be built upon, these are not aligned to any particular year group nor always the starting point for all. Learners will
progress through their learning pathways within each curricular organiser as appropriate to their developmental needs.

The national Benchmarks, which support practitioners’ professional judgement of achievement of a level, are embedded within each of the
Progression Pathways. These are emboldened for ease of identification.

Effective use of the documentation is best supported by engaging with the whole school culture to identify how it can be
used consistently for planning and assessment purposes. Ongoing professional learning will be a core element for all
practitioners to meet the ever-evolving requirements.

In order to ensure the Pathways reflect any future changes, we recommend visiting the documentation site regularly to
check for updates or changes in resources. You can click the QR code on this page or scan it to take you to this site.

https://education.gov.scot/nih/Documents/TechnologiesBenchmarksPDF.pdf
https://education.gov.scot/Documents/Technologies-es-os.pdf
https://education.gov.scot/nih/Documents/TechnologiesBenchmarksPDF.pdf

IMPLEMENTATION

“Computer science encompasses the theory, design, development and use of computer systems. It is a broad field which includes, but is certainly not limited to,
the development of computer components, the development of computer systems and networks, and programming. Computer science makes close links with
subjects such as maths, logic and science.”

Read more about Computing Science from Barefoot here and explore their resources to support the teaching of computing science.

To support the implementation of the progression pathway, use the Fife Computing Science Progression site for exemplification of the pathway and resources
for whole setting/school planning.

See the links below for further support.

Fife Digital Learning
Visit the Fife Digital Learning site for further support on teaching computing science. This site also contains help guides and resources around the hardware and
software supported in Fife.

Education Scotland Resources
Education Scotland have produced a series of documents and resources to support computing science and they can be used alongside the Fife Computing
Science Progression. Click the links below to access the documents.
What Digital Learning Might Look Like – Early to Second Level, this exemplar has been developed to support practitioners when they are planning learning and
teaching of the digital literacy and computing science experiences and outcomes.
Computing Science from DigiLearnScot – dedicated site from Education Scotland about computing science. Also has links to professional learning on offer from
the Education Scotland Digital Learning Team.

Computing At School Scotland Guides
Computing At School Scotland have published guides to support practitioners with subject knowledge for computing science. Click the links below to access the
documents.
Teach Computing Science – a guide for Early Years and Primary practitioners
Quick Start Computing Scotland – Subject Knowledge for Primary Teachers
Quick Start Computing Scotland – Subject Knowledge covering the transition from Primary to Secondary
Teach Computing Science – a guide for Secondary practitioners

https://www.barefootcomputing.org/concept-approaches/computer-science-concepts
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/fifedigilearn/
https://education.gov.scot/media/uh2jebbs/nih158-what-digital-learning-might-look-like.pdf
https://blogs.glowscotland.org.uk/glowblogs/computingscience/
https://teachcs.scot/wp-content/uploads/2018/10/Teach-CS-Oct18.pdf
https://blogs.glowscotland.org.uk/fi/public/compsci/uploads/sites/13898/2023/07/25163955/Online-QuickStart-Scotland-Primary-brochure.pdf
https://blogs.glowscotland.org.uk/fi/public/compsci/uploads/sites/13898/2023/07/25163951/Online_QuickStart_Scotland_Transition.pdf
https://teachcs.scot/wp-content/uploads/2019/06/Secondary-Guide-to-the-CS-Organisers-Outcomes-and-Benchmarks.pdf

Computing Science Overview
Early to Fourth Level

Experiences and Outcomes Benchmarks

I can explore computational thinking processes involved in a variety
of everyday tasks and can identify patterns in objects or
information.
TCH 0-13a

• Identifies and sequences the main steps in an everyday task to create instructions/an algorithm for example, washing hands.
• Classifies objects and groups them into simple categories for examples, groups toy bricks according to colour.
• Identifies patterns, similarities and differences in objects or information such as colour, size and temperature and simple

relationships between them.

I can explore and comment on processes in the world around me
making use of core computational thinking concepts and can
organise information in a logical way.
TCH 1-13a

• Follows sequences of instructions/algorithms from everyday situations for example, recipes or directions, including those with
selection and repetition.

• Identifies steps in a process and describes precisely the effect of each step.
• Makes decisions based on logical thinking including IF, AND, OR and NOT for example, collecting balls in the gym hall but NOT

basketballs, line up if you are left-handed OR have green eyes.
• Collects, groups and orders information in a logical, organised way using my own and others‟ criteria (MNU 1-20a and b).

I understand the operation of a process and its outcome. I can
structure related items of information.
TCH 2-13a

• Compares activities consisting of a single sequence of steps with those consisting of multiple parallel steps, for example, making
tomato sauce and cooking pasta to be served at the same time.

• Identifies algorithms/instructions that include repeated groups of instructions a fixed number of times and/or loops until a
condition is met.

• Identifies when a process is not predictable because it has a random element for example, a board game which uses dice.
• Structures related items of information for example, a family tree (MNU 2- 20b).
• Uses a recognised set of instructions/ an algorithm to sort real worlds objects for examples, books in a library or trading cards.

I can describe different fundamental information processes and how
they communicate and can identify their use in solving different
problems.
TCH 3-13a

I am developing my understanding of information and can use an
information model to describe particular aspects of a real world
system. TCH 3-13b

• Recognises and describes information systems with communicating processes which occur in the world around me.
• Explains the difference between parallel processes and those that communicate with each other.
• Demonstrates an understanding of the basic principles of compression and encryption of information.
• Identifies a set of characteristics describing a collection of related items that enable each item to be individually identified.
• Identifies the use of common algorithms such as sorting and searching as part of larger processes.

I can describe in detail the processes used in real world solutions,
compare these processes against alternative solutions and justify
which is the most appropriate. TCH 4-13a

I can informally compare algorithms for correctness and efficiency.
TCH 4-13b

• Identifies the transfer of information through complex systems involving both computers and physical artefacts, for example,
airline check-in, parcel tracking and delivery.

• Describes instances of human decision making as an information process, for example, deciding which check-out queue to pick,
which route to take to school, how to prepare family dinner / a school event.

• Compares alternative algorithms for the same problem and understands that there are different ways of defining “better”
solutions depending on the problem context for example, is speed or space more valuable in this context?

