
Computing Science First Level

First Level Computing Science
Curriculum
Organiser

Experiences and Outcomes Benchmarks

Understanding
the world through
computational
thinking

I can explore and comment on
processes in the world around
me making use of core
computational
thinking concepts and can
organise information in a logical
way. TCH 1-13a

• Follows sequences of instructions/algorithms from everyday situations for example, recipes or
directions, including those with selection and repetition.

• Identifies steps in a process and describes precisely the effect of each step.
• Makes decisions based on logical thinking including IF, AND, OR and NOT for example, collecting balls in

the gym hall but NOT basketballs, line up if you are left-handed OR have green eyes.
• Collects, groups and orders information in a logical, organised way using my own and others‟ criteria

(MNU 1-20a and b).

Understanding
and analysing
computer
technology

I understand the instructions of
a visual programming language
and can predict the outcome of
a program written using the
language. TCH 1-14a

I understand how computers
process information. TCH 1-14b

• Demonstrates an understanding of the meaning of individual instructions when using a visual
programming language (including sequences, fixed repetition and selection).

• Explains and predicts what a program in a visual programming language will do when it runs for
example, what audio, visual or movement effect will result.

• Demonstrates an understanding that computers take information as input, process and store that
information and output the results.

Designing,
building and
testing computing
solutions

I can demonstrate a range of
basic problem solving skills by
building simple programs to
carry out a given task, using an
appropriate language.
TCH 1-15a

• Simplifies problems by breaking them down into smaller more manageable parts.
• Constructs a sequence of instructions to solve a task, explaining the expected output from each step

and how each to contributes towards solving the task.
• Creates programs to carry out activities (using selection and fixed repetition) in an visual programming

language.
• Identifies when a program does not do what was intended and can correct errors/bugs.
• Evaluates solutions/programs and suggests improvements.

First Level Computational Thinking
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding the world through
computational thinking

I can explore and comment on
processes in the world around me
making use of core computational
thinking concepts and can organise
information in a logical way. TCH 1-13a

• Follows sequences of instructions/algorithms from everyday
situations for example, recipes or directions, including those with
selection and repetition.

• Identifies steps in a process and describes precisely the effect of
each step.

• Makes decisions based on logical thinking including IF, AND, OR
and NOT for example, collecting balls in the gym hall but NOT
basketballs, line up if you are left-handed OR have green eyes.

• Collects, groups and orders information in a logical, organised
way using my own and others’ criteria (MNU 1-20a and b).

What the learning may look like in Fife Glossary of terms

• Reading code and describing what will happen at each step.
• Experience of following instructions with recipes, Scottish Country Dancing,

during lessons, etc.
• Use IF, THEN, ELSE, AND, OR , NOT expressions using both code and real-life

examples e.g. IF it is raining OR snowing, THEN wear wellies outside, ELSE
wear shoes.

• Carry out sorting activities to develop classification skills.
• When exploring sorting and identifying patterns link with Shape, Position &

Movement and Data Handling Progression Pathway.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Abstraction - Simplifying things; identifying what is important without
worrying too much about the detail. Abstraction allows us to manage
complexity

• Selection - A programming construct in which one section of code or
another is executed depending on whether a particular condition is met

• Sequence - Arrange things in a particular order (computer programs are built
up of sequences of instructions)

For the full glossary at First Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/first-level-glossary/

First Level Computational Thinking

Follows sequences of instructions/algorithms
from everyday situations for example, recipes
or directions, including those with selection
and repetition.

Makes decisions based on logical thinking
including IF, AND, OR and NOT for example,
collecting balls in the gym hall but NOT
basketballs, line up if you are left-handed
OR have green eyes.

Collects, groups and orders information
in a logical, organised way using my own
and others’ criteria (MNU 1-20a and b).

Identifies steps in a process and describes
precisely the effect of each step.

Sorts and classifies a group of items by
asking simple yes / no questions.

Explores how to read code as part of a sequence.

Explains why processes must be carried
out in a specific order.

Identifies when steps are repeated
and explores how to use loops to
represent repetition.

Identifies when steps require a
decision and explores how this can be
represented by using IF, AND, OR,
ELSE, THEN and NOT.

Sorts and classifies a group of items in
different ways to meet different conditions
e.g. colour, size.

