Today I have learnt that

Plenary Talk Placemat

Be a reflective learner.

Discuss with a partner before you share it with the class.

The skills I used in today's lesson were...
I could also use these skills in....

One thing I need to remember from today's lesson is...

I would like to find out more information about....

Before this lesson I could already...

Three key words I have learned today are...

I was successful today when I...

Plenary - complete one of the sentences below

I was successful when I

A question I have about today's lesson is

Today I learnt

The part of the lesson I enjoyed the most was.....

The skills I used in today's lesson were......

One thing I need to remember from today's lesson is.....

Success Criteria

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

Forces & Space – E&Os

	Level 2	Level 3	Level 4
Space	By observing and researching features of our solar system, I can use simple models to communicate my understanding of size, scale, time and relative motion within it. SCN 2-06a	By using my knowledge of our solar system and the basic needs of living things, I can produce a reasoned argument on the likelihood of life existing elsewhere in the universe. SCN 3-06a	By researching developments used to observe or explore space, I can illustrate how our knowledge of the universe has evolved over time. SCN 4-06a
Forces	By investigating how friction, including air resistance, affects motion, I can suggest ways to improve efficiency in moving objects. SCN 2-07a	By contributing to investigations of energy loss due to friction, I can suggest ways of improving the efficiency of moving systems. SCN 3-07a	I can use appropriate methods to measure, calculate and display graphically the speed of an object, and show how these methods can be used in a selected application. SCN 4-07a By making accurate measurements of speed and acceleration, I can relate the motion of an object to the forces acting on it and apply this knowledge to transport safety SCN 4-07b
	I have collaborated in investigations to compare magnetic, electrostatic and gravitational forces and have explored their practical applications. SCN 2-08a	I have collaborated in investigations into the effects of gravity on objects and I can predict what might happen to their weight in different situations on Earth and in space. SCN 3-08a	I can help to design and carry out investigations into the strength of magnets and electromagnets. From investigations, I can compare the properties, uses and commercial applications of electromagnets and supermagnets. SCN 4-08a
	By investigating floating and sinking of objects in water, I can apply my understanding of buoyancy to solve a practical challenge. SCN 2-08b		Through experimentation, I can explain floating and sinking in terms of the relative densities of different materials. SCN 4-08b

Forces & Space – scheme of work

- 1. Intro to Forces
- 2. Balanced & Unbalanced Forces
- 3. Forces in Space (intro to universe)
- 4. The Solar System 1
- 5. The Solar System 2
- 6. Craters and the Moon
- 7. Craters and the Moon 2
- 8. Space Terms & Scale of universe
- 9. Weight & Mass 1 O1
- 10. Weight & Mass 2 O1
- 11. Weight & Mass Calculations
- 12. Friction

- 12. Air resistance Drag/Parachute
- 13. Space exploration 1
- 14. Space exploration 2
- 15. Revision
- 16. Assessment
- 17. Assessment Feedback & Intro to AVU
- 18. AVU- Exoplanets
- 19. AVU- Exoplanets
- 20. AVU- Exoplanets

20/08/2025

Forces and Space

Page 4

Starter:

Open

Last lesson: What did we learn last lesson?

Empty your brain: write down everything you remember about ...

Structured

Teacher – quizzing: short answer response, fill in the blanks, true or false, odd one out, dilate mistakes, multiple choice

Show-me Boards

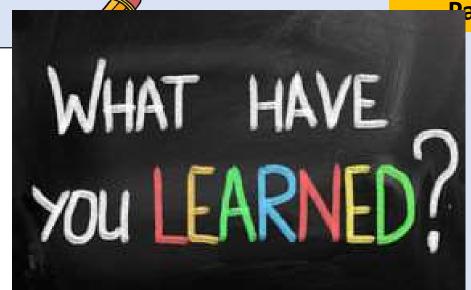
Self-quizzing

Peer-quizung

20/08/2025

Forces and Space

Page 7


Plenary:

Short response questions

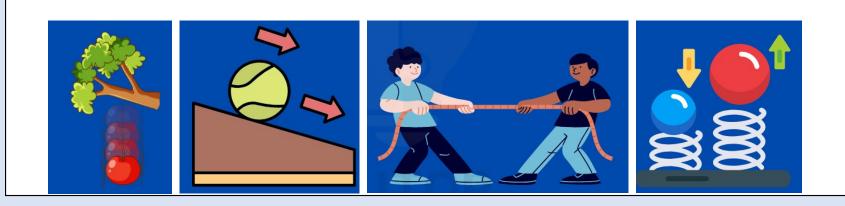
Empty your brain

True or false

Multiple choice questions

Exit Tickets or show me boards – everyone taking part.

What is a Force?


20/08/2025

Page 4

Starter: Empty your brain

Page 4

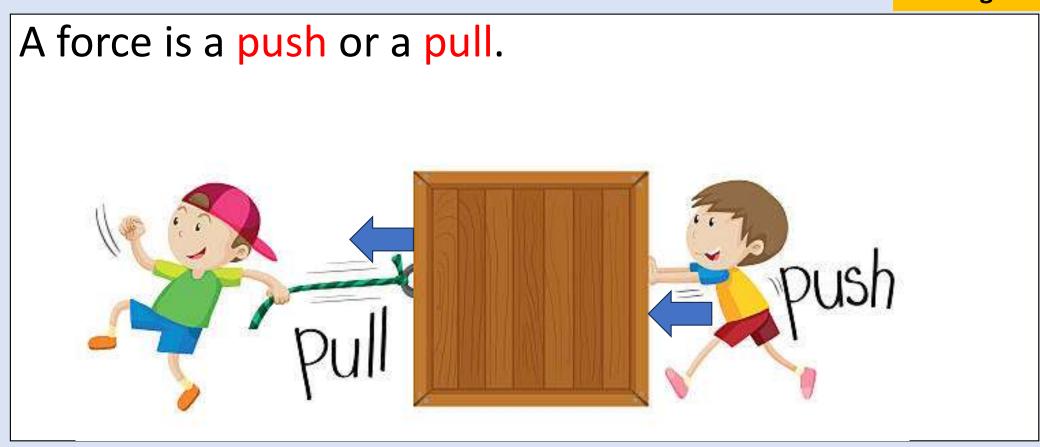
Learning Intentions:

- To understand what a force is.
- To name different types of forces.

Success Criteria

- I can describe what a force is.
- I can measure forces with a Newton meter.
- I can describe real life applications of forces.

What is a Force?



https://www.youtube.com/watch?v=3HjKFOVhm_o

What is a Force?

Page 4

A force can change the shape, speed or direction of an object.

What is a Force?

Think about a ball...

- 1. If you push the ball it starts to roll. The ball's speed changes.
- 2. If you push against the motion of a ball, you can stop it. The ball's speed changes.
- 3. If you push at an angle to the ball's motion, you can change the direction of the motion.
- 4. If you squeeze the ball you can change the shape of the ball.

Forces

Page 4

Name as many types of forces as you can.

Thinking prompts:

- 1. What force pulls everything toward the Earth?
- 2. What force pushes back when something moves through air?
- 3. What force slows things down when they rub together?

Challenge Question:

Where can you see these forces in action?

https://www.youtube.com/watch?v=7 Uo7RufH4c&t=183s

Forces

Name as many types of forces as you can.

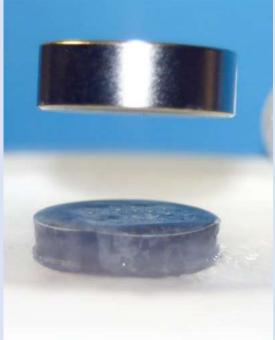
- Push
- Pull
- Twist
- Drag
- Lift
- Thrust
- Weight
- Friction

- Gravitational
- Air Resistance
- Tension
- Upthrust
- Buoyancy
- Magnetic
- Electrostatic

Page 5

Contact Forces

Some forces <u>need to touch</u> an object to affect it. Examples of these forces are <u>push</u>, <u>pull</u> and <u>friction</u>.


Non-contact Forces

Page 5

Some forces do not need to have contact to affect an object.

Examples of these forces are gravitational, magnetic and electrostatic forces.

Forces

• Forces are all around us but we cannot see them. When forces cause movement it is possible to see their effects.

• However when something is not moving, there can still be forces at work...

Forces: think about it.....

A book sitting on a table does not move.

- Are there any forces acting on it?
- What might these forces be?

https://www.bbc.co. uk/bitesize/guides/z 78nb9q/revision/3 -ANSWER

If you pushed the book...

what forces are acting?
 (think about making it move, or trying to stop it...)

Discuss in your group before sharing your thoughts with the class.

Measuring Force

Page 5

A Newton balance (also called a force meter) is used to measure force.

The unit of measurement for force is Newtons. The letter N represents Newtons.

Sir Isaac Newton (1643-1727)

Using a Newton Balance

- and a
- How to Use a Newton balance
- Check the scale
 - make sure it is zeroed (the pointer should be at 0 when nothing is hanging).
- 2. Hang the object
- 3. Hold it steady
- 4. Read the scale

A

Safety & Tips:

- Don't overload the balance check the maximum force limit and use a suitable balance. We have 10 N or 30 N balances.
- Avoid jerky movements or bouncing the object.

Loop for hanging

Dial for zero calibration.

Scale in newtons

Spring extends as mass is added.