Understanding the world through computational thinking

Experiences and Outcomes Benchmarks

I understand that sequences of instructions are used to control
computing technology. TCH 0-14a

I can experiment with and identify uses of a range of computing
technology in the world around me. TCH 0-14b

• Demonstrates an understanding of how symbols can represent process and information.
• Predicts what a device or person will do when presented with a sequence of instructions for example, arrows drawn on paper.
• Identifies computing devices in the world (including those hidden in appliances and objects such as automatic doors).

I understand the instructions of a visual programming language and
can predict the outcome of a program written using the language. TCH
1-14a

I understand how computers process information. TCH 1-14b

• Demonstrates an understanding of the meaning of individual instructions when using a visual programming language (including sequences, fixed repetition and
selection).

• Explains and predicts what a program in a visual programming language will do when it runs for example, what audio, visual or movement effect will result.
• Demonstrates an understanding that computers take information as input, process and store that information and output the results.

I can explain core programming language concepts in appropriate
technical language. TCH 2-14a

I understand how information is stored and how key components of
computing technology connect and interact through networks. TCH 2-
14b

• Explains the meaning of individual instructions (including variables and conditional repetition) in a visual programming language.
• Predicts what a complete program in a visual programming language will do when it runs, including how the properties of objects for example, position,

direction and appearance change as the program runs through each instruction.
• Explains and predicts how parallel activities interact.
• Demonstrates an understanding that all computer data is represented in binary for example, numbers, text, black and white graphics.
• Describes the purpose of the processor, memory and storage and the relationship between them.
• Demonstrates an understanding of how networks are connected and used to communicate and share information, for example the internet.

I understand language constructs for representing structured
Information.
TCH 3-14a

I can describe the structure and operation of computing systems
which have multiple software and hardware levels that interact with
each other. TCH 3-14b

• Understands that the same information could be represented in more than one representational system.
• Understands that different information could be represented in exactly the same representation.
• Demonstrates an understanding of structured information in programs, databases or webpages.
• Describes the effect of mark-up language on the appearance of a webpage, and understand that this may be different on different devices.
• Demonstrates an understanding of the von Neumann architecture and how machine code instructions are stored and executed within a computer system.
• Reads and explains code extracts including those with variables and data structures.
• Demonstrate an understanding of how computers communicate and share information over networks including the concepts of sender, receiver, address and

packets.
• Understands simple compression and encryption techniques used in computing technology.

I understand constructs and data structures in a textual programming
language. TCH 4-14a

I can explain the overall operation and architecture of a digitally
created solution. TCH 4-14b

I understand the relationship between high level language and the
operation of computer. TCH 4-14c

• Understands basic control constructs such as sequence, selection repetition, variables and numerical calculations in a textual language.
• Demonstrates an understanding of how visual instructions and textual instructions for the same construct are related.
• Identifies and explains syntax errors in a program written in a textual language.
• Demonstrates an understanding of representations of data structures in a textual language.
• Demonstrates an understanding of how computers represent and manipulate information in a range of formats.
• Demonstrates an understanding of program plans expressed in accepted design representations for example pseudocode, storyboarding, structure diagram,

data flow diagram, flow chart.
• Demonstrates an understanding of the underling technical concepts of some specific facets of modern complex technologies for example, online payment

systems and satnav.
• Demonstrates an understanding that computers translate information processes between different levels of abstraction.

Understanding and analysing computer technology

Experiences and Outcomes Benchmarks

I can develop a sequence of instructions and run
them using programmable devices or equivalent.
TCH 0-15a

• Designs a simple sequence of instructions/algorithm for programmable device to carry out a task for example, directional instructions:
forwards/backwards.

• Identifies and corrects errors in a set of instructions.

I can demonstrate a range of basic problem solving
skills by building simple programs to carry out a given
task, using an appropriate language.
TCH 1-15a

• Simplifies problems by breaking them down into smaller more manageable parts.
• Constructs a sequence of instructions to solve a task, explaining the expected output from each step and how each to contributes towards solving the task.
• Creates programs to carry out activities (using selection and fixed repetition) in an visual programming language.
• Identifies when a program does not do what was intended and can correct errors/bugs.
• Evaluates solutions/programs and suggests improvements.

I can create, develop and evaluate computing
solutions in response to a design challenge.
TCH 2-15a

• Creates programs in a visual programming language including variables and conditional repetition.
• Identifies patterns in problem solving and reuses aspects of previous solutions appropriately for example, reuse code for a timer, score counter or

controlling arrow keys.
• Identifies any mismatches between the task description and the programmed solution, and indicates how to fix them.

I can select appropriate development tools to design,
build, evaluate and refine computing solutions based
on requirements.
TCH 3-15a

• Designs and builds a program using a visual language combining constructs and using multiple variables.
• Represents and manipulates structured information in programs, or databases for example, works with a list data structure in a visual language, or a flat

file database.
• Interprets a problem statement, and identifies processes and information to create a physical computing and/or software solution.
• Can find and correct errors in program logic.
• Groups related instructions into named subprograms (in a visual language).
• Writes code in which there is communication between parallel processes (in a visual language).
• Writes code which receives and responds to real world inputs (in a visual language).
• Designs and builds web pages using appropriate mark-up languages.

I can select appropriate development tools to design,
build, evaluate and refine computing solutions to
process and present information whilst making
reasoned arguments to justify my decisions.
TCH 4-15a

• Analyses problem specifications across a range of contexts, identifying key requirements.
• Writes a program in a textual language which uses variables and constructs such as sequence, selection and repetition.
• Creates a design using accepted design notations for example, pseudocode storyboarding, structure diagram, data flow diagram, flow chart.
• Develops a relational database to represent structured information.
• Debugs code and can distinguish between the nature of identified errors e.g. syntax and logic.
• Writes test and evaluation reports.
• Can make use of logical operators – AND, OR, NOT.
• Writes a program in a textual language which uses variables within instructions instead of specific values where appropriate.
• Designs appropriate data structures to represent information in a textual language.
• Selects an appropriate platform on which to develop a physical and/or software solution from a requirements specification.
• Compares common algorithms for example, those for sorting and searching, and justify which would be most appropriate for a given problem.
• Design and build web pages which includes interactivity.

Designing, building and testing computing solutions

Computing Science Early Level

Early Level Computing Science
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through
computational thinking

I can explore computational
thinking processes involved
in a variety of everyday tasks
and can identify patterns
in objects or information.
TCH 0-13a

• Identifies and sequences the main steps in an everyday task to create
instructions/an algorithm for example, washing hands.

• Classifies objects and groups them into simple categories for examples,
groups toy bricks according to colour.

