

# Kirkcaldy High School



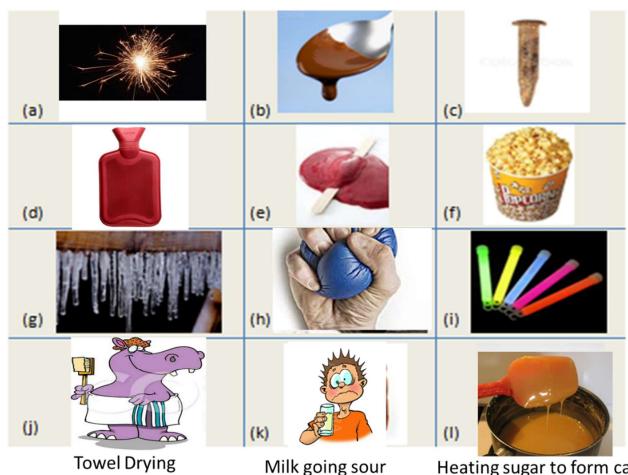
# S2 Science

# **Unit 3 - Chemical Reactions**

| N | ame: |  |
|---|------|--|
|   |      |  |
|   |      |  |

Class:\_\_\_\_\_

Teacher:\_\_\_\_\_


# **Expectations and Outcomes Learner Evaluation**

**Topic:** Chemical reactions

| Experience and Outcomes                                                      | Date<br>Completed<br>(dd/mm/yy) | Evaluation<br>How happy<br>are you with<br>it?<br>(© ? 窓) |
|------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|
| I can describe the differences between physical and chemical changes.        |                                 |                                                           |
| I can name examples of chemical and physical changes.                        |                                 |                                                           |
| I can identify when a chemical reaction has taken place.                     |                                 |                                                           |
| I can write a chemical word equation.                                        |                                 |                                                           |
| I can state the terms used for the signs of a chemical reaction.             |                                 |                                                           |
| I can identify examples of acids and bases                                   |                                 |                                                           |
| I can state the difference between an alkali and a base                      |                                 |                                                           |
| I can determine if a substance is acidic or basic using an indicator         |                                 |                                                           |
| I can identify the pH of a substance using universal indicator               |                                 |                                                           |
| I can identify everyday acids and alkali                                     |                                 |                                                           |
| I can make an indicator from plants                                          |                                 |                                                           |
| I can determine if an indicator is effective or not                          |                                 |                                                           |
| I can identify a neutralisation reaction.                                    |                                 |                                                           |
| I can describe what happens to the pH when a neutralisation reaction occurs. |                                 |                                                           |
| I can identify the products of a neutralisation reaction.                    |                                 |                                                           |

|                                                                                 | Date:                         |
|---------------------------------------------------------------------------------|-------------------------------|
| Chemical and phy                                                                | sical changes                 |
| Starter                                                                         |                               |
| List some examples of chemical reactions:                                       |                               |
|                                                                                 |                               |
|                                                                                 |                               |
| Learning Intentions                                                             |                               |
| <ul> <li>To learn about the differences between<br/>chemical changes</li> </ul> | Tick me at the end if you can |
| Success Criteria                                                                | .06                           |
| ☐ I can describe the differences between                                        | physical and chemical changes |
| I can name examples of chemical and                                             | physical changes              |
| Chemical or Phys                                                                | sical Change                  |
| A <u>physical change</u> is one in which                                        | new substances are made.      |
| <ul> <li>Physical changes are usually (but not a</li> </ul>                     | always) quite easily          |
|                                                                                 |                               |
| A <u>chemical reaction</u> is a change in which                                 | •                             |
| A chemical reaction is <u>not</u> easily revers                                 | ed.                           |
| Chemical Reaction                                                               | Physical change               |
|                                                                                 |                               |
|                                                                                 |                               |
|                                                                                 |                               |
|                                                                                 |                               |
|                                                                                 |                               |
|                                                                                 |                               |