Hook for hanging item to be measured

Measuring Forces

Page 6

Aim:

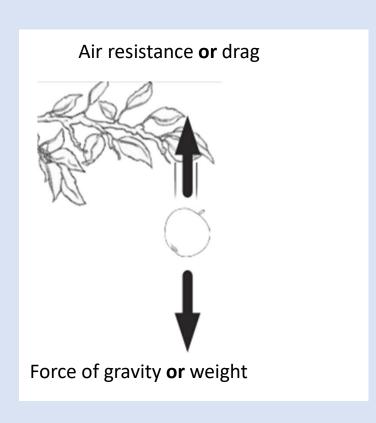
To estimate, and measure, the force required to move different objects.

Method: Describe how you will carry out your investigation. Include a labelled diagram.

Page 6

Measuring Forces

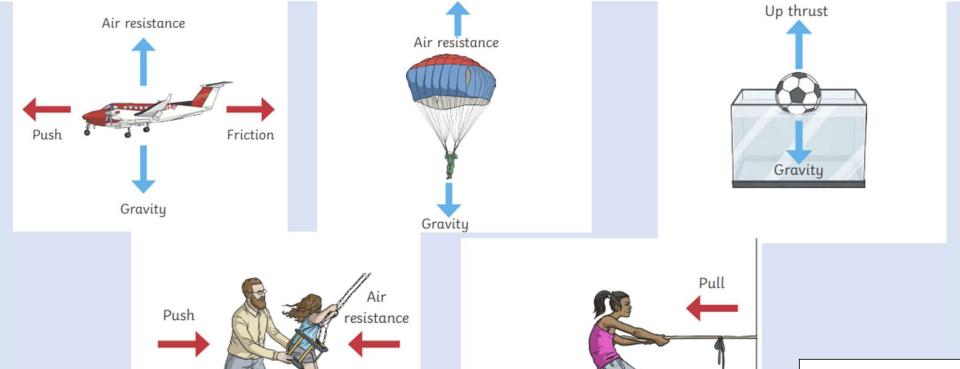
Aim: To estimate, and measure, the force required to move different objects.


Results:

Object	Estimate of force needed (N)	Actual force needed (N)
Lift a bag		
Open the door		
Pull a stool across floor		

Conclusion: How accurate were your estimates? What did you find out?

Challenge yourself: Naming Forces


Draw arrows on the pictures below to show the forces acting in them.

List of forces: Air resistance | Force of gravity | Push | Weight | Pull | Friction | Drag | Buoyancy | Engine force | Upthrust

Challenge yourself: Answers

Draw arrows on the pictures below to show the forces acting in them.

Sometimes forces can be described in a few different ways.

What is a Force?

Learning Intentions:

- To understand what a force is.
- To name different types of forces.

Success Criteria

- I can describe what a force is.
- I can measure forces with a Newton meter.
- I can describe real life applications of forces.

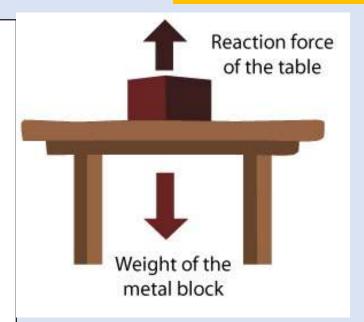
What is a Force?

Plenary: Empty your brain

Write down everything you know about forces.

- How does you your answer compare to the start of the lesson?
- What did you learn today?

20/08/2025


Page 8

Starter: Prior Knowledge

1. What is a force?

2. Name two types of forces.

3. What happens to an object if a force acts on it?

20/08/2025

Page 8

Learning Intentions:

- To identify balanced and unbalanced forces.
- To describe the effect a pair of forces have on an object.

Success Criteria

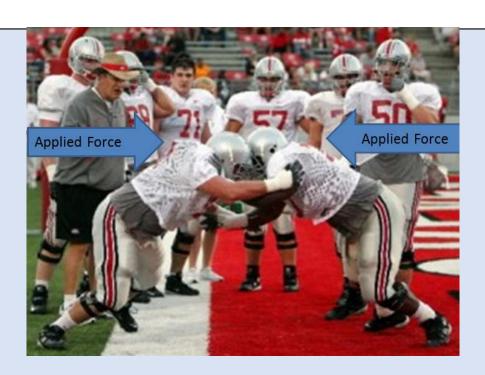
- I can identify balanced and unbalanced forces from a force diagram.
- I can predict the movement of an object using force diagrams.
- I can draw or interpret a force diagram using a simulation.

Balanced forces mean the effects of the forces cancel each other out.

In this tug-o-war there is a dead heat. Both sides pull with the same size of force. There is no change of speed, direction or shape. There is no change in motion.

Watch this video CLICK HERE

Unbalanced force happens when there is only one force on an object or the forces one way are bigger than the other way.



In this tug-o-war the team on the right pull with a bigger force. The forces don't balance and everybody moves to the right. There is a change of speed, direction or shape. There is a change in motion.

Page 8

A balanced force is two equal forces but in opposite directions.

Balanced forces cause an object to stay still (stationary) or travel at a constant speed.

Page 8

An **unbalanced force** is when there is one or more forces, but the overall force in one direction is **greater**.

Unbalanced forces cause a change in **shape**, **direction or speed**.

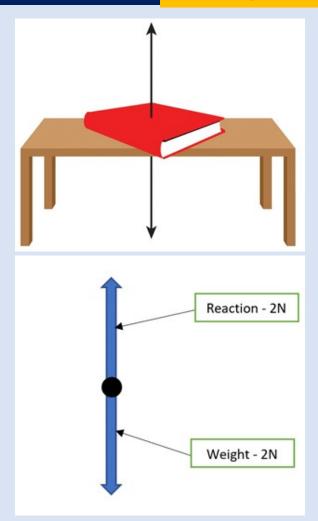
A change in **speed** is called acceleration.

In the following situations, say whether the forces are **BALANCED** or **UNBALANCED**.

- 1. A book sitting still on a table
- 2. A person sitting still on a chair
- 3. A car speeding up, moving off at traffic lights
- 4. A ball being caught by a dog
- A car going at a steady 70 miles per hour down the motorway
- 6. A footballer heading the ball into the net
- 7. A rocket starting to take off
- 8. An astronaut moving through space at a steady speed
- 9. Crushing a can of irn bru
- 10. An apple falling from a tree.

REMEMBER

If the object KEEPS DOING what it did before, the forces are **BALANCED**.


If the object's SPEED,
DIRECTION or SHAPE
changes, the forces are
UNBALANCED

Force Diagram

A force diagram (sometimes called a free-body diagram) is a simple drawing used in science to show all the forces acting on an object.

- The object is usually shown as a dot or a simple box.
- Arrows are drawn to represent each force acting on the object.
- Arrows show:
 - Direction of the force (where it's pushing or pulling).
 - Size of the force (longer arrow = stronger force).
- Each arrow is labelled (e.g. gravity, friction, thrust).

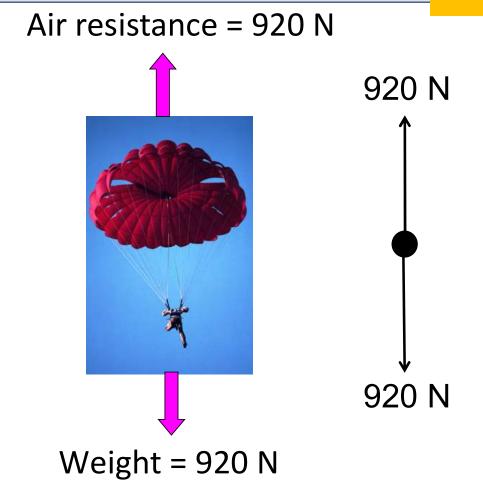
Balanced or Unbalanced?

1. Are the forces acting on the car balanced or unbalanced?

2. What direction is the car travelling in?

Calculate the resultant force on the car.

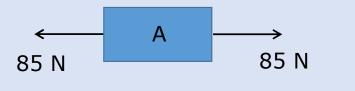
Balanced or Unbalanced?

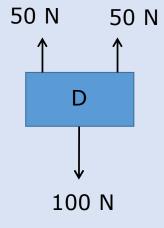


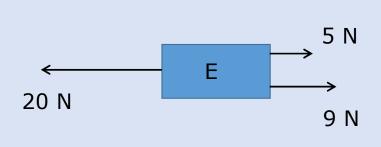
Page 10

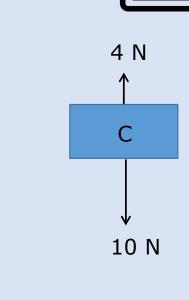
1. Are the forces acting on the parachutist **balanced** or **unbalanced**?

Describe the movement of the parachutist.


Calculate the resultant force on the car.


Class Quiz


In the following examples,


- 1. State if the forces on the objects are **balanced** or **unbalanced**.
- 2. Calculate the resultant force.

10 N

Be careful!

10 N

É

https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-basics en.html and click on 'Net Force' when you get on the site

Page 10

Instructions:

- Open the Simulation and select the "Forces and Motion: Basics" module.
- Choose the "Force" tab to start.
- Select an object (e.g. the box or the crate).

É

CLICK HERE and click on 'Net Force' when you get on the site

Page 10



Make sure you click the 'Sum of Forces' and 'Values' on. This will allow you to see the values of the forces.

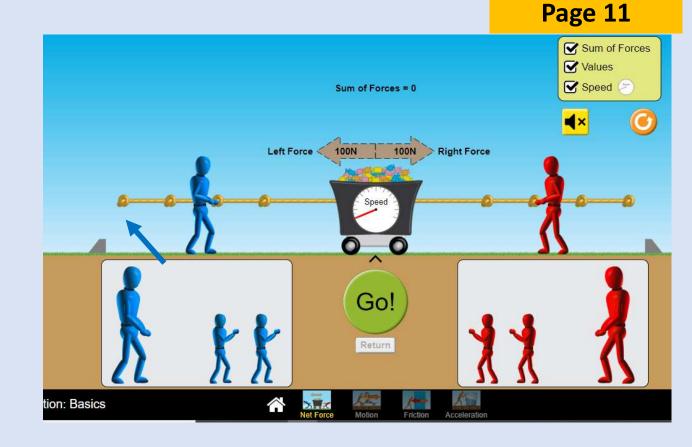
Drag the person onto the rope

Try it again with a different combination of people.