• Identifies patterns, similarities and differences in objects or information
such as colour, size and temperature and simple relationships between
them.

Understanding and analysing
computer technology

I understand that sequences of
instructions are used to control
computing technology. TCH 0-14a

I can experiment with and identify uses of
a range of computing technology in the
world around me. TCH 0-14b

• Demonstrates an understanding of how symbols can represent process and
information.

• Predicts what a device or person will do when presented with a sequence of
instructions for example, arrows drawn on paper.

• Identifies computing devices in the world (including those hidden in
appliances and objects such as automatic doors).

Designing, building and testing
computing solutions

I can develop a sequence of instructions
and run them using programmable
devices or equivalent. TCH 0-15a

• Designs a simple sequence of instructions/algorithm for programmable
device to carry out a task for example, directional instructions:
forwards/backwards.

• Identifies and corrects errors in a set of instructions.

Early Level Computational Thinking
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through
computational thinking

I can explore computational thinking
processes involved in a variety of
everyday task and can identify patterns
in objects or information.
TCH 0-13a

• Identifies and sequences the main steps in an everyday task to
create instructions/an algorithm for example, washing hands.

• Classifies objects and groups them into simple categories for
examples, groups toy bricks according to colour.

• Identifies patterns, similarities and differences in objects or
information such as colour, size and temperature and simple
relationships between them.

What the learning may look like in Fife Glossary of terms

• Reorganise a list of steps in a logical order to complete a task.
• Sort objects such as beads or Lego together into groups of similar colour

and size.
• When exploring sorting and identifying patterns link with Shape, Position &

Movement and Data Handling Progression Pathway.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Algorithm - A list of instructions that describe how to do a particular task
• Computational Thinking - Looking at a problem in a way that a computer

does to help us to solve it
• Direction - A course along which someone or something move
• Instructions - A single operation of a processor defined by the processor

instruction set
• Sorting – Grouping by class or kind or size

For the full glossary at Early Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/early-level-glossary/

Early Level Computational Thinking

Classifies objects and groups
them into simple categories for
examples, groups toy bricks
according to colour.

Identifies and sequences the main steps
in an everyday task to create
instructions/an algorithm for example,
washing hands.

Identifies patterns, similarities and
differences in objects or information
such as colour, size and temperature
and simple relationships between
them.

Observes and explores the order of
everyday processes in the world around me
e.g. getting dressed, making a sandwich.

Identifies what happens first,
next and last when observing
the order and sequence of
everyday processes.

Describes how objects can be
sorted e.g. by colour, size, shape
and offers other categories of
their own.

Justifies how objects have
been sorted and explains the
categories.

Sequences a series of objects or
information to match a given pattern
e.g. by size, colour, etc.

Creates and describes a pattern to sequence
a given series of objects or information.

Early Level Analysing Computing Technology
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding and analysing computer
technology

I understand that sequences of
instructions are used to control
computing technology. TCH 0-14a

I can experiment with and identify uses
of a range of computing technology in
the world around me. TCH 0-14b

• Demonstrates an understanding of how symbols can represent
process and information.

• Predicts what a device or person will do when presented with a
sequence of instructions for example, arrows drawn on paper.

• Identifies computing devices in the world (including those hidden
in appliances and objects such as automatic doors).

What the learning may look like in Fife Glossary of terms

• Create a list of common symbols throughout the school e.g. Fire Exits,
Boardmaker symbols, toilets, etc.

• Play with programmable devices such as Beebots, etc.
• Experience giving and following instructions, e.g. using songs, PE

activities, daily routines.
• Create a tinker area within the classroom that learners can explore

technology through free play.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Instructions - A single operation of a processor defined by the processor
instruction set

• Internet of Things - A network of internet-connected devices such as fridge
freezers/smartphones/medical devices all able to collect and exchange data
using embedded sensor

• Process - An instance of a computer program that is being run

For the full glossary at Early Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/early-level-glossary/

Early Level Analysing Computing Technology

Predicts what a device or person will
do when presented with a sequence of
instructions for example, arrows drawn
on paper.

Demonstrates an understanding of
how symbols can represent process
and information.

Identifies computing devices in the
world (including those hidden in
appliances and objects such as
automatic doors).

Discusses why symbols are important e.g. in
school and the world around me.

Identifies symbols and signs in the school
environment e.g. the toilet, coat pegs,
classrooms.

Explores how symbols are used to control
technology e.g. on a phone, programmable
device, computer, etc.

Creates instructions and follows a
sequence of using arrows.

Early Level Designing, Building and Testing
Curriculum Organiser Experiences and Outcomes Benchmarks

Designing, building and testing computing
solutions

I can develop a sequence of instructions
and run them using programmable
devices or equivalent. TCH 0-15a

• Designs a simple sequence of instructions/algorithm for
programmable device to carry out a task for example, directional
instructions: forwards/backwards.

• Identifies and corrects errors in a set of instructions.

What the learning may look like in Fife Glossary of terms

• Play with programmable devices such as Beebots, etc.
• Use cards/printed symbols/written symbols to design an algorithm.
• Environmental displays to share vocabulary.
• When creating algorithms and giving instructions link with Shape,

Position & Movement Progression Pathway.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and
resources.

• Algorithm - A list of instructions that describe how to do a particular task
• Direction - A course along which someone or something move
• Instructions - A single operation of a processor defined by the processor

instruction set

For the full glossary at Early Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/early-level-glossary/

Early Level Designing, Building and Testing

Designs a simple sequence of
instructions/algorithm for
programmable device to carry out a
task for example, directional
instructions: forwards/backwards.

Identifies and corrects errors in a set of
instructions.Designs a simple algorithm

describing a regular route e.g. how
to navigate around the
school/playground

Uses vocabulary such as forward,
backward, turn, left and right in
play and when giving instructions.

Recognises that directional instructions
are affected by the orientation of the
device/person carrying them out.

Explains the importance of testing
an algorithm

Demonstrates resilience when experiencing
challenge during a testing phase.

Explores the designing, building and testing processes when creating an algorithm.

Computing Science First Level

First Level Computing Science
Curriculum
Organiser

Experiences and Outcomes Benchmarks

Understanding
the world through
computational
thinking

I can explore and comment on
processes in the world around
me making use of core
computational
thinking concepts and can
organise information in a logical
way. TCH 1-13a

• Follows sequences of instructions/algorithms from everyday situations for example, recipes or
directions, including those with selection and repetition.