### Extension



Milk going sour

Heating sugar to form caramel

| a)       |  |
|----------|--|
| b)       |  |
| c)       |  |
|          |  |
|          |  |
| f)       |  |
|          |  |
|          |  |
|          |  |
| •        |  |
| ,,<br>k) |  |
|          |  |
| -,       |  |

| Date:                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical Reactions Starter                                                                                                                                                                                                   |
| Explain why chocolate melting is an example of a physical change.                                                                                                                                                            |
| Give an example of physical changes and chemical changes which happen in your home.                                                                                                                                          |
| <ul> <li>Learning Intentions</li> <li>To learn how to identify when a chemical reaction is taken place</li> <li>To learn how to write a chemical equation</li> <li>Success Criteria</li> </ul> Tick me at the end if you can |
| ☐ I can identify when a chemical reaction has taken place                                                                                                                                                                    |
| ☐ I can write a chemical word equation                                                                                                                                                                                       |
| Chemical Reactions                                                                                                                                                                                                           |
| The substances that react together are called the                                                                                                                                                                            |
| The new substances made are called the                                                                                                                                                                                       |
| + means "and"                                                                                                                                                                                                                |
| means "changes into"                                                                                                                                                                                                         |

| Examples                                                                                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Burning coal in a fire                                                                                      |  |  |  |  |
| Coal and oxygen <u>react</u> together to <u>produce</u> carbon dioxide.                                     |  |  |  |  |
| Questions:                                                                                                  |  |  |  |  |
| 1) What are the reactants? What are the products?                                                           |  |  |  |  |
| 2) Write the word equation for this reaction.                                                               |  |  |  |  |
| Screaming Jelly Baby                                                                                        |  |  |  |  |
| Sugar <u>reacts</u> with potassium chlorate to <u>produce</u> carbon dioxide, water and potassium chloride. |  |  |  |  |
| Write the word equation for this reaction.                                                                  |  |  |  |  |
| What did you see happening?                                                                                 |  |  |  |  |
| Elephants Toothpaste                                                                                        |  |  |  |  |
| Hydrogen peroxide decomposes to <b>produce</b> oxygen and water.                                            |  |  |  |  |
| Write the word equation for this reaction.                                                                  |  |  |  |  |
| What did you see happening?                                                                                 |  |  |  |  |
| 6                                                                                                           |  |  |  |  |

| Whoosh Bottle                                                       |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
| Alcohol burns in oxygen to <u>produce</u> water and carbon dioxide. |  |  |  |  |
| Write the <i>word</i> equation.                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
| What did you see happening?                                         |  |  |  |  |
| - <del></del>                                                       |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |

#### **Extension**

#### **Descriptions of Reactions and Word Equations**

Word equations always have reactants on the left and products on the right:

reactants → products

For example

Iron and oxygen **react** together to form iron oxide (rust).

You will be given descriptions of chemical reactions, and you must put them in a word equation.

#### Hints:

- They will be reactants if it says phrases like reacts with, burns in, decomposes.
- They will be products if it says forms, formed, produced, made.

#### Questions

1. **Burning of magnesium in air:** Magnesium oxide is formed when magnesium reacts with oxygen.

 $\longrightarrow$ 

2. **Reaction of sodium with water:** Sodium hydroxide and hydrogen gas are produced when sodium reacts with water.

 $\longrightarrow$ 

3. **Combustion of methane:** Carbon dioxide and water are formed when methane burns in oxygen.

 $\rightarrow$ 

4. **Formation of rust:** Iron oxide (rust) is produced when iron reacts with oxygen and water.

 $\longrightarrow$ 

5. **Neutralization of hydrochloric acid with sodium hydroxide:** Sodium chloride and water are formed when hydrochloric acid reacts with sodium hydroxide.