Extension: Try the other simulations in 'Forces and Motion: Basics'

Click 'Go' to see the effect of the pulling forces.

É


https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-basics en.html and click on 'Net Force' when you get on the site

Task 1: Playing with Forces

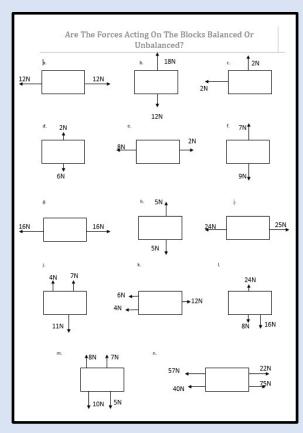
- Try pulling the object using the red person.
- Observe what happens to the object when:
 - Only one person pulls
 - Two people pull in opposite directions
 - No one pulls

Questions:

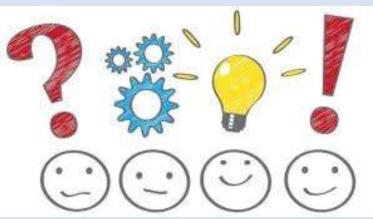

- 1. What happens when both sides pull with equal force?
- 2. What happens when one side pulls harder?
- 3. What do you need to do to make the blue team win?

É

https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-basics en.html and click on 'Net Force' when you get on the site


- 🎯 Task 2: Force Diagrams
- Tick the Sum of Forces" and "Values" option to view force arrows.
- Draw a force diagram for:
 - The object being pulled with balanced forces.
 - 2. The object being pulled with unbalanced forces.
- Label the arrows and show the direction and relative size.




Balanced and Unbalanced forces

Pages 12 & 13

Write your own question

On a post it note or whiteboard.

Write a force question for someone else to answer.

Write the question on the front and the answer on the back.

Learning Intentions:

- To identify balanced and unbalanced forces.
- To describe the effect a pair of forces have on an object.

Success Criteria

- I can identify balanced and unbalanced forces from a force diagram.
- I can predict the movement of an object using force diagrams.
- I can draw or interpret a force diagram using the simulation.

Balanced and Unbalanced forces

Plenary: Exit ticket

- 1. When are the forces on an object balanced?
- 2. What must happen for an object to start moving?
- 3. What surprised you when using the simulation?

20/08/2025

Starter: Prior Knowledge

What's the difference between a balanced and unbalanced force?

Forces in Space

What force pulls objects down to Earth?

What keeps the Moon in orbit around Earth?

Page 14

Page 7

Learning Intentions:

- To understand how gravity acts as a force in space.
- To explore the movements of Earth and how they create day, night, months, and years.

Success Criteria

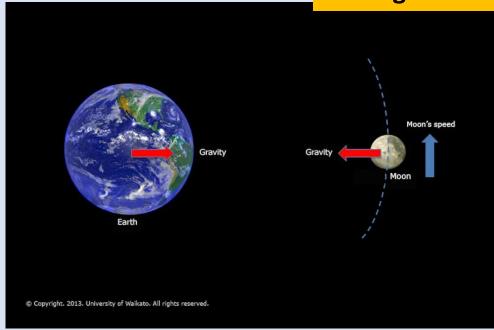
- I can list forces acting on moons, planets, stars and satellites.
- I can state that day and night are caused by the Earth rotating on its axis.
- I can state that the Earth orbits the Sun once in one year.

Questions for video:

Page 14

- 1. What force keeps a planet in orbit around the Sun?
- 2. What would happen if there was no gravitational force between the Earth and the Moon?
- 3. The Moon orbits the Earth. What other objects orbit the Earth?

https://youtu.be/n400mR6Rvpo

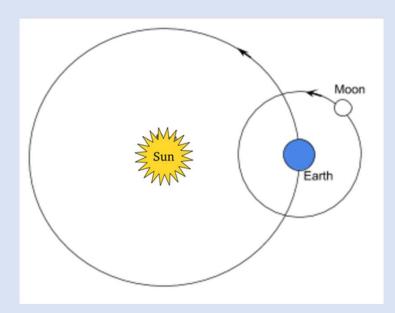

Page 15

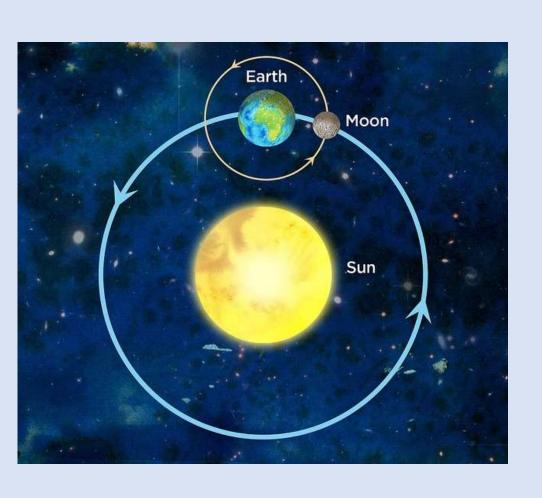
Gravity is the force pulling objects together.

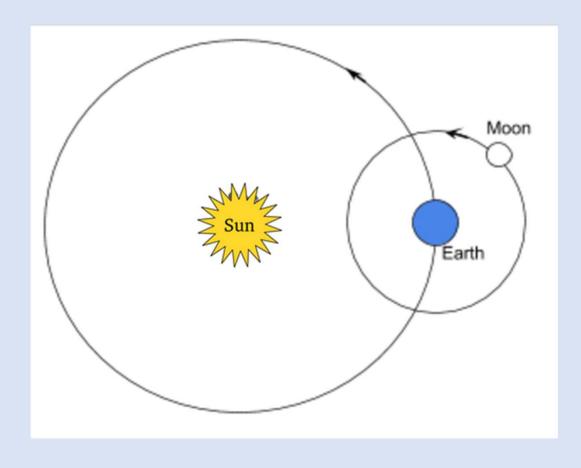
In space, gravity keeps:

- Moons orbiting planets
- Planets orbiting the Sun
- Satellites in orbit

Without gravity, objects would move in straight lines.




https://www.sciencelearn.org.nz/resources/268-gravity-and-satellite-motion


Watch the following video. On Your orbit diagram draw arrow to show the gravitational forces acting.

Earth, Space, and Time

We have all heard these words before, can you describe what they mean? Discuss these words with your partner and describe scientifically what the mean.

Daytime

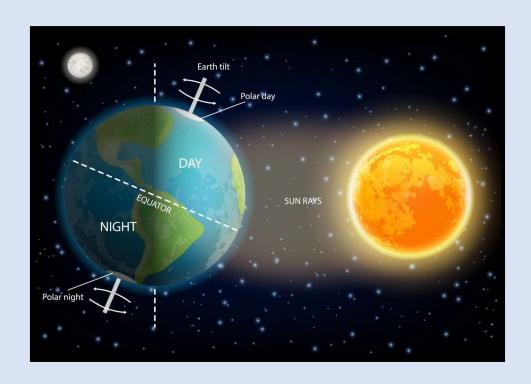
Night-time

Day

Month

Year

Seasons

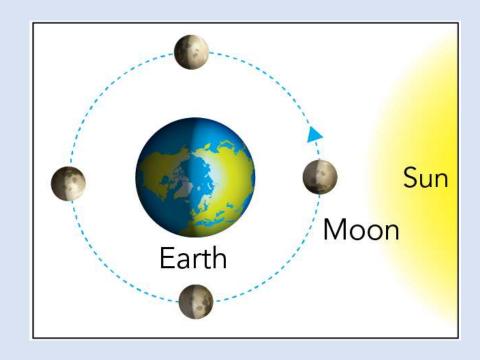


Daytime and Night-time

The side of the Earth facing the Sun is bathed in light and heat (daytime).

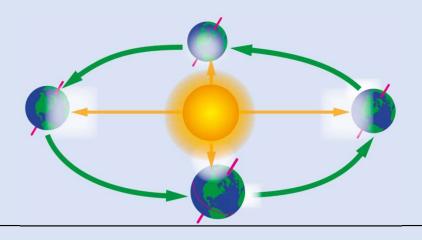
The side of the Earth facing away from the Sun is darker and colder (night-time).

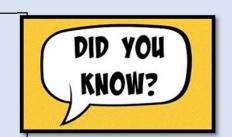
A Day


A day is the period of time during which the Earth completes one rotation around its axis.

The Earth has a day of 24 hours.