• Identifies steps in a process and describes precisely the effect of each step.
• Makes decisions based on logical thinking including IF, AND, OR and NOT for example, collecting balls in

the gym hall but NOT basketballs, line up if you are left-handed OR have green eyes.
• Collects, groups and orders information in a logical, organised way using my own and others‟ criteria

(MNU 1-20a and b).

Understanding
and analysing
computer
technology

I understand the instructions of
a visual programming language
and can predict the outcome of
a program written using the
language. TCH 1-14a

I understand how computers
process information. TCH 1-14b

• Demonstrates an understanding of the meaning of individual instructions when using a visual
programming language (including sequences, fixed repetition and selection).

• Explains and predicts what a program in a visual programming language will do when it runs for
example, what audio, visual or movement effect will result.

• Demonstrates an understanding that computers take information as input, process and store that
information and output the results.

Designing,
building and
testing computing
solutions

I can demonstrate a range of
basic problem solving skills by
building simple programs to
carry out a given task, using an
appropriate language.
TCH 1-15a

• Simplifies problems by breaking them down into smaller more manageable parts.
• Constructs a sequence of instructions to solve a task, explaining the expected output from each step

and how each to contributes towards solving the task.
• Creates programs to carry out activities (using selection and fixed repetition) in an visual programming

language.
• Identifies when a program does not do what was intended and can correct errors/bugs.
• Evaluates solutions/programs and suggests improvements.

First Level Computational Thinking
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through
computational thinking

I can explore and comment on
processes in the world around me
making use of core computational
thinking concepts and can organise
information in a logical way. TCH 1-13a

• Follows sequences of instructions/algorithms from everyday
situations for example, recipes or directions, including those with
selection and repetition.

• Identifies steps in a process and describes precisely the effect of
each step.

• Makes decisions based on logical thinking including IF, AND, OR
and NOT for example, collecting balls in the gym hall but NOT
basketballs, line up if you are left-handed OR have green eyes.

• Collects, groups and orders information in a logical, organised
way using my own and others’ criteria (MNU 1-20a and b).

What the learning may look like in Fife Glossary of terms

• Reading code and describing what will happen at each step.
• Experience of following instructions with recipes, Scottish Country Dancing,

during lessons, etc.
• Use IF, THEN, ELSE, AND, OR , NOT expressions using both code and real-life

examples e.g. IF it is raining OR snowing, THEN wear wellies outside, ELSE
wear shoes.

• Carry out sorting activities to develop classification skills.
• When exploring sorting and identifying patterns link with Shape, Position &

Movement and Data Handling Progression Pathway.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Abstraction - Simplifying things; identifying what is important without
worrying too much about the detail. Abstraction allows us to manage
complexity

• Selection - A programming construct in which one section of code or
another is executed depending on whether a particular condition is met

• Sequence - Arrange things in a particular order (computer programs are built
up of sequences of instructions)

For the full glossary at First Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/first-level-glossary/

First Level Computational Thinking

Follows sequences of instructions/algorithms
from everyday situations for example, recipes
or directions, including those with selection
and repetition.

Makes decisions based on logical thinking
including IF, AND, OR and NOT for example,
collecting balls in the gym hall but NOT
basketballs, line up if you are left-handed
OR have green eyes.

Collects, groups and orders information
in a logical, organised way using my own
and others’ criteria (MNU 1-20a and b).

Identifies steps in a process and describes
precisely the effect of each step.

Sorts and classifies a group of items by
asking simple yes / no questions.

Explores how to read code as part of a sequence.

Explains why processes must be carried
out in a specific order.

Identifies when steps are repeated
and explores how to use loops to
represent repetition.

Identifies when steps require a
decision and explores how this can be
represented by using IF, AND, OR,
ELSE, THEN and NOT.

Sorts and classifies a group of items in
different ways to meet different conditions
e.g. colour, size.

First Level Analysing Computing Technology
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding and analysing computer
technology

I understand the instructions of a visual
programming language and can predict
the outcome of a program written using
the language. TCH 1-14a

I understand how computers process
information. TCH 1-14b

• Demonstrates an understanding of the meaning of individual
instructions when using a visual programming language (including
sequences, fixed repetition and selection).

• Explains and predicts what a program in a visual programming
language will do when it runs for example, what audio, visual or
movement effect will result.

• Demonstrates an understanding that computers take information
as input, process and store that information and output the
results.

What the learning may look like in Fife Glossary of terms

• Play with programmable devices such as Beebots, etc.
• Experience giving and following instructions, e.g. using songs, PE

activities, daily routines.
• Use visual programming languages such as ScratchJr and Scratch to read

and build algorithms.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Input - Data transferred from the outside world into a computer system via
some kind of input device such as a keyboard, scanner or storage device

• Output - The data actively transmitted from within the computer to an
external device such as a monitor, storage device or printer

• Predict – To make known in advance
• Process - An instance of a computer program that is being run
• Selection - A programming construct in which one section of code or

another is executed depending on whether a particular condition is met

For the full glossary at First Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/first-level-glossary/

First Level Analysing Computing Technology

Explains and predicts what a program
in a visual programming language will
do when it runs for example, what
audio, visual or movement effect will
result.

Demonstrates an understanding of the
meaning of individual instructions
when using a visual programming
language (including sequences, fixed
repetition and selection).

Demonstrates an understanding that
computers take information as input,
process and store that information and
output the results.

Explores the difference between
inputs and outputs.Explores the output of selection in algorithms.

Explores how to read code as part of an algorithm.

Explores the output of fixed repetition in algorithms.

Explores the output of sequences in algorithms.

First Level Designing, Building and Testing
Curriculum Organiser Experiences and Outcomes Benchmarks

Designing, building and testing computing
solutions

I can demonstrate a range of basic
problem solving skills by building simple
programs to carry out a given task,
using an appropriate language.
TCH 1-15a

• Simplifies problems by breaking them down into smaller more
manageable parts.

• Constructs a sequence of instructions to solve a task, explaining
the expected output from each step and how each to contributes
towards solving the task.

• Creates programs to carry out activities (using selection and fixed
repetition) in a visual programming language.

• Identifies when a program does not do what was intended and
can correct errors/bugs.

• Evaluates solutions/programs and suggests improvements.