 $\longrightarrow$ 

| 6.              | <b>Decomposition of hydrogen peroxide:</b> Water and oxygen are produced when hydrogen peroxide decomposes.                       |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                 | $\rightarrow$                                                                                                                     |  |  |  |  |
| 7.              | Reaction between zinc and hydrochloric acid: Zinc chloride and hydrogen gas are produced when zinc reacts with hydrochloric acid. |  |  |  |  |
|                 | $\rightarrow$                                                                                                                     |  |  |  |  |
| 8.              | <b>Combustion of propane:</b> Carbon dioxide and water are formed when propane burns in oxygen.                                   |  |  |  |  |
|                 | $\rightarrow$                                                                                                                     |  |  |  |  |
| Exten           | sion                                                                                                                              |  |  |  |  |
| You w<br>(the o | rill now be given word equations, and you will need to write a short description of the reaction pposite of above).               |  |  |  |  |
| 1.              | Potassium + oxygen → potassium oxide                                                                                              |  |  |  |  |
|                 |                                                                                                                                   |  |  |  |  |
|                 |                                                                                                                                   |  |  |  |  |
| 2.              | Sodium + water → sodium hydroxide + hydrogen                                                                                      |  |  |  |  |
|                 |                                                                                                                                   |  |  |  |  |
|                 |                                                                                                                                   |  |  |  |  |
| 3.              | Hydrochloric acid + lithium carbonate → Lithium Chloride + water                                                                  |  |  |  |  |
|                 |                                                                                                                                   |  |  |  |  |
|                 |                                                                                                                                   |  |  |  |  |
|                 |                                                                                                                                   |  |  |  |  |

|                                                            | Date:                                   |
|------------------------------------------------------------|-----------------------------------------|
| Signs of a Chem                                            | ical Reaction                           |
| You have just baked a cake; how do you kno                 | ow a chemical reaction has taken place? |
| Your chocolate melted in the sun, how do yo taken place?   | ou know a chemical reaction has not     |
| Learning Intentions                                        |                                         |
| <ul> <li>To learn how to identify when a chemic</li> </ul> | cal reaction has taken place.           |
| Success Criteria  I can state the terms used for the signs | of a chemical reaction.                 |
|                                                            |                                         |
| Signs of a Chem There may be a                             | ical Reaction                           |
| There may be                                               |                                         |
| There may be                                               |                                         |
| There may be an                                            |                                         |
| A new substance is formed.                                 |                                         |
| Effervescence - A is produced                              | during a chemical reaction.             |
| Precipitation - Formation of a                             | when two solutions react together.      |

# Signs of a chemical reaction

| Aim:           | Tο | identify | ı a | chemical  | reaction. |
|----------------|----|----------|-----|-----------|-----------|
| <b>~</b> !!!!. | 10 | Idelitii | y a | Circinica | i Cachon. |

## Results:

| Substances Mixed                                     | Observation | Chemical reaction? (Yes/No) |
|------------------------------------------------------|-------------|-----------------------------|
| Dilute Sulfuric Acid (0.5M)<br>+ Copper Carbonate    |             |                             |
| Dilute Sulfuric Acid +<br>Sodium Hydroxide           |             |                             |
| Ethanoic Acid (vinegar) +<br>Baking Soda             |             |                             |
| Water + Copper Oxide                                 |             |                             |
| Lead Nitrate Solution +<br>Potassium Iodide Solution |             |                             |
| Dilute Sulfuric Acid +<br>Copper                     |             |                             |
| Water + Iron nail                                    |             |                             |
| Dilute Sulfuric Acid +<br>Magnesium                  |             |                             |
| Copper Sulfate Solution + Iron Filings               |             |                             |

| Conclusion: What is the answer to your aim?               |  |  |  |  |
|-----------------------------------------------------------|--|--|--|--|
|                                                           |  |  |  |  |
| <b>Evaluation:</b> How could you improve your experiment? |  |  |  |  |
|                                                           |  |  |  |  |

### Extension

| Given the descriptions of an experiment, | explain how y | ou know that | has been a |
|------------------------------------------|---------------|--------------|------------|
| chemical reaction                        |               |              |            |

| nem | nical reaction                                                                                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | When a few drops of phenolphthalein are added to a solution of sodium hydroxide, the solution turns from colourless to pink.                                      |
| 2.  | When zinc reacts with hydrochloric acid, effervescence is observed as hydrogen gas is released. The solution becomes warm to the touch.                           |
| 3.  | When silver nitrate solution is added to a solution of sodium chloride, a white solid of silver chloride forms, and no gas.                                       |
| 4.  | When a strip of magnesium metal is dropped into a solution of hydrochloric acid, bubbles of hydrogen gas form, and the solution gets warmer.                      |
| 5.  | When a piece of magnesium ribbon is burned in air, it produces a bright white flame, and a white ash forms.                                                       |
| 6.  | When sulfuric acid is added to a piece of calcium carbonate, effervescence occurs, and carbon dioxide gas is produced. The temperature of the solution increases. |
| 7.  | When you add sodium hydroxide to a solution of copper(II) sulfate a pale blue solid of copper(II) hydroxide forms                                                 |
| 8.  | When hydrogen peroxide is added to potassium iodide, the solution turns brown due to the formation of iodine, and effervescence is observed.                      |
|     |                                                                                                                                                                   |

