
Computing Science Second Level



Second Level Computing Science
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the 
world through 
computational 
thinking

I understand the operation
of a process and its outcome.
I can structure related items
of information. TCH 2-13a

• Compares activities consisting of a single sequence of steps with those consisting of multiple parallel steps, for 
example, making tomato sauce and cooking pasta to be served at the same time.

• Identifies algorithms/instructions that include repeated groups of instructions a fixed number of times and/or 
loops until a condition is met.

• Identifies when a process is not predictable because it has a random element for example, a board game 
which uses dice.

• Structures related items of information for example, a family tree (MNU 2- 20b).
• Uses a recognised set of instructions/ an algorithm to sort real worlds objects for examples, books in a library 

or trading cards.

Understanding and 
analysing computer 
technology

I can explain core programming 
language concepts in 
appropriate technical language. 
TCH 2-14a 

I understand how information is 
stored and how key 
components of computing 
technology connect and 
interact through networks. TCH 
2-14b

• Explains the meaning of individual instructions (including variables and conditional repetition) in a visual 
programming language.

• Predicts what a complete program in a visual programming language will do when it runs, including how the 
properties of objects for example, position, direction and appearance change as the program runs through 
each instruction.

• Explains and predicts how parallel activities interact.
• Demonstrates an understanding that all computer data is represented in binary for example, numbers, text, 

black and white graphics. 
• Describes the purpose of the processor, memory and storage and the relationship between them.
• Demonstrates an understanding of how networks are connected and used to communicate and share 

information, for example the internet.

Designing, building 
and testing computing 
solutions

I can create, develop and 
evaluate computing solutions in 
response to a design challenge. 
TCH 2-15a 

• Creates programs in a visual programming language including variables and conditional repetition. 
• Identifies patterns in problem solving and reuses aspects of previous solutions appropriately for example, 

reuse code for a timer, score counter or controlling arrow keys. 
• Identifies any mismatches between the task description and the programmed solution, and indicates how to 

fix them.



Second Level Computational Thinking
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through computational 
thinking

I understand the operation of a process 
and its outcome. I can structure related 
items of information. TCH 2-13a

• Compares activities consisting of a single sequence of steps with those 
consisting of multiple parallel steps, for example, making tomato sauce 
and cooking pasta to be served at the same time.

• Identifies algorithms/instructions that include repeated groups of 
instructions a fixed number of times and/or loops until a condition is 
met.

• Identifies when a process is not predictable because it has a random 
element for example, a board game which uses dice.

• Structures related items of information for example, a family tree 
(MNU 2- 20b).

• Uses a recognised set of instructions/ an algorithm to sort real worlds 
objects for examples, books in a library or trading cards.

What the learning may look like in Fife Glossary of terms

• Reading code and describing what will happen at each step.
• Experience of following instructions with recipes, Scottish Country Dancing, 

during lessons, etc.
• Create a data structure to identify the relationship between items e.g. a 

family tree, library books, types of vehicles.
• When exploring sorting and identifying patterns link with Shape, Position & 

Movement and Data Handling Progression Pathway.
• Use resources from Barefoot Computing to support exploration of 

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Forever Loop (Infinite) - A piece of code that will run continuously until the 
program ends as it does not have a functional exit 

• Nested Loop – A loop within a loop
• Parallel Process - Multiple processes all running at the same time 

(simultaneously) 
• Predict – To make known in advance
• Simultaneous – At the same time

For the full glossary at Second Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/second-level-glossary/


Second Level Computational Thinking

Identifies when a process is not 
predictable because it has a random 
element for example, a board game 
which uses dice.

Structures related items of 
information for example, a family 
tree (MNU 2- 20b).

Uses a recognised set of instructions/ an 
algorithm to sort real worlds objects for 
examples, books in a library or trading 
cards.

Compares activities consisting of a single sequence of 
steps with those consisting of multiple parallel steps, for 
example, making tomato sauce and cooking pasta to be 
served at the same time.

Identifies algorithms/instructions that include repeated groups of 
instructions a fixed number of times and/or loops until a 
condition is met.

Creates an algorithm that will sort objects 
into a specific order.Predicts the outcome of algorithms/ 

instructions that include repeated groups of 
instructions.

Explains why some instructions consist of a single sequence of steps running 
one after the other compared with others that will have parallel processes 
to carry out more than one activity at the same time. 

Identifies several ways that data or objects 
can be structured and how they differ 
from each other i.e. books in a library/ 
house numbers and postcodes.

Predicts, interprets and discusses data sorting 
results. 

Explores activities that require single steps and 
multiple parallel steps e.g. everyday activities 
such as getting dressed, cooking.

Identifies the part of a given algorithm 
responsible for the creation of a random 
element/variable.