What the learning may look like in Fife Glossary of terms

• Play with programmable devices such as Beebots, etc.
• Create algorithms for different purposes e.g. solving problems, creating

games, creating animations etc.
• When creating algorithms and giving instructions link with Shape,

Position & Movement Progression Pathway.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Abstraction - Simplifying things; identifying what is important without worrying
too much about the detail. Abstraction allows us to manage complexity

• Debugging - Errors in algorithms and code are called ‘bugs’, and the process of
finding and fixing these is called debugging

• Decomposing/Decomposition - Breaking problems or systems down into
smaller, more manageable parts making it easier to manage complexity

For the full glossary at First Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/first-level-glossary/

First Level Designing, Building and Testing

Simplifies problems by breaking them
down into smaller more manageable
parts.

Constructs a sequence of instructions to
solve a task, explaining the expected
output from each step and how each to
contributes towards solving the task.

Uses vocabulary such as decomposition
and debugging to explain how problems
and programs are solved and edited.

Evaluates solutions/programs and
suggests improvements.

Identifies when a program does not do
what was intended and can correct
errors/bugs.

Creates programs to carry out activities
(using selection and fixed repetition) in a
visual programming language.

Explores the designing, building and testing processes when creating an algorithm.

Explores using fixed repetition in algorithms
and identifies how these appear in different
visual programming languages.

Explores using selection in algorithms and
identifies how these appear in different
visual programming languages.

Demonstrates resilience when experiencing
challenge during a testing phase.

Computing Science Second Level

Second Level Computing Science
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the
world through
computational
thinking

I understand the operation
of a process and its outcome.
I can structure related items
of information. TCH 2-13a

• Compares activities consisting of a single sequence of steps with those consisting of multiple parallel steps, for
example, making tomato sauce and cooking pasta to be served at the same time.

• Identifies algorithms/instructions that include repeated groups of instructions a fixed number of times and/or
loops until a condition is met.

• Identifies when a process is not predictable because it has a random element for example, a board game
which uses dice.

• Structures related items of information for example, a family tree (MNU 2- 20b).
• Uses a recognised set of instructions/ an algorithm to sort real worlds objects for examples, books in a library

or trading cards.

Understanding and
analysing computer
technology

I can explain core programming
language concepts in
appropriate technical language.
TCH 2-14a

I understand how information is
stored and how key
components of computing
technology connect and
interact through networks. TCH
2-14b

• Explains the meaning of individual instructions (including variables and conditional repetition) in a visual
programming language.

• Predicts what a complete program in a visual programming language will do when it runs, including how the
properties of objects for example, position, direction and appearance change as the program runs through
each instruction.

• Explains and predicts how parallel activities interact.
• Demonstrates an understanding that all computer data is represented in binary for example, numbers, text,

black and white graphics.
• Describes the purpose of the processor, memory and storage and the relationship between them.
• Demonstrates an understanding of how networks are connected and used to communicate and share

information, for example the internet.

Designing, building
and testing computing
solutions

I can create, develop and
evaluate computing solutions in
response to a design challenge.
TCH 2-15a

• Creates programs in a visual programming language including variables and conditional repetition.
• Identifies patterns in problem solving and reuses aspects of previous solutions appropriately for example,

reuse code for a timer, score counter or controlling arrow keys.
• Identifies any mismatches between the task description and the programmed solution, and indicates how to

fix them.

Second Level Computational Thinking
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through computational
thinking

I understand the operation of a process
and its outcome. I can structure related
items of information. TCH 2-13a

• Compares activities consisting of a single sequence of steps with those
consisting of multiple parallel steps, for example, making tomato sauce
and cooking pasta to be served at the same time.

• Identifies algorithms/instructions that include repeated groups of
instructions a fixed number of times and/or loops until a condition is
met.

• Identifies when a process is not predictable because it has a random
element for example, a board game which uses dice.

• Structures related items of information for example, a family tree
(MNU 2- 20b).

• Uses a recognised set of instructions/ an algorithm to sort real worlds
objects for examples, books in a library or trading cards.

What the learning may look like in Fife Glossary of terms

• Reading code and describing what will happen at each step.
• Experience of following instructions with recipes, Scottish Country Dancing,

during lessons, etc.
• Create a data structure to identify the relationship between items e.g. a

family tree, library books, types of vehicles.
• When exploring sorting and identifying patterns link with Shape, Position &

Movement and Data Handling Progression Pathway.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Forever Loop (Infinite) - A piece of code that will run continuously until the
program ends as it does not have a functional exit

• Nested Loop – A loop within a loop
• Parallel Process - Multiple processes all running at the same time

(simultaneously)
• Predict – To make known in advance
• Simultaneous – At the same time

For the full glossary at Second Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/second-level-glossary/

Second Level Computational Thinking

Identifies when a process is not
predictable because it has a random
element for example, a board game
which uses dice.

Structures related items of
information for example, a family
tree (MNU 2- 20b).

Uses a recognised set of instructions/ an
algorithm to sort real worlds objects for
examples, books in a library or trading
cards.

Compares activities consisting of a single sequence of
steps with those consisting of multiple parallel steps, for
example, making tomato sauce and cooking pasta to be
served at the same time.

Identifies algorithms/instructions that include repeated groups of
instructions a fixed number of times and/or loops until a
condition is met.

Creates an algorithm that will sort objects
into a specific order.Predicts the outcome of algorithms/

instructions that include repeated groups of
instructions.

Explains why some instructions consist of a single sequence of steps running
one after the other compared with others that will have parallel processes
to carry out more than one activity at the same time.

Identifies several ways that data or objects
can be structured and how they differ
from each other i.e. books in a library/
house numbers and postcodes.

Predicts, interprets and discusses data sorting
results.

Explores activities that require single steps and
multiple parallel steps e.g. everyday activities
such as getting dressed, cooking.

Identifies the part of a given algorithm
responsible for the creation of a random
element/variable.

Second Level Analysing Computing Technology
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding and analysing computer
technology

I can explain core programming language
concepts in appropriate technical
language. TCH 2-14a

I understand how information is stored and
how key components of computing
technology connect and interact through
networks. TCH 2-14b

• Explains the meaning of individual instructions (including variables and
conditional repetition) in a visual programming language.

• Predicts what a complete program in a visual programming language
will do when it runs, including how the properties of objects for
example, position, direction and appearance change as the program
runs through each instruction.

• Explains and predicts how parallel activities interact.
• Demonstrates an understanding that all computer data is represented

in binary for example, numbers, text, black and white graphics.
• Describes the purpose of the processor, memory and storage and the

relationship between them.
• Demonstrates an understanding of how networks are connected and

used to communicate and share information, for example the internet.