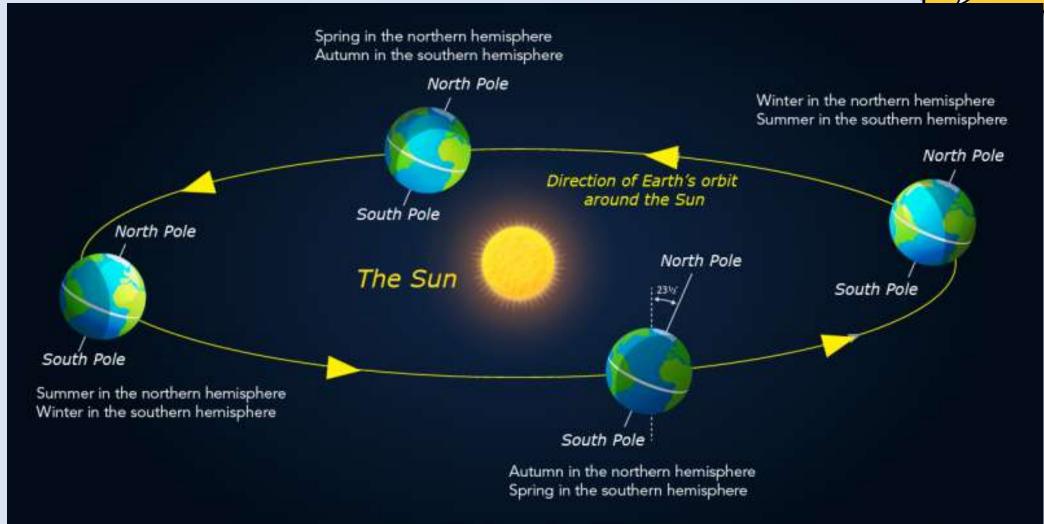
A Month


It takes 29.5 days for the Moon to orbit the Earth. This period is called a lunar **month**.


A Year

The Earth orbits the Sun once every 365.25 days. This is known

as a year.



Our calendar year is 365 days. Every 4 years we have a leap year and add another day to the calendar. This makes up for the 4 missing quarters.

The Seasons

Earth, Space, and Time

Daytime Month Year Day Page 15

Terms	Definitions
	when your part of the Earth is facing the Sun, so you can see light and it is usually warm.
	when your part of the Earth is turned away from the Sun, so it becomes dark and usually cooler.
	the time it takes for the Earth to make one full spin (rotation) on its axis. This takes 24 hours.
	how long it takes the Moon to orbit the Earth once. This takes roughly 29.5 days, which is why months are about 30 days long.
	the time it takes the Earth to orbit once around the Sun. This takes about 365¼ days.
	Seasons happen because the Earth is tilted on its axis as it orbits the Sun. This tilt means different parts of Earth get more or less sunlight during the year, creating spring, summer, autumn, and winter.

Earth, Space, and Time

Terms	Definitions
Daytime	when your part of the Earth is facing the Sun, so you can see light and it is usually warm.
Night-time	when your part of the Earth is turned away from the Sun, so it becomes dark and usually cooler.
Day	the time it takes for the Earth to make one full spin (rotation) on its axis. This takes 24 hours.
Month	how long it takes the Moon to orbit the Earth once. This takes roughly 29.5 days, which is why months are about 30 days long.
Year	the time it takes the Earth to orbit once around the Sun. This takes about 365¼ days.
Seasons	Seasons happen because the Earth is tilted on its axis as it orbits the Sun. This tilt means different parts of Earth get more or less sunlight during the year, creating spring, summer, autumn, and winter.

Earth's Rotation & Orbit – Role Play

Task: Role play the Earth's rotation and orbit and be the Solar System.

You will be placed in groups of three and assigned roles.

- 1. Sun
- 2. Earth
- 3. Moon

Prepare a 3-minute presentation where you shows the Earth's rotation and orbit.

Explain how the movements between the Sun, Earth and Moon cause:

- Day and night
- Months
- A year
- Bonus: What might cause seasons?

Use your creativity and teamwork — your goal is to make the invisible visible!

Earth's Rotation & Orbit – Role Play

Success Criteria:

Explain how the movements between the Sun, Earth and Moon cause:

- Day and night
- Months
- A year
- Bonus: What might cause seasons?

Use your creativity and teamwork — your goal is to make the invisible visible!

Praise - What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

Earth's Rotation & Orbit - Demo

Your teacher may show you the Earth's rotation & orbit demonstration.

Learning Intentions:

- To understand how gravity acts as a force in space.
- To explore the movements of Earth and how they create day, night, months, and years.

Success Criteria

- I can list forces acting on moons, planets, stars and satellites.
- I can state that day and night are caused by the Earth rotating on its axis.
- I can state that the Earth orbits the Sun once in one year.

Plenary: Exit ticket

- 1. What movement causes day and night?
- 2. Why do we have years?
- 3. How long does it take the Moon to orbit Earth?
- 4. What happens if gravity stops?

The Solar System

20/08/2025

Page 16

Starter:

1. What does our solar system consist of?

2. Name the force which holds the solar system together.

Page 16

Learning Intentions:

• To identify the planets and their key features.

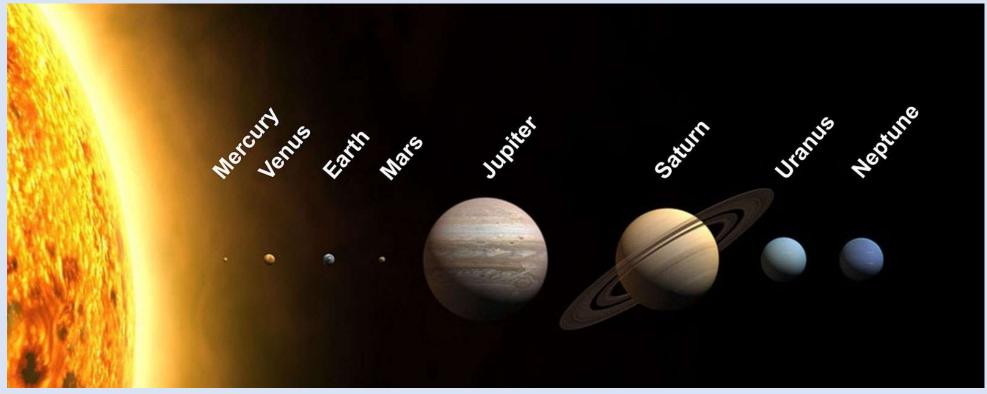
Success Criteria

- I can state that the Solar System consists of eight planets that orbit the Sun.
- I can list the planets in order of increasing distance from the Sun.
- I can describe the relative size and scale of the planets in the Solar System.

The Solar System

Our solar system consists of our Sun and everything in its gravitational pull around it.

Planets, moons, asteroids, minor planets, comets, dust and gas all belong to the solar System.

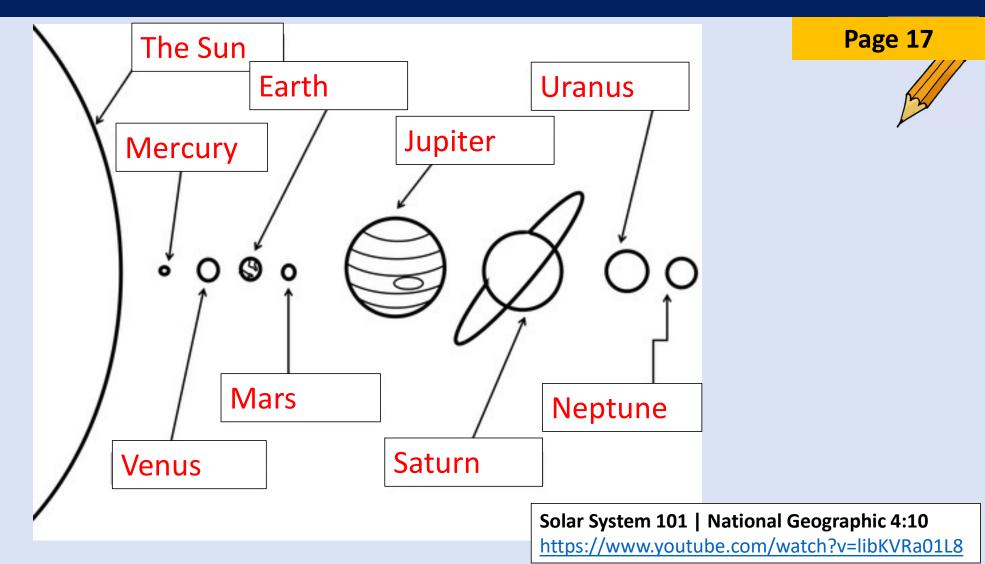


The Solar System

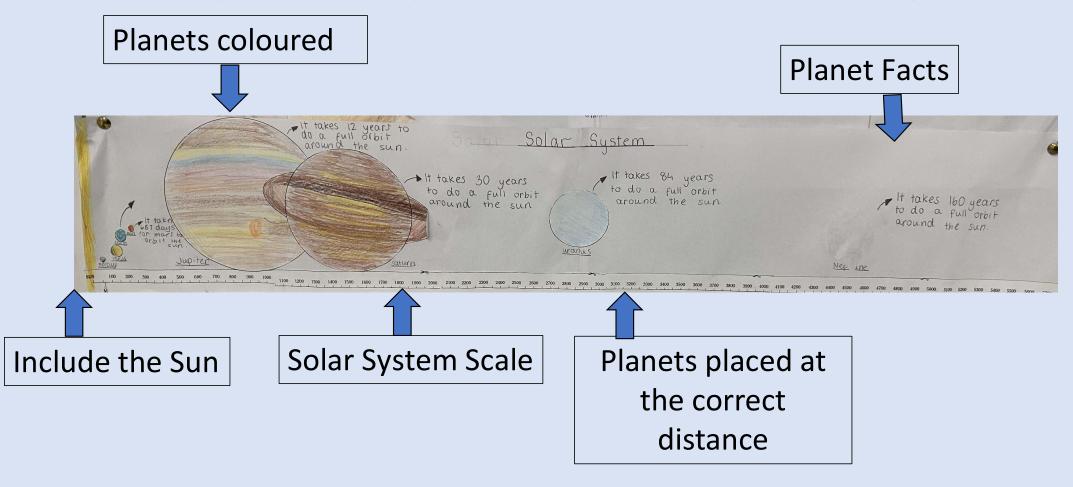
Class question:

List the planets in order of increasing distance from the Sun.