Date:

# **Speeding up chemical reactions**

#### Starter

Match the term on the left to the correct definition on the right.

Effervescence
 Chemical Change

 Reactant

4. Physical Change


- A. A change in which a new substance is made.
- B. Formation of a solid when two liquids chemically join.
- C. Gas produced during a chemical reaction.
- D. Chemicals present at the start of a chemical reaction.
- E. A change in which <u>no</u> new substance is made.

5. Precipitation

### **Learning Intentions:**

• To learn how to speed up the rate of reaction Success Criteria

I can state the factors the change the speed of a reaction.



|                        | Speeding up chemic              | cal reactions               |
|------------------------|---------------------------------|-----------------------------|
| Aim: To find           | out different ways we can speed | up a chemical reaction.     |
| Method:<br>Draw your m | nethod below                    |                             |
|                        |                                 |                             |
|                        |                                 |                             |
|                        |                                 |                             |
|                        |                                 |                             |
| Results:               |                                 |                             |
| Effect                 | Reaction                        | Quickest reaction (low/high |

| Effect        | Reaction                                                                         | Quickest reaction<br>(low/high<br>concentration)<br>(small/large particle<br>size)<br>(low/high temp) |
|---------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Concentration | 5 ml of Low/high concentration vinegar + one small spatula of sodium bicarbonate |                                                                                                       |
| Particle size | 5 ml of 0.1M hydrochloric acid + marble lumps/chips                              |                                                                                                       |
| Temperature   | 1 Glow stick in cold water and 1 glow stick in hot water                         |                                                                                                       |

| Conclusion: What is the answer to your aim?        |  |  |  |  |  |
|----------------------------------------------------|--|--|--|--|--|
|                                                    |  |  |  |  |  |
| Evaluation: How could you improve your experiment? |  |  |  |  |  |
|                                                    |  |  |  |  |  |

#### Particle size

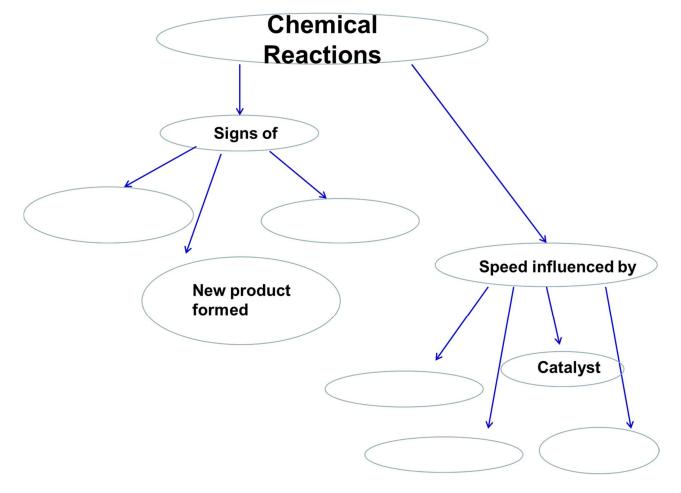
Potatoes cook \_\_\_\_\_ when cut up into smaller pieces.

A block of wood burns \_\_\_\_\_ than wood shavings.

#### **Temperature**

A car exhaust rusts \_\_\_\_\_ than the rest of the car.

Food goes off \_\_\_\_\_ in the fridge and even \_\_\_\_ in the freezer.


Washing powder works \_\_\_\_\_ in cold water than in warm water.

Plants grow \_\_\_\_\_ in a greenhouse than outside.

### **Concentration**

Ships rust \_\_\_\_\_ at sea than on a river because of the higher concentration of salt.