What the learning may look like in Fife Glossary of terms

• Use visual programming languages such as Scratch and MakeCode to read
and build algorithms.

• Look at different manufacturers e.g. Intel, AMD, Nvidia, etc. and where
these products are found throughout the school devices.

• Resources such as Hello Ruby to explore computer components.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Binary (code) - A coding system using the binary digits 0 and 1 to represent
a letter, digit, or other character in a computer or other electronic device

• Boolean - Boolean logic is a form of algebra in which all values are reduced
to either TRUE or FALSE

• IP Address - A computer's unique address e.g.192.168.0.127 - This address
is used by computers to communicate across a network

• Network - Two or more computers connected for the purpose of storing,
sharing, and managing data i.e. the internet

For the full glossary at Second Level, click here.

https://www.helloruby.com/
https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/second-level-glossary/

Second Level Analysing Computing Technology

Explains the meaning of individual
instructions (including variables and
conditional repetition) in a visual
programming language.

Explains and predicts how parallel
activities interact.

Predicts what a complete program in a visual
programming language will do when it runs, including
how the properties of objects for example, position,
direction and appearance change as the program runs
through each instruction.

Demonstrates an understanding of different types
of loops used in programming and when they
would be required i.e. forever/conditional/ count
controlled.

Explores variables and when
they would be used to achieve a
required output.

Uses correct vocabulary to describe parts of a
computer e.g. motherboard, CPU, RAM, VRAM.

Explain what Boolean logic is and identify
what the operators are.

Demonstrates an understanding that all computer data is represented
in binary for example, numbers, text, black and white graphics.

Describes the purpose of the
processor, memory and storage and
the relationship between them.

Demonstrates an understanding of
how networks are connected and used
to communicate and share
information, for example the internet.

Explores how computers communicate over a network
and identifies key network hardware devices.

Compares the performance of computer components
from different devices and how this affects their
usage e.g. the CPU within a netbook versus within a PC.

Second Level Designing, Building and Testing
Curriculum Organiser Experiences and Outcomes Benchmarks

Designing, building and testing computing
solutions

I can create, develop and evaluate
computing solutions in response to a
design challenge. TCH 2-15a

• Creates programs in a visual programming language including
variables and conditional repetition.

• Identifies patterns in problem solving and reuses aspects of
previous solutions appropriately for example, reuse code for a
timer, score counter or controlling arrow keys.

• Identifies any mismatches between the task description and the
programmed solution, and indicates how to fix them.

What the learning may look like in Fife Glossary of terms

• Play with programmable devices to explore more complex
programs involving movement and other actions.

• Create algorithms for different purposes e.g. solving problems,
creating games, creating animations etc.

• When creating algorithms and giving instructions link with
Shape, Position & Movement Progression Pathway.

• Pose questions to an individual within an IT profession about a
design challenge they have had to tackle and how they dealt
with this.

• Use resources from Barefoot Computing to support exploration
of Computing Science.

Visit the Computing Science Progression site for further ideas and
resources.

• Glitch - A sudden, usually temporary malfunction or fault of equipment or computer
program

• Predict – To make known in advance
• Sprite - An icon in a computer game which can be manoeuvred around the screen by

means of a joystick, etc.

For the full glossary at Second Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/second-level-glossary/

Second Level Designing, Building and Testing

Creates programs in a visual
programming language including
variables and conditional repetition.

Identifies patterns in problem solving
and reuses aspects of previous
solutions appropriately for example,
reuse code for a timer, score counter or
controlling arrow keys.

Designs and plans programs for a game,
story/animation, webpage or programmable device
before attempting to create these.

Identifies any mismatches between the
task description and the programmed
solution, and indicates how to fix them.

Deconstructs a problem into smaller steps and
recognise how they may be similar to previous
problems.

Uses logical reasoning to detect problems in an
algorithm and use problem solving skills to resolve
any issues.

Demonstrates resilience when experiencing
challenge during a testing phase.

Tests and evaluates a program created in
response to given criteria in a design
challenge.

Computing Science Third Level

Third Level Computing Science
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the
world through
computational thinking

I can describe different fundamental
information processes and how they
communicate and can identify their use
in solving different problems. TCH 3-13a

I am developing my understanding of
information and can use an information
model to describe particular aspects of a
real world system. TCH 3-13b

• Recognises and describes information systems with communicating processes which occur in the world around me.
• Explains the difference between parallel processes and those that communicate with each other.
• Demonstrates an understanding of the basic principles of compression and encryption of information.
• Identifies a set of characteristics describing a collection of related items that enable each item to be individually

identified.
• Identifies the use of common algorithms such as sorting and searching as part of larger processes.

Understanding and
analysing computer
technology

I understand language constructs for
representing structured Information.
TCH 3-14a

I can describe the structure and
operation of computing systems which
have multiple software and hardware
levels that interact with each other.
TCH 3-14b

• Understands that the same information could be represented in more than one representational system.
• Understands that different information could be represented in exactly the same representation.
• Demonstrates an understanding of structured information in programs, databases or webpages.
• Describes the effect of mark-up language on the appearance of a webpage, and understand that this may be

different on different devices.
• Demonstrates an understanding of the von Neumann architecture and how machine code instructions are stored

and executed within a computer system.
• Reads and explains code extracts including those with variables and data structures.
• Demonstrate an understanding of how computers communicate and share information over networks including the

concepts of sender, receiver, address and packets.
• Understands simple compression and encryption techniques used in computing technology.

Designing, building and
testing computing
solutions

I can select appropriate development
tools to design, build, evaluate and
refine computing solutions based on
requirements.
TCH 3-15a

• Designs and builds a program using a visual language combining constructs and using multiple variables.
• Represents and manipulates structured information in programs, or databases for example, works with a list data

structure in a visual language, or a flat file database.
• Interprets a problem statement, and identifies processes and information to create a physical computing and/or

software solution.
• Can find and correct errors in program logic.
• Groups related instructions into named subprograms (in a visual language).
• Writes code in which there is communication between parallel processes (in a visual language).
• Writes code which receives and responds to real world inputs (in a visual language).
• Designs and builds web pages using appropriate mark-up languages.

Third Level Computational Thinking
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through
computational thinking

I can describe different fundamental
information processes and how they
communicate and can identify their use
in solving different problems. TCH 3-13a

I am developing my understanding of
information and can use an information
model to describe particular aspects of
a real world system. TCH 3-13b

• Recognises and describes information systems with
communicating processes which occur in the world around me.