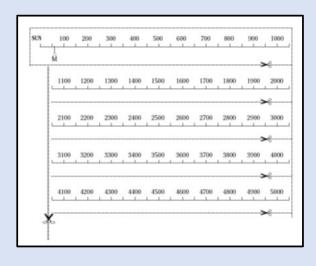
Page 16


The Earth is one of planets which orbit the Together
with other objects like comets, asteroids and dwarf planets, they make up Solar System
the

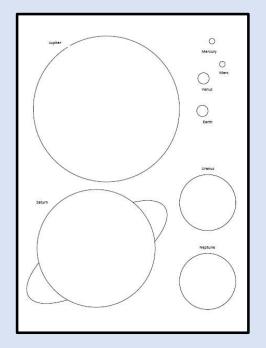
Page 16


The <u>inner</u> planets (Mercury, Venus, Earth and Mars) are small and rocky.

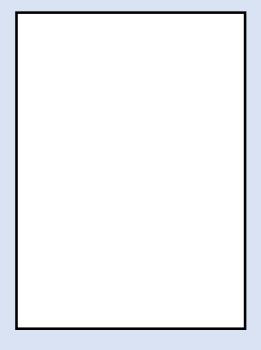
The <u>outer</u> planets (Jupiter, Saturn, Uranus and Neptune) are large gas/ice giants.



Create a map of the solar system to show the scale of the solar system.

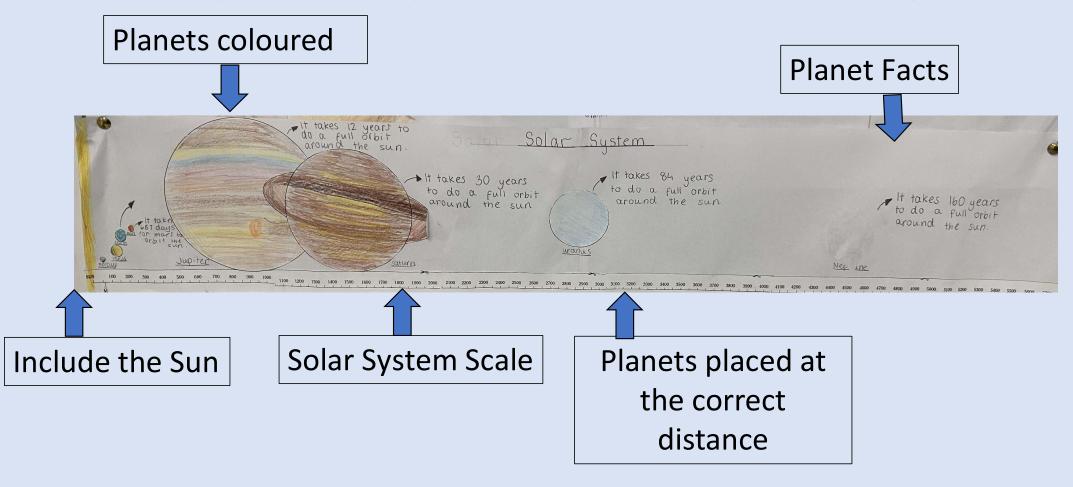


Collect a


Solar System Scale

Planet diagram

A3 piece of paper


- 1. Fold the A3 paper in half to create two long strips. Tape them together.
- 2. Cut out the 'solar system scale' and glue it along the bottom of your paper.
- Mark each planet at the correct distance to the Sun using the data table in your booklet. Mercury has been completed.
- 4. Colour and cut out your planets the glue them on your scale at the correct distance to the Sun.
- 5. Add facts on your solar system map.

Planet	Distance to the Sun (million km)	Time for 1 orbit around the Sun (Earth days)	Average surface temperature (° C)	Strength of gravity (Nkg ⁻¹)	Moons
Mercury	60	88	167	3.7	0
Venus	110	225	464	8.9	0
Earth	150	365	15	9.8	1
Mars	230	687	-65	3.7	2
Asteroids	400	-	-	-	-
Jupiter	780	4330	-110	23	67
Saturn	1400	10800	-140	9.0	62
Uranus	2900	30600	-195	8.7	27
Neptune	4500	59800	-200	11	14

Create a map of the solar system to show the scale of the solar system.

Learning Intentions:

• To identify the planets and their key features...

Success Criteria

- I can state that the Solar System consists of eight planets that orbit the Sun.
- I can list the planets in order of increasing distance from the Sun.
- I can describe the relative size and scale of the planets in the Solar System.

20/08/2025

The Solar System

Plenary:

There are a number of mnemonics to help you remember the order of the planets in the Solar system.

Can you think of any others?

Page 17

Starter: Prior Knowledge

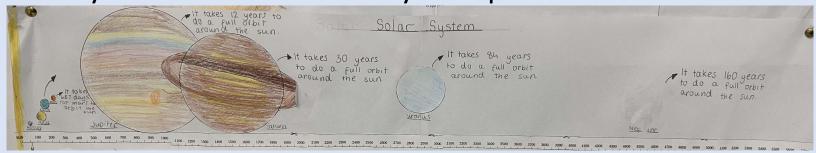
- 1. Name all 8 planets in order from the Sun.
- 2. Which planet is the largest?
- 3. How does the size of the four inner planets compare to the size of the four outer planets?

https://www.bobthealien.co.uk/solarsystem/innerouter.htm

The Solar System (cont.)

20/08/2025

Page 16

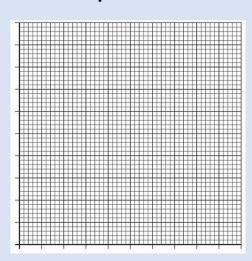

Learning Intentions:

To compare planetary characteristics.

Success Criteria

- I can describe the size of the planets relative to each other.
- I can describe the distances between each planet and the Sun.
- I can produce a poster to showcase my knowledge.

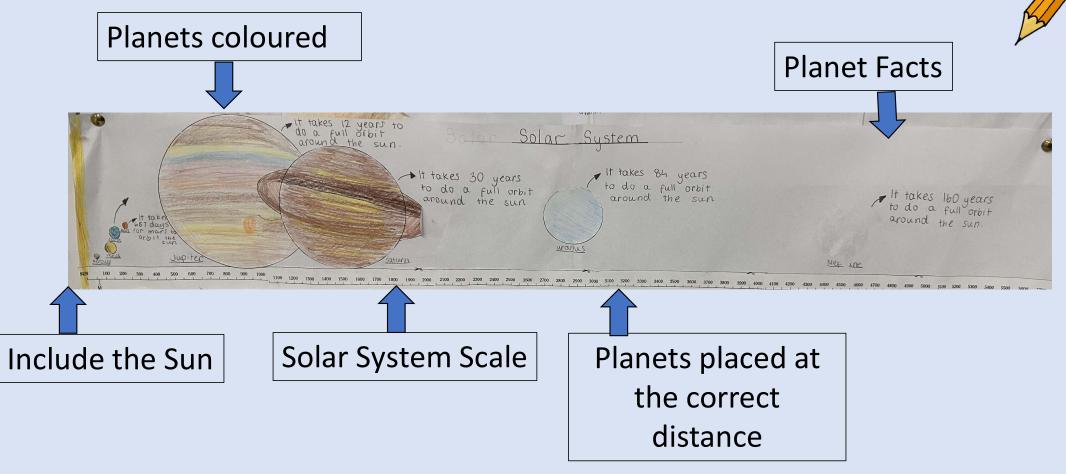
Continue with your scale of the solar system poster.



If finished, try the following challenge tasks:

Problem Solving Questions Bar Graph Practice

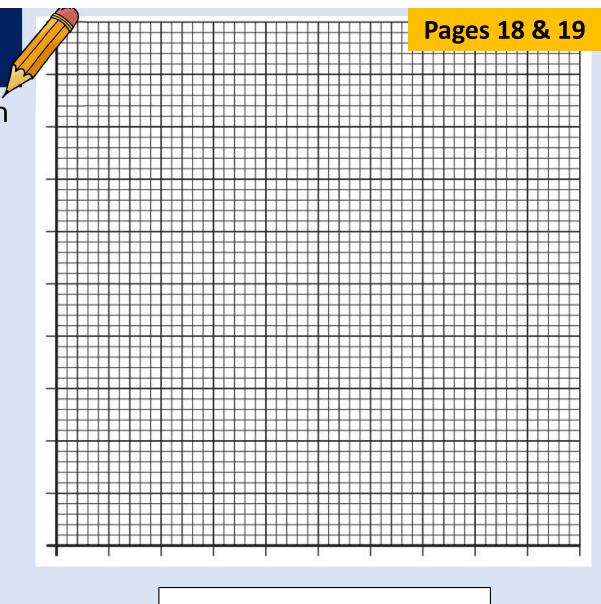
Problem Solving Questions:


- 1. Which planet has the highest average surface temperature?
- 2. Which planet has the longest year?
- 3. How many more moons does Jupiter have compared to Saturn?
- 4. On which two planets is the strength of gravity the same?
- 5. Which planet has more moons than Saturn?

Planet Fact File

	Distance from the sun
Image	Time taken to orbit the sun
Description of planet (type of planet/average tem	perature/atmosphere)
	perature/atmosphere)
	oerature/atmosphere)
	perature/atmosphere)
(type of planet/average tem	perature/atmosphere)

Create a map of the solar system to show the scale of the solar system.