#### Fill in the blanks



| Date:                                                                                          |
|------------------------------------------------------------------------------------------------|
| Acids and Bases                                                                                |
| Starter                                                                                        |
| You are cooking chicken for a stir fry, list 2 different ways to speed up the cooking process? |
| Why does keeping vegetables in the fridge prevent them from rotting quickly?                   |
| Learning Intentions                                                                            |
| To learn about acids and bases in our home                                                     |
| Success Criteria  Tick me at the end if you can                                                |
| ☐ I can identify examples of acids and bases                                                   |
| $\square$ I can state the difference between an alkali and a base                              |
| I can determine if a substance is acidic or basic using an indicator                           |
| Acids                                                                                          |
| have a taste. The word "acid" comes from the Latin word,, meaning "sour".                      |
| Acids are found in our food and drinks. Acids are important as they:                           |
| Contribute to the of food.                                                                     |
| food preventing food rotting.                                                                  |
| Essential for providing for our body.                                                          |

| н | - | 0  | Λ | c |
|---|---|----|---|---|
|   |   | -3 | • | - |

Bases are another group of chemicals, the \_\_\_\_\_ of acids.

- We use weak bases daily for cleaning purposes.
- An \_\_\_\_\_ is a base, but alkalis also dissolve in water.

**Acid**Opposite of base

Alkali
Also dissolves
in water

Opposite of acid

#### **Indicators**

<u>Indicators</u> are special substances used to tell the difference between acids and bases. Their colours are affected by acids and bases.

| Indicator        | Colour in acid | Colour in base |
|------------------|----------------|----------------|
| Litmus           |                |                |
| Methyl Orange    |                |                |
| Bromothymol Blue |                |                |
| Phenolphthalein  |                |                |

|                                 |                                      |        |        |         |                 |        |         |                     | Da       | ate: _ |                                |       |          |
|---------------------------------|--------------------------------------|--------|--------|---------|-----------------|--------|---------|---------------------|----------|--------|--------------------------------|-------|----------|
| Starter                         |                                      | The    | рН \$  | Scal    | e an            | d Ur   | niver   | sal I               | Indic    | atoı   | •                              |       |          |
| Vinegar is Why do yo Explain yo | u thinl                              | k we c |        |         | •               |        | ic acid | d on o              | ur chi   | ps?    |                                |       | -        |
|                                 | I <b>ntent</b> o<br>learr<br>o ident | n abou |        | •       |                 | alkali | is      |                     | کے       |        | <me <b="" at="" if="">you</me> |       |          |
| Success (                       | <b>Criteri</b><br>identi             |        | pH of  | f a sul | ostano          | ce usi | ng un   | <b>。O</b><br>iversa | ol indic | _      |                                | <br>ب | <i>ک</i> |
| I car                           | identi                               | fy eve | eryday | / acids |                 |        |         |                     |          | _      |                                | _     |          |
| Acids: sub<br>Base: sub         | stance                               | with   | a pH ı | more t  | han 7<br>than 7 |        | cale    |                     |          |        |                                |       |          |
| 0 1                             | 2                                    | 3      | 4      | 5       | 6               | 7      | 8       | 9                   | 10       | 11     | 12                             | 13    | 14       |

## **Measuring the pH of Household Items**

| Aim: | To | find | out | which | า hous | eholo | d items | are | acids | and | which | n are | alkalis. |  |
|------|----|------|-----|-------|--------|-------|---------|-----|-------|-----|-------|-------|----------|--|
|      |    |      |     |       |        |       |         |     |       |     |       |       |          |  |

## <u>Method</u>:

| Draw your | method | below |
|-----------|--------|-------|
|-----------|--------|-------|