First Level Analysing Computing Technology
Curriculum Organiser Experiences and Outcomes Benchmarks

Understanding and analysing computer
technology

I understand the instructions of a visual
programming language and can predict
the outcome of a program written using
the language. TCH 1-14a

I understand how computers process
information. TCH 1-14b

• Demonstrates an understanding of the meaning of individual
instructions when using a visual programming language (including
sequences, fixed repetition and selection).

• Explains and predicts what a program in a visual programming
language will do when it runs for example, what audio, visual or
movement effect will result.

• Demonstrates an understanding that computers take information
as input, process and store that information and output the
results.

What the learning may look like in Fife Glossary of terms

• Play with programmable devices such as Beebots, etc.
• Experience giving and following instructions, e.g. using songs, PE

activities, daily routines.
• Use visual programming languages such as ScratchJr and Scratch to read

and build algorithms.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Input - Data transferred from the outside world into a computer system via
some kind of input device such as a keyboard, scanner or storage device

• Output - The data actively transmitted from within the computer to an
external device such as a monitor, storage device or printer

• Predict – To make known in advance
• Process - An instance of a computer program that is being run
• Selection - A programming construct in which one section of code or

another is executed depending on whether a particular condition is met

For the full glossary at First Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/first-level-glossary/

First Level Analysing Computing Technology

Explains and predicts what a program
in a visual programming language will
do when it runs for example, what
audio, visual or movement effect will
result.

Demonstrates an understanding of the
meaning of individual instructions
when using a visual programming
language (including sequences, fixed
repetition and selection).

Demonstrates an understanding that
computers take information as input,
process and store that information and
output the results.

Explores the difference between
inputs and outputs.Explores the output of selection in algorithms.

Explores how to read code as part of an algorithm.

Explores the output of fixed repetition in algorithms.

Explores the output of sequences in algorithms.

First Level Designing, Building and Testing
Curriculum Organiser Experiences and Outcomes Benchmarks

Designing, building and testing computing
solutions

I can demonstrate a range of basic
problem solving skills by building simple
programs to carry out a given task,
using an appropriate language.
TCH 1-15a

• Simplifies problems by breaking them down into smaller more
manageable parts.

• Constructs a sequence of instructions to solve a task, explaining
the expected output from each step and how each to contributes
towards solving the task.

• Creates programs to carry out activities (using selection and fixed
repetition) in a visual programming language.

• Identifies when a program does not do what was intended and
can correct errors/bugs.

• Evaluates solutions/programs and suggests improvements.

What the learning may look like in Fife Glossary of terms

• Play with programmable devices such as Beebots, etc.
• Create algorithms for different purposes e.g. solving problems, creating

games, creating animations etc.
• When creating algorithms and giving instructions link with Shape,

Position & Movement Progression Pathway.
• Use resources from Barefoot Computing to support exploration of

Computing Science.

Visit the Computing Science Progression site for further ideas and resources.

• Abstraction - Simplifying things; identifying what is important without worrying
too much about the detail. Abstraction allows us to manage complexity

• Debugging - Errors in algorithms and code are called ‘bugs’, and the process of
finding and fixing these is called debugging

• Decomposing/Decomposition - Breaking problems or systems down into
smaller, more manageable parts making it easier to manage complexity

For the full glossary at First Level, click here.

https://www.barefootcomputing.org/
https://blogs.glowscotland.org.uk/fi/compsci/
https://blogs.glowscotland.org.uk/fi/compsci/glossary/first-level-glossary/

First Level Designing, Building and Testing

Simplifies problems by breaking them
down into smaller more manageable
parts.

Constructs a sequence of instructions to
solve a task, explaining the expected
output from each step and how each to
contributes towards solving the task.

Uses vocabulary such as decomposition
and debugging to explain how problems
and programs are solved and edited.

Evaluates solutions/programs and
suggests improvements.

Identifies when a program does not do
what was intended and can correct
errors/bugs.

Creates programs to carry out activities
(using selection and fixed repetition) in a
visual programming language.

Explores the designing, building and testing processes when creating an algorithm.

Explores using fixed repetition in algorithms
and identifies how these appear in different
visual programming languages.

Explores using selection in algorithms and
identifies how these appear in different
visual programming languages.

Demonstrates resilience when experiencing
challenge during a testing phase.