- 1. Fold the A3 paper in half to create two long strips. Tape them together.
- 2. Cut out the 'solar system scale' and glue it along the bottom of your paper.
- Mark each planet at the correct distance to the Sun using the data table in your booklet. Mercury has been completed.
- 4. Colour and cut out your planets the glue them on your scale at the correct distance to the Sun.
- 5. Add facts on your solar system map.

Bar Graph Practice

Extension: Plot this data on a bar graph

Planet	Distance to the Sun (million km)		
Mercury	60		
Venus	110		
Earth	150		
Mars	230		
Asteroids	400		
Jupiter	780		
Saturn	1400		
Uranus	2900		
Neptune	4500		

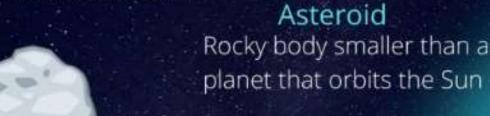
Name of planet Planet Fact File Distance from the sun Time taken to orbit the sun Number of Moons Description of planet (type of planet/average temperature/atmosphere) **Interesting Facts**

Planet Fact File

Page 20

Planet	Distance to the Sun (million km)	Time for 1 orbit around the Sun (Earth days)	Average surface temperature (° C)	Strength of gravity (Nkg ⁻¹)	Moons
Mercury	60	88	167	3.7	0
Venus	110	225	464	8.9	0
Earth	150	365	15	9.8	1
Mars	230	687	-65	3.7	2
Asteroids	400	-	-	-	-
Jupiter	780	4330	-110	23	67
Saturn	1400	10800	-140	9.0	62
Uranus	2900	30600	-195	8.7	27
Neptune	4500	59800	-200	11	14

Problem Solving Questions:


- 1. Which planet has the highest average surface temperature?
- 2. Which planet has the longest year?
- 3. How many more moons does Jupiter have compared to Saturn?
- 4. On which two planets is the strength of gravity the same?
- 5. Which planet has more moons than Saturn?

Meteors and Meteorites

Meteor
Streak of light seen when a meteoroid heats up in the atmosphere

Comet Icy body that releases gases as it orbits the Sun

Meteoroid Rocky or metallic fragment of an asteroid, comet, or planet

Meteorite Meteor fragment that reaches the ground

The Solar System (cont.)

Learning Intentions:

To compare planetary characteristics.

Success Criteria

- I can describe the size of the planets relative to each other.
- I can describe the distances between each planet and the Sun.
- I can produce a poster to showcase my knowledge.

The Scale of the Solar System Continued 20/08/2025

Plenary:

I was successful when

The part of the lesson I enjoyed the most was.....

The skills I used in today's lesson were......

The Surface of the Moon

20/08/2025

Page 21

Starter: Prior Knowledge

- 1. What's different about the Moon's surface compared to Earth's?
- 2. What causes craters on planets or moons?
- 3. Why would a rover need friction to move on Mars?

The Surface of the Moon

20/08/2025

Page 21

Learning Intentions:

• To explore how craters are formed on the surface of the Moon.

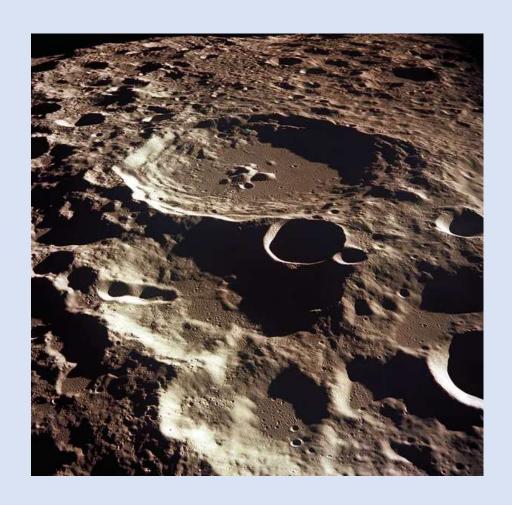
Success Criteria

- I can carry out an experiment to show how craters are formed on the surface of the Moon.
- I can write an experiment report with Aim, Method, Results, Graph Conclusion, Evaluation.

The surface of the Moon has many <u>craters</u>.

The craters on the Moon are caused by <u>asteroids</u> and <u>meteorites</u>

colliding with the lunar surface.



Unlike Earth's surface, the lunar surface is covered with craters.

This is because the Moon has almost no erosion because it has no atmosphere.

That means nothing can remove marks on its surface once they are made.

Investigating Craters – The Variables

Planning your investigation. What factors could you investigate?

Independent variable What you change or control

- diameter of the asteroid
- mass of the asteroid
- height the asteroid is dropped from

Dependent variable What you measure

- depth of crater.
- width of crater.

Variable(s) to be kept constant What you keep the same

- diameter of the asteroid
- mass of the asteroid
- height the asteroid is dropped from

Investigating Craters – The Variables

Over the next 2 lessons we will be writing a full science investigation.

- Aim
- Hypothesis
- Method
- Results
- Graph
- Conclusion
- Evaluation

You will be supported throughout this investigation.

Aim: What are you trying to find out in your investigation?

Aim: To investigate how the _______ affects the _______.

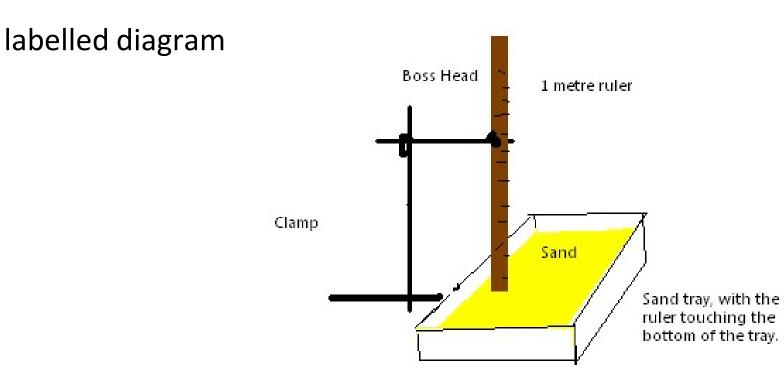
Investigate how changing the...

- diameter of the asteroid
- mass of the asteroid
- height the asteroid is dropped from

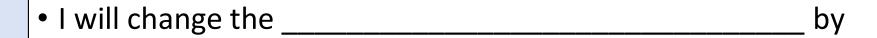
affects the...

- width of crater.
- depth of crater.

Example


the crater.

Hypothesis: What do you think will happen?



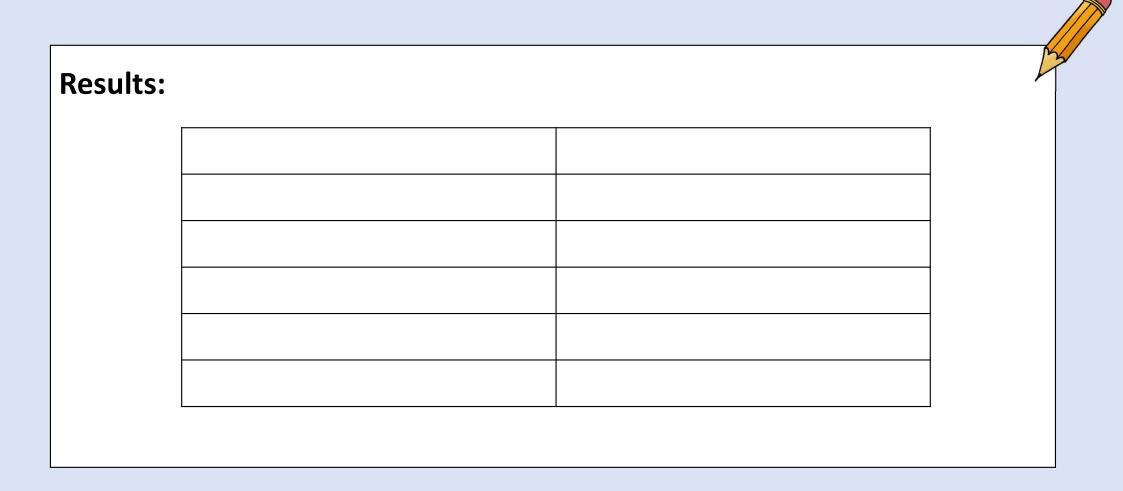
Method: Describe how you will carry out your experiment. Include a

Method: Variables

• I will measure the _____ using

• I will keep the _____

constant.


Teacher Information - Can repeat measurements or not...

the following slides cover both options

Results:

- What will your results table look like?
- How many columns and row to you need?
- What will you heading be?
- Do you need to include units?

Results:

Diameter of asteroid (marble) (cm)	Width of crater (cm)
1.5	
2	
2.5	
3	

Repeating your results

Today we will be repeating our measurement three times and calculating an average. – Why do we want to do this?

To get more accurate and reliable results by reducing errors. Our results will be closer to the true value.

Think about how you will draw your results table with repeat measurements in it.

How do we calculate an average (mean) time?

The **mean** is the **average** of the numbers.

To calculate: **add up** all the numbers, then **divide** by how many numbers there are.

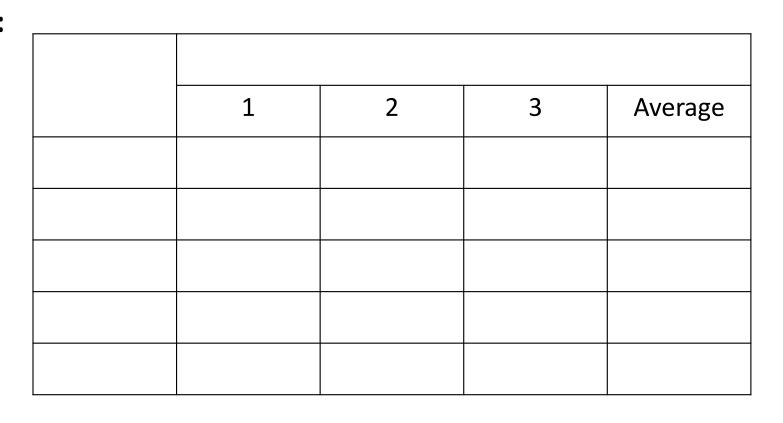
Example: Find the average of

6 2 7 2 3

Step 1: add up all the

numbers

6 + 2 + 7 + 2 + 3 = 20


Step 2: divide by how many numbers

there are

$$20 \div 5 = 4$$

The average is 4.