# Results:

| Substance              | Colour | pH (0-14) | Acid or Alkali |
|------------------------|--------|-----------|----------------|
| Baking soda            |        |           |                |
| Fizzy water            |        |           |                |
| Salt (sodium chloride) |        |           |                |
| Distilled (pure) water |        |           |                |
| Lemon juice            |        |           |                |
| Orange juice           |        |           |                |
| Oven Cleaner           |        |           |                |
| Soap solution          |        |           |                |
| Vinegar                |        |           |                |
| Washing Soda           |        |           |                |
| Ethanol                |        |           |                |

|                                                                                                                                                   |                                                                | Date:                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|
| Na                                                                                                                                                | atural Indicators                                              |                               |
| Starter                                                                                                                                           |                                                                |                               |
| What is an indicator?                                                                                                                             |                                                                |                               |
| What would be the characteristic                                                                                                                  | s of a <u>good</u> indicator?                                  |                               |
| Learning Intentions  To make a natural indicator from I can make an indicator from I can determine if an indicator Investigate which plant parts. | m plants o O tor is effective or not gating Natural Indicators | Tick me at the end if you can |
| Results:                                                                                                                                          |                                                                |                               |
|                                                                                                                                                   | Colour in Acid                                                 | Colour in Alkali              |
| Plant Part                                                                                                                                        |                                                                |                               |
| Plant Part Root (red onion, beetroot)                                                                                                             |                                                                |                               |
|                                                                                                                                                   |                                                                |                               |
| Root (red onion, beetroot)                                                                                                                        |                                                                |                               |
| Root (red onion, beetroot) Leaves (red cabbage)                                                                                                   | to your aim?                                                   |                               |

|        | Date:                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------|
| Starte | Neutralisation Reactions                                                                                              |
|        | Why is universal indicator better than litmus indicator?                                                              |
| 2.     | What is the pH range of acids?                                                                                        |
| 3.     | What is the pH range of alkalis?                                                                                      |
| 4.     | What is the pH of a neutral solution?                                                                                 |
| Learr  | ning Intentions                                                                                                       |
|        | To learn about neutralisation reactions                                                                               |
| Succ   | ess Criteria Tiek ma et the                                                                                           |
|        | I can identify a neutralisation reaction  I can describe what happens to the pH when a neutralisation reaction occurs |
|        | Neutralisation                                                                                                        |
| Acids  | and alkalis are chemical                                                                                              |
| They   | react together and "cancel each other out".                                                                           |
| -      | mix just the right volume and concentration of acid and base together, you get                                        |
| This i | s called a reaction.                                                                                                  |

| Dilution Experiment                                                                                                                 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <u>Aim</u> : To investigate the effect of dilution on pH.                                                                           |  |  |  |  |  |
| Method/results:                                                                                                                     |  |  |  |  |  |
| Draw your method below, to show your results colour in each test tube with the corresponding colour shown with universal indicator: |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
| Conclusion: What is the answer to your aim?                                                                                         |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
| Evaluation: How could you improve your experiment?                                                                                  |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                     |  |  |  |  |  |

| Neutra | lisation | Exper | iment |
|--------|----------|-------|-------|
|        |          |       |       |

| <b><u>Aim</u></b> : To find out when a neutralisation reaction has ta | ken place. |
|-----------------------------------------------------------------------|------------|
|                                                                       |            |

| M   | ethod | •  |
|-----|-------|----|
| IVI | CUIVA | ٠. |

Draw your method below

### Results:

| Volume of alkali added (cm³) | Colour of solution | рН |  |  |
|------------------------------|--------------------|----|--|--|
| 1                            |                    |    |  |  |
| 2                            |                    |    |  |  |
| 3                            |                    |    |  |  |
| 4                            |                    |    |  |  |
| 5                            |                    |    |  |  |
| 6                            |                    |    |  |  |
| 7                            |                    |    |  |  |
| 8                            |                    |    |  |  |
| 9                            |                    |    |  |  |
| 10                           |                    |    |  |  |

### **Conclusion**:

The exact final volume of alkali needed to neutralise the acid was \_\_\_\_\_ cm<sup>3</sup>.