• Explains the difference between parallel processes and those that
communicate with each other.

• Demonstrates an understanding of the basic principles of
compression and encryption of information.

• Identifies a set of characteristics describing a collection of related
items that enable each item to be individually identified.

• Identifies the use of common algorithms such as sorting and
searching as part of larger processes.

What the learning may look like in Fife Glossary of terms

Visit the Computing Science Progression site for further ideas and resources.
For the full glossary at Early Level, click here.

https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/digital/glossary/early-level-glossary/

Third Level Computational Thinking

Recognises and describes information
systems with communicating processes
which occur in the world around me.

Explains the difference between
parallel processes and those that
communicate with each other.

Demonstrates an understanding of the
basic principles of compression and
encryption of information.

Identifies the use of common
algorithms such as sorting and
searching as part of larger
processes.

Identifies a set of characteristics
describing a collection of related items
that enable each item to be individually
identified.

Tiles to support

Third Level Analysing Computing Technology
Curriculum Organiser Experiences and Outcomes Benchmarks
Understanding and analysing computer technology I understand language constructs for

representing structured Information.
TCH 3-14a

I can describe the structure and operation of
computing systems which have multiple
software and hardware levels that interact
with each other. TCH 3-14b

• Understands that the same information could be represented in more than
one representational system.

• Understands that different information could be represented in exactly the
same representation.

• Demonstrates an understanding of structured information in programs,
databases or webpages.

• Describes the effect of mark-up language on the appearance of a webpage,
and understand that this may be different on different devices.

• Demonstrates an understanding of the von Neumann architecture and how
machine code instructions are stored and executed within a computer
system.

• Reads and explains code extracts including those with variables and data
structures.

• Demonstrate an understanding of how computers communicate and share
information over networks including the concepts of sender, receiver,
address and packets.

• Understands simple compression and encryption techniques used in
computing technology.

What the learning may look like in Fife Glossary of terms

Visit the Computing Science Progression site for further ideas and resources. For the full glossary at Early Level, click here.

https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/digital/glossary/early-level-glossary/

Third Level Analysing Computing Technology

Understands that different information
could be represented in exactly the
same representation.

Understands that the same
information could be represented in
more than one representational
system.

Demonstrates an understanding of
structured information in programs,
databases or webpages.

Tiles to support
Understands simple compression and
encryption techniques used in
computing technology.

Demonstrate an understanding of how
computers communicate and share
information over networks including
the concepts of sender, receiver,
address and packets.

Reads and explains code extracts
including those with variables and data
structures.

Demonstrates an understanding of the
von Neumann architecture and how
machine code instructions are stored
and executed within a computer
system.

Describes the effect of mark-up
language on the appearance of a
webpage, and understand that this
may be different on different devices.

Third Level Designing, Building and Testing
Curriculum Organiser Experiences and Outcomes Benchmarks
Designing, building and testing computing solutions I can select appropriate development tools to

design, build, evaluate and refine computing
solutions based on requirements.
TCH 3-15a

• Designs and builds a program using a visual language combining constructs
and using multiple variables.

• Represents and manipulates structured information in programs, or
databases for example, works with a list data structure in a visual language,
or a flat file database.

• Interprets a problem statement, and identifies processes and information to
create a physical computing and/or software solution.

• Can find and correct errors in program logic.
• Groups related instructions into named subprograms (in a visual language).
• Writes code in which there is communication between parallel processes (in

a visual language).
• Writes code which receives and responds to real world inputs (in a visual

language).
• Designs and builds web pages using appropriate mark-up languages.

What the learning may look like in Fife Glossary of terms

Visit the Computing Science Progression site for further ideas and
resources.

For the full glossary at Early Level, click here.

https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/digital/glossary/early-level-glossary/

Third Level Designing, Building and Testing

Designs and builds a program using a
visual language combining constructs
and using multiple variables.

Represents and manipulates structured
information in programs, or databases
for example, works with a list data
structure in a visual language, or a flat
file database.

Tiles to support Writes code in which there is
communication between parallel
processes (in a visual language).

Groups related instructions into named
subprograms (in a visual language).

Can find and correct errors in program
logic.

Interprets a problem statement, and
identifies processes and information to
create a physical computing and/or
software solution.

Designs and builds web pages using
appropriate mark-up languages.

Writes code which receives and
responds to real world inputs (in a
visual language).

Computing Science Fourth Level

Fourth Level Computing Science
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world
through computational
thinking

I can describe in detail the processes used
in real world solutions, compare these
processes against alternative solutions
and justify which is the most appropriate.
TCH 4-13a

I can informally compare algorithms for
correctness and efficiency. TCH 4-13b

• Identifies the transfer of information through complex systems involving both computers and physical artefacts, for example, airline
check-in, parcel tracking and delivery.

• Describes instances of human decision making as an information process, for example, deciding which check-out queue to pick, which
route to take to school, how to prepare family dinner / a school event.

• Compares alternative algorithms for the same problem and understands that there are different ways of defining “better” solutions
depending on the problem context for example, is speed or space more valuable in this context?

Understanding and
analysing computer
technology

I understand constructs and data
structures in a textual programming
language. TCH 4-14a

I can explain the overall operation and
architecture of a digitally created solution.
TCH 4-14b

I understand the relationship between
high level language and the operation of
computer. TCH 4-14c

• Understands basic control constructs such as sequence, selection repetition, variables and numerical calculations in a textual language.
• Demonstrates an understanding of how visual instructions and textual instructions for the same construct are related.
• Identifies and explains syntax errors in a program written in a textual language.
• Demonstrates an understanding of representations of data structures in a textual language.
• Demonstrates an understanding of how computers represent and manipulate information in a range of formats.
• Demonstrates an understanding of program plans expressed in accepted design representations for example pseudocode,

storyboarding, structure diagram, data flow diagram, flow chart.
• Demonstrates an understanding of the underling technical concepts of some specific facets of modern complex technologies for

example, online payment systems and satnav.
• Demonstrates an understanding that computers translate information processes between different levels of abstraction.