Results:

Results: record your observations/ measurements in a table. Remember heading and units.

Diameter of		Width of o	crater (cm)	
asteroid (marble) (cm)	1	2	3	Average
1.5				
2				
2.5				
3				

The Surface of the Moon

Learning Intentions:

To explore how craters are formed on the surface of the Moon

Success Criteria

- I can carry out an experiment to show how craters are formed on the surface of the Moon.
- I can write an experiment report with Aim, Method, Results, Graph Conclusion, Evaluation.

Investigating Craters (lesson 2)

Plenary: Exit Pass

1. What did you do well?

- 2. What did you find challenging?
- 3. What question do you need to ask your teacher next lesson?

Investigating Craters (lesson 2)

20/08/2025

NOT in booklet

Starter:

1. Put these scientific investigation headings in the correct order.

Results Conclusion

Title

Hypothesis

Method

Aim

Evaluation

2. Select **two** of them and describe what they mean.

The Surface of the Moon

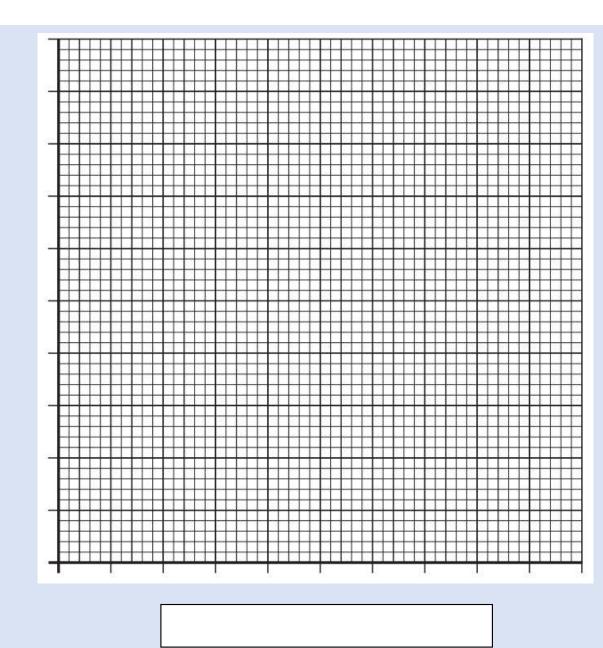
Learning Intentions:

To explore how craters are formed on the surface of the Moon

Success Criteria

- I can carry out an experiment to show how craters are formed on the surface of the Moon.
- I can write an experiment report with Aim, Method, Results, Graph Conclusion, Evaluation.

Spot the mistake

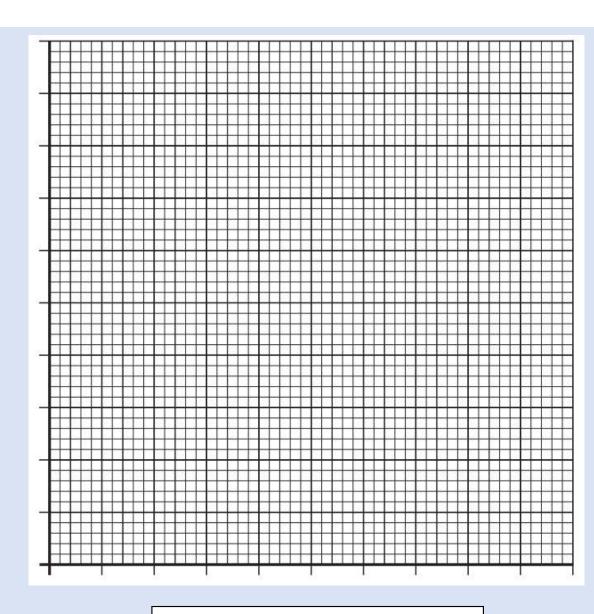

How to draw a line graph

Investigating Craters (Extension)

Page 25

Graph:

Plot a scatter graph with a best fit line.



Page 25

Graph:

Plot a scatter graph with a best fit line.

Width of crater (cm)

Diameter of marble (cm)

Aim: To investigate how the **diameter** of an asteroid from affects the **width of the crater**.

Conclusion: What did you find out? This should your aim.

Measuring Forces

Evaluation: You must identify a factor in your experiment that had a significant effect on the reliability, accuracy or precision of your experiment. You must then explain:

- What you did to minimise the effect of this factor or
- What you could have done to minimise the effect of this factor or
- How you know this factor had a significant effect.

Peer Feedback

Give WOW NOW HOW feedback to someone from another group.

Instructions:

- Carefully read their science report.
- Fill in the NOW WOW HOW feedback sheet
- Return the feedback to your classmate
- Collect and read your peer feedback

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

Peer Feedback

Success Criteria

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

The Surface of the Moon

Learning Intentions:

To explore how craters are formed on the surface of the Moon

Success Criteria

- I can carry out an experiment to show how craters are formed on the surface of the Moon.
- I can write an experiment report with Aim, Method, Results, Graph Conclusion, Evaluation.

Plenary:

Read over your feedback carefully.

- 1. WOW, what is good about this piece of work?
- 2. NOW what needs to be improved?
- 3. HOW can this be improved?

Beyond the Solar System

20/08/2025

Page 27

Starter: Prior knowledge

1. What do we mean by "solar system"?

2. What is beyond our solar system?

Page 27

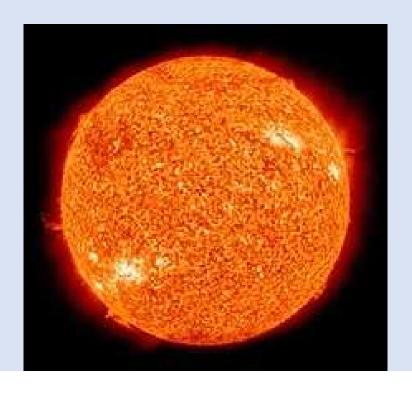
Learning Intentions:

- To state what is meant by the terms: planet, moon, star, solar system, exoplanet, galaxy and universe.
- To understand the scale of the universe.

Success Criteria

- I can explain what is meant by the terms: planet, moon, star, solar system, exoplanet, galaxy and universe.
- I can order space objects by size and distance to show my understanding of the scale of the universe.

"What do you think is beyond Neptune? What part of space is bigger—the Solar System or a galaxy?"

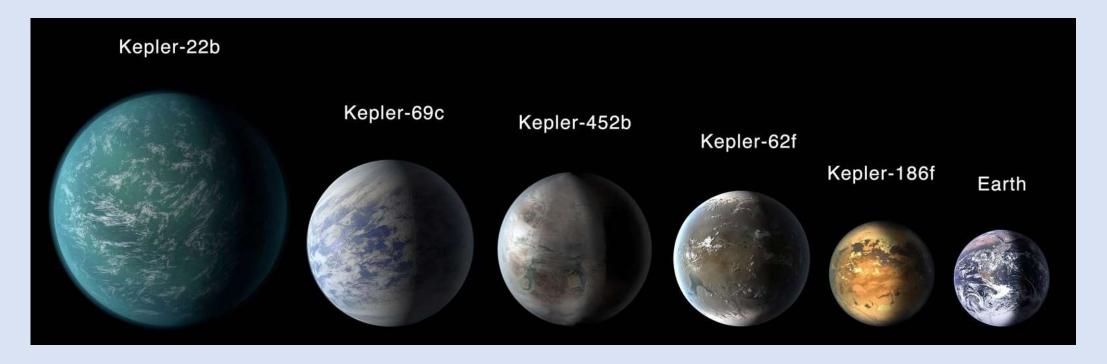

https://youtu.be/v2d-9hjxai8


Star

A star is a huge sphere of gas that emits light and heat. Our Sun is the nearest star to the Earth.

The Sun is one of around 100 billion stars that make up our galaxy.

Many of these stars may have planets, known as exo-planets orbiting them.



Exoplanet

An exoplanet is a planet outside our solar system.

It is a planet which orbits a star other than our own Sun.

More on **exo-planets** later....

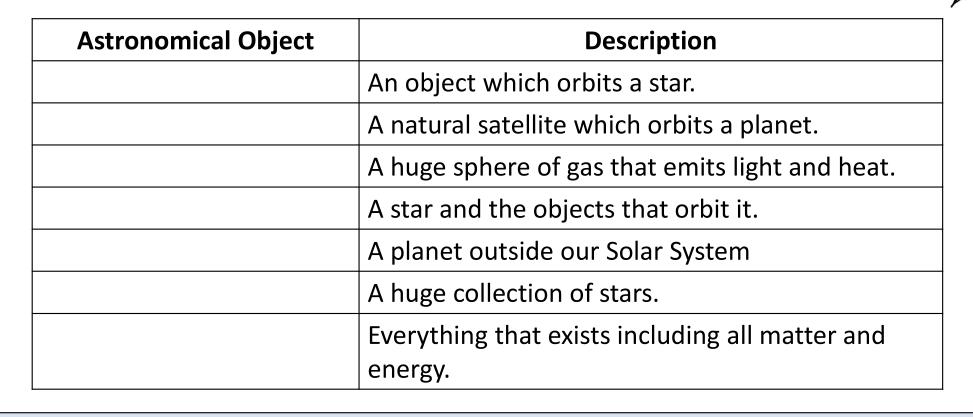
Galaxy

A galaxy is a huge collection of stars, dust and gas, held together by gravity. Our galaxy is called the Milky Way.