Second Level Analysing Computing Technology
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding and analysing computer 
technology

I can explain core programming language 
concepts in appropriate technical 
language. TCH 2-14a 

I understand how information is stored and 
how key components of computing 
technology connect and interact through 
networks. TCH 2-14b

• Explains the meaning of individual instructions (including variables and 
conditional repetition) in a visual programming language.

• Predicts what a complete program in a visual programming language 
will do when it runs, including how the properties of objects for 
example, position, direction and appearance change as the program 
runs through each instruction.

• Explains and predicts how parallel activities interact.
• Demonstrates an understanding that all computer data is represented 

in binary for example, numbers, text, black and white graphics. 
• Describes the purpose of the processor, memory and storage and the 

relationship between them.
• Demonstrates an understanding of how networks are connected and 

used to communicate and share information, for example the internet.

What the learning may look like in Fife Glossary of terms

• Use visual programming languages such as Scratch and MakeCode to read 
and build algorithms.

• Look at different manufacturers e.g. Intel, AMD, Nvidia, etc. and where 
these products are found throughout the school devices.

• Resources such as Hello Ruby to explore computer components.
• Use resources from Barefoot Computing to support exploration of 

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Binary (code) - A coding system using the binary digits 0 and 1 to represent 
a letter, digit, or other character in a computer or other electronic device 

• Boolean - Boolean logic is a form of algebra in which all values are reduced 
to either TRUE or FALSE 

• IP Address - A computer's unique address e.g.192.168.0.127 - This address 
is used by computers to communicate across a network 

• Network - Two or more computers connected for the purpose of storing, 
sharing, and managing data i.e. the internet 

For the full glossary at Second Level, click here.

https://www.helloruby.com/
https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/second-level-glossary/


Second Level Analysing Computing Technology

Explains the meaning of individual 
instructions (including variables and 
conditional repetition) in a visual 
programming language.

Explains and predicts how parallel 
activities interact.

Predicts what a complete program in a visual 
programming language will do when it runs, including 
how the properties of objects for example, position, 
direction and appearance change as the program runs 
through each instruction.

Demonstrates an understanding of different types 
of loops used in programming and when they 
would be required i.e. forever/conditional/ count 
controlled. 

Explores variables and when 
they would be used to achieve a 
required output.

Uses correct vocabulary to describe parts of a 
computer e.g. motherboard, CPU, RAM, VRAM.

Explain what Boolean logic is and identify 
what the operators are. 

Demonstrates an understanding that all computer data is represented 
in binary for example, numbers, text, black and white graphics. 

Describes the purpose of the 
processor, memory and storage and 
the relationship between them.

Demonstrates an understanding of 
how networks are connected and used 
to communicate and share 
information, for example the internet.

Explores how computers communicate over a network 
and identifies key network hardware devices. 

Compares the performance of computer components 
from different devices and how this affects their 
usage e.g. the CPU within a netbook versus within a PC.



Second Level Designing, Building and Testing
Curriculum Organiser Experiences and Outcomes Benchmarks

Designing, building and testing computing 
solutions

I can create, develop and evaluate 
computing solutions in response to a 
design challenge. TCH 2-15a 

• Creates programs in a visual programming language including 
variables and conditional repetition. 

• Identifies patterns in problem solving and reuses aspects of 
previous solutions appropriately for example, reuse code for a 
timer, score counter or controlling arrow keys. 

• Identifies any mismatches between the task description and the 
programmed solution, and indicates how to fix them.

What the learning may look like in Fife Glossary of terms

• Play with programmable devices to explore more complex 
programs involving movement and other actions.

• Create algorithms for different purposes e.g. solving problems, 
creating games, creating animations etc.

• When creating algorithms and giving instructions link with 
Shape, Position & Movement Progression Pathway.

• Pose questions to an individual within an IT profession about a 
design challenge they have had to tackle and how they dealt 
with this.

• Use resources from Barefoot Computing to support exploration 
of Computing Science.

Visit the Computing Science Progression site for further ideas and 
resources.

• Glitch - A sudden, usually temporary malfunction or fault of equipment or computer 
program 

• Predict – To make known in advance
• Sprite - An icon in a computer game which can be manoeuvred around the screen by 

means of a joystick, etc. 

For the full glossary at Second Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/second-level-glossary/


Second Level Designing, Building and Testing

Creates programs in a visual 
programming language including 
variables and conditional repetition. 

Identifies patterns in problem solving 
and reuses aspects of previous 
solutions appropriately for example, 
reuse code for a timer, score counter or 
controlling arrow keys. 

Designs and plans programs for a game, 
story/animation, webpage or programmable device
before attempting to create these.

Identifies any mismatches between the 
task description and the programmed 
solution, and indicates how to fix them.

Deconstructs a problem into smaller steps and 
recognise how they may be similar to previous 
problems.

Uses logical reasoning to detect problems in an 
algorithm and use problem solving skills to resolve 
any issues.

Demonstrates resilience when experiencing 
challenge during a testing phase.

Tests and evaluates a program created in 
response to given criteria in a design 
challenge.