|              | Date:                                                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Neutralisation Reactions                                                                                                                                                        |
| Sta          | rter                                                                                                                                                                            |
| 1.           | Name 2 everyday neutralisation reactions.                                                                                                                                       |
| 2.           | Universal Indicator was added to an acid, an alkali and a neutral substance.  Match acid, alkali and neutral to their correct colours below:                                    |
|              | Red:                                                                                                                                                                            |
| 3.           | (a) What is the name given to the reaction where an acid is added to an alkali and they cancel each other out?                                                                  |
|              | (b) What will be the pH of the final solution?                                                                                                                                  |
| Lea          | arning Intentions                                                                                                                                                               |
|              | To learn how to obtain a salt from a neutralisation reaction                                                                                                                    |
| <b>Suc</b> [ | I can identify a neutralisation reaction  I can describe what happens to the pH when a neutralisation reaction occurs  I can identify the products of a neutralisation reaction |

| Word Equations                                                                                             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| The new substances made when a base is exactly neutralised by an acid are <b>a salt</b> and <b>water</b> . |  |  |  |  |  |
| The reaction can be shown by a word equation.                                                              |  |  |  |  |  |
| acid + base +                                                                                              |  |  |  |  |  |
| Forming Salt Experiment                                                                                    |  |  |  |  |  |
| Aim: To obtain a salt from a neutralisation reaction.  Method:                                             |  |  |  |  |  |
| Results: What did you observe?                                                                             |  |  |  |  |  |
| Conclusion: what is the answer to your aim?                                                                |  |  |  |  |  |

### **Experiment extension:**

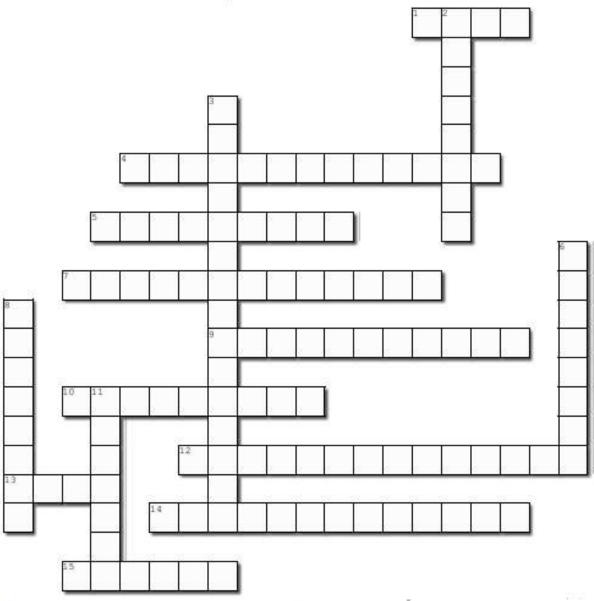
We can identify the metal in the salt we have made by carrying out a **flame test**.

Flame colour: Metal identified:

#### **Extension Tasks**

#### **Word Search**

# Chemistry in our home


| С | 0 | N | С | Ε | N | Т | R | Α | T | I | 0 | N | R |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| S | Α | I | S | Α | L | Т | Т | S | N | Α | R | S | Ε |
| N | В | L | P | U | N | Α | Α | Т | Ε | I | С | U | Α |
| 0 | Α | Α | S | Р | Н | Υ | S | I | С | Α | L | М | С |
| I | М | K | S | E | С | Α | T | Α | L | Υ | S | T | T |
| S | S | L | I | Ε | Т | Т | F | N | N | Ε | T | I | I |
| 0 | 0 | Α | Α | C | I | D | E | I | T | I | T | L | 0 |
| L | L | Р | Α | R | T | I | С | L | Ε | I | P | N | N |
| Р | E | F | F | E | R | ٧ | Ε | S | C | E | N | С | Ε |
| X | I | С | Т | L | Α | С | I | М | E | Н | С | R | T |
| E | 0 | I | Т | Ε | М | Р | E | R | Α | T | U | R | Ε |
| R | L | Α | I | N | D | I | С | Α | T | 0 | R | С | N |
| N | 0 | I | T | Α | T | I | P | I | С | Ε | R | P | D |
| N | Ε | U | T | R | Α | L | I | S | Α | T | I | 0 | N |

NEUTRALISATION PHYSICAL **EFFERVESCENCE** ALKALI PRECIPITATION CONCENTRATION ACID **TEMPERATURE** PARTICLE LITMUS CATALYST **INDICATOR** SALT BASE REACTION **EXPLOSION** CHEMICAL