Designing, building and
testing computing
solutions

I can select appropriate development
tools to design, build, evaluate and refine
computing solutions to process and
present information whilst making
reasoned arguments to justify my
decisions. TCH 4-15a

• Analyses problem specifications across a range of contexts, identifying key requirements.
• Writes a program in a textual language which uses variables and constructs such as sequence, selection and repetition.
• Creates a design using accepted design notations for example, pseudocode storyboarding, structure diagram, data flow diagram, flow

chart.
• Develops a relational database to represent structured information.
• Debugs code and can distinguish between the nature of identified errors e.g. syntax and logic.
• Writes test and evaluation reports.
• Can make use of logical operators – AND, OR, NOT.
• Writes a program in a textual language which uses variables within instructions instead of specific values where appropriate.
• Designs appropriate data structures to represent information in a textual language.
• Selects an appropriate platform on which to develop a physical and/or software solution from a requirements specification.
• Compares common algorithms for example, those for sorting and searching, and justify which would be most appropriate for a given

problem.
• Design and build web pages which includes interactivity.

Fourth Level Computational Thinking
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through computational
thinking

I can describe in detail the processes used in
real world solutions, compare these processes
against alternative solutions and justify which
is the most appropriate. TCH 4-13a

I can informally compare algorithms for
correctness and efficiency. TCH 4-13b

• Identifies the transfer of information through complex systems involving
both computers and physical artefacts, for example, airline check-in, parcel
tracking and delivery.

• Describes instances of human decision making as an information process, for
example, deciding which check-out queue to pick, which route to take to
school, how to prepare family dinner / a school event.

• Compares alternative algorithms for the same problem and understands that
there are different ways of defining “better” solutions depending on the
problem context for example, is speed or space more valuable in this
context?

What the learning may look like in Fife Glossary of terms

Visit the Computing Science Progression site for further ideas and resources. For the full glossary at Early Level, click here.

https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/digital/glossary/early-level-glossary/

Fourth Level Computational Thinking

Identifies the transfer of information
through complex systems involving both
computers and physical artefacts, for
example, airline check-in, parcel tracking
and delivery.

Describes instances of human
decision making as an
information process, for example,
deciding which check-out queue
to pick, which route to take to
school, how to prepare family
dinner / a school event.

Compares alternative algorithms for the
same problem and understands that
there are different ways of defining
“better” solutions depending on the
problem context for example, is speed or
space more valuable in this context?

Tiles to support

Fourth Level Analysing Computing Technology
Curriculum Organiser Experiences and Outcomes Benchmarks
Understanding and analysing computer technology I understand constructs and data structures in a

textual programming language. TCH 4-14a

I can explain the overall operation and architecture of
a digitally created solution. TCH 4-14b

I understand the relationship between high level
language and the operation of computer. TCH 4-14c

• Understands basic control constructs such as sequence, selection repetition, variables
and numerical calculations in a textual language.

• Demonstrates an understanding of how visual instructions and textual instructions for
the same construct are related.

• Identifies and explains syntax errors in a program written in a textual language.
• Demonstrates an understanding of representations of data structures in a textual

language.
• Demonstrates an understanding of how computers represent and manipulate

information in a range of formats.
• Demonstrates an understanding of program plans expressed in accepted design

representations for example pseudocode, storyboarding, structure diagram, data flow
diagram, flow chart.

• Demonstrates an understanding of the underling technical concepts of some specific
facets of modern complex technologies for example, online payment systems and
satnav.

• Demonstrates an understanding that computers translate information processes
between different levels of abstraction.

What the learning may look like in Fife Glossary of terms

Visit the Computing Science Progression site for further ideas and resources. For the full glossary at Early Level, click here.

https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/digital/glossary/early-level-glossary/

Fourth Level Analysing Computing Technology

Demonstrates an understanding of
how visual instructions and textual
instructions for the same construct are
related.

Understands basic control constructs
such as sequence, selection repetition,
variables and numerical calculations in
a textual language.

Identifies and explains syntax errors in
a program written in a textual
language.

Tiles to support
Demonstrates an understanding that
computers translate information
processes between different levels of
abstraction.

Demonstrates an understanding of the
underling technical concepts of some
specific facets of modern complex
technologies for example, online
payment systems and satnav.

Demonstrates an understanding of
program plans expressed in accepted
design representations for example
pseudocode, storyboarding, structure
diagram, data flow diagram, flow
chart.

Demonstrates an understanding of
representations of data structures in a
textual language.

Fourth Level Designing, Building and Testing
Curriculum Organiser Experiences and Outcomes Benchmarks
Designing, building and testing
computing solutions

I can select appropriate development tools to design, build, evaluate
and refine computing solutions to process and present information
whilst making reasoned arguments to justify my decisions. TCH 4-
15a

• Analyses problem specifications across a range of contexts, identifying key requirements.
• Writes a program in a textual language which uses variables and constructs such as sequence,

selection and repetition.
• Creates a design using accepted design notations for example, pseudocode storyboarding,

structure diagram, data flow diagram, flow chart.
• Develops a relational database to represent structured information.
• Debugs code and can distinguish between the nature of identified errors e.g. syntax and logic.
• Writes test and evaluation reports.
• Can make use of logical operators – AND, OR, NOT.
• Writes a program in a textual language which uses variables within instructions instead of

specific values where appropriate.
• Designs appropriate data structures to represent information in a textual language.
• Selects an appropriate platform on which to develop a physical and/or software solution from

a requirements specification.
• Compares common algorithms for example, those for sorting and searching, and justify which

would be most appropriate for a given problem.
• Design and build web pages which includes interactivity.

What the learning may look like in Fife Glossary of terms

Visit the Computing Science Progression site for further ideas and
resources.

For the full glossary at Early Level, click here.

https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/digital/glossary/early-level-glossary/

Fourth Level Designing, Building and Testing

Analyses problem specifications across
a range of contexts, identifying key
requirements.

Writes a program in a textual language
which uses variables and constructs
such as sequence, selection and
repetition.

Tiles to support

Writes test and evaluation reports.

Debugs code and can distinguish
between the nature of identified errors
e.g. syntax and logic.

Develops a relational database to
represent structured information.

Creates a design using accepted design
notations for example, pseudocode
storyboarding, structure diagram, data
flow diagram, flow chart.

Can make use of logical operators –
AND, OR, NOT.

Writes a program in a textual language
which uses variables within
instructions instead of specific values
where appropriate.

Design and build web pages which
includes interactivity.

Compares common algorithms for
example, those for sorting and
searching, and justify which would be
most appropriate for a given problem.

Selects an appropriate platform on
which to develop a physical and/or
software solution from a requirements
specification.

Designs appropriate data structures to
represent information in a textual
language.