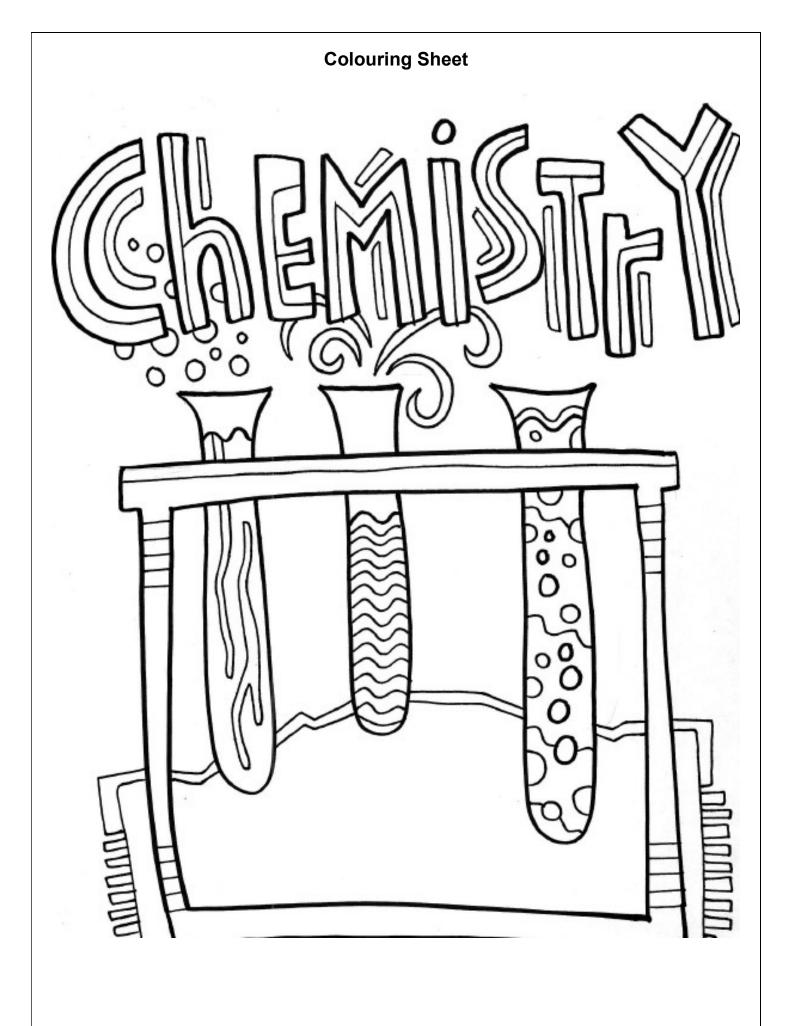
#### Crossword

### Chemistry in our home

Complete the crossword below



#### Across


- 1. A solution with a pH less than 7.
- **4.** The word given for a reaction that forms a gas
- 5. An example of a very fast chemical reaction.
- **7.** A reaction where a solid forms when two solutions react.
- 9. The \_\_\_\_\_ of the room can be increased to increase the rate of chemical reactions.
- 10. A substance added to a solution to show the pH.
- **12.** A reaction where an acid and alkali are added together to form a neutral solution
- **13.** The product of a neutralisation reaction, which can be extracted by evaporation.
- **14.** The \_\_\_\_\_ of an acid can be increased to increase the rate of reaction.
- 15. A solution with a pH more than 7

#### Down

- 2. A \_\_\_\_\_ reaction is one where a new substance is always made:
- **3.** A pH indicator that is colourless in acid and pink in alkaline solutions.
- **6.** A chemical \_\_\_\_\_ occurs when a new substance is made.
- 8. A substance that speeds up a chemical reaction.
- 11. A solution with a pH of 7.

# Plenary (end of lesson summaries)

| Lesson                                     | Key Concepts Learned | Real-World Applications |
|--------------------------------------------|----------------------|-------------------------|
| Chemical and physical changes              |                      |                         |
| Chemical<br>Reactions                      |                      |                         |
| Signs of a<br>Chemical<br>Reaction         |                      |                         |
| Speeding up<br>chemical<br>reactions       |                      |                         |
| Acids and<br>Bases                         |                      |                         |
| The pH Scale<br>and Universal<br>Indicator |                      |                         |
| Neutralisation<br>Reactions                |                      |                         |