The Universe

The Milky Way galaxy is just one of the millions of galaxies that make up the Universe.

The Universe is made up of everything that exists, including planets, stars, galaxies and all forms of matter and energy.


Astronomical Object	Description	Picture
Planet		
Moon		
Star		
Solar System		
Exoplanet		
Galaxy		
Universe		

Card Sort

Planet	An object which orbits a star.	Exoplanet	A planet outside our Solar System.	
Moon	A natural satellite which orbits a planet.	Galaxy	A huge collection of stars.	
Star	A huge sphere of gas that emits light and heat.	Universe	Everything that exists including all matter and energy.	
Solar System	A star and the objects that orbit it.			

Planet	Universe	Solar System	Star
Moon	Exoplanet	Galaxy	

Planet	Universe	Solar System	Star
Moon	Exoplanet	Galaxy	

Astronomical Object	Description	
Planet	An object which orbits a star.	
Moon	A natural satellite which orbits a planet.	
Star	A huge sphere of gas that emits light and heat.	
Solar System	A star and the objects that orbit it.	
Exoplanet	A planet outside our Solar System	
Galaxy	A huge collection of stars.	
Universe	Everything that exists including all matter and	
	energy.	

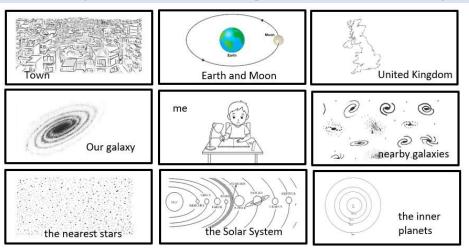
The Scale of the Universe

Use the scale of the Universe animation to explore the sizes of objects in space.

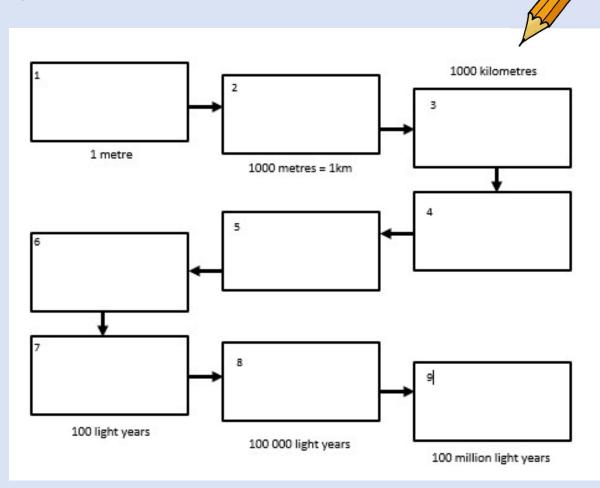
https://scaleofuniverse.com/ or video

How Big Is The Universe? Insider Science (3:49)

The Scale of the Universe


Use the scale of the Universe animation to explore the sizes of objects in space. https://scaleofuniverse.com/ Find the information to complete your table. Choose 2 of your own astronomical objects to investigate.

Page 28


Object	Size	Fact
Moon		
Europa		
Earth		
Sun		
Sirius A		
Milky Way		

The Scale of the Universe

Complete the diagram to show your place in the Universe.

- 1. Cut out the images.
- 2. Put them in the correct order
- 3. Get your teacher to check your work
- 4. Stick them in

The Scale of the Universe

Page 29

Challenge Activities

"Journey Through Space" Story

- Write a creative story or comic strip where you travel outward: Planet \rightarrow Solar System \rightarrow Milky Way \rightarrow Local Group \rightarrow Universe.
- Include correct terminology and distances where possible.

Further Thinking Questions – Choose one.

- If the Earth were the size of a marble, how big would the Sun be? How far away?
 What size/distance would the other planets in the solar system be?
- Why do we say space is 'mostly empty'? What does that actually mean? What's in the space between?
- If galaxies are moving further apart, what does that tell us about the universe?
 Research evidence of the expanding universe and redshift.

The Scale of the Universe

More videos about the scale of the Universe.....

Mind Blowing! ... Earth Compared To The Rest Of The Universe - Amazing Graphic Presentation

VFX Artist Reveals the True Scale of the Universe, Corridor Crew (6:34)

Scale of the Universe

Learning Intentions:

- To state what is meant by the terms: planet, moon, star, Solar System, exoplanet, galaxy and universe.
- To understand the scale of the universe.

Success Criteria

- I can explain what is meant by the terms: planet, moon, star, Solar System, exoplanet, galaxy and universe.
- I can order space objects by size and distance to show my understanding of the scale of the universe.

Beyond the Solar System

Plenary: Test your memory

Choose two word from the list below. What does it mean?

Planet	Universe	Solar System	Star
Moon	Exoplanet	Galaxy	

Page 30

Starter:

1. Put these cosmology terms in order of their size:

Planet
Universe
Star
Solar system
Galaxy
Moon

Smallest → Largest.

2. What force keeps the Earth in orbit around the Sun and gives an object weight?

Learning Intentions:

- To describe what is meant by the terms 'mass' and 'weight'.
- To investigate the relationship between mass and weight.
- To write a scientific report.

Success Criteria

- I can explain the difference between mass and weight
- I can state how to measure mass and weight
- I can plan and carry out an investigation independently.

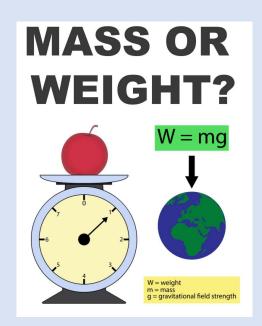
What is mass and weight?

When people say 'weight', what unit do you think they're talking about?"

https://youtu.be/PEQzAbizMYs

Describe the difference between mass and weight.

- What are they?
- How are they measured?
- Can they change?


The mass of an object is a measure of the amount of matter in the object. How much "stuff" there is in it. It does not change if you move the object.

Mass is measured in kilograms (kg) using a balance.

The **weight** of an object is a measure of the **force** exerted on the object due to the pull of gravity on it.

Weight is measured in newtons (N) using a newton balance.

Gravity a pull force that acts on the surface of a planet from the centre. It gives everything its weight. Gravity is measured in newtons per kilogram (N/kg).

Mass

 The mass of an object is a measure of the amount of matter in the object. It does not change if you move the object.

Mass is measured in kilograms (kg) using a balance.

Page 30

Weight

Page 30

• The weight of an object is a measure of the force exerted on the object due to gravity.

• Weight is measured in Newtons (N) using a newton balance.

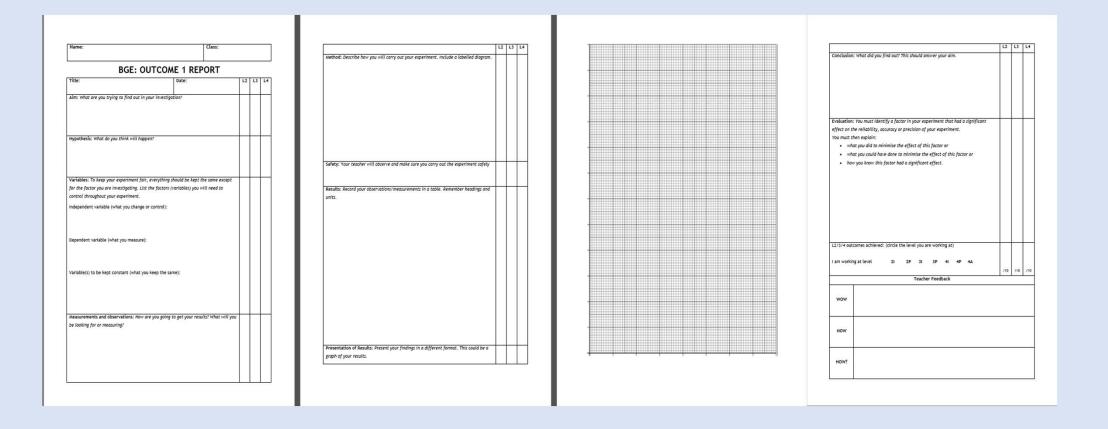
Outcome 1 Report

An Outcome 1 in Science is about showing that you can plan and carry out a scientific investigation.

It means you can:

- Choose a question to investigate
- Decide what things you will measure and how
- Carry out the experiment safely
- Collect and record results carefully
- Say whether your results are reliable or not

Outcome 1 Report


Your Outcome 1 will allow you and your teacher to assess your learning and find out what level you are working at.

You will be working at level 2, 3 or 4 and you teacher will give you feedback about what you can do to progress to the next level.

										-		——
L2/3/4 outcomes achieved: (circle the level you are working at)												
Lam workin	g at level	21	2P	31	3P	41	4P	4A				
T dill World	is at teret	2.	٠.	٥.	٥.							
										/10	/10	/10
			1	Teache	r Feed	back						
												$\overline{}$
WOW												
NOW												
МОМ												
HOW?												

Mass & Weight – Outcome 1 Report

You will be using a template to write your outcome 1 report.

Mass & Weight – Outcome 1 Report

Name:	Class:
Your name	Your class

BGE: OUTCOME 1 REPORT

Date:	L2	L3	L4
14/10/2025			
Aim: What are you trying to find out in your investigation?			
	14/10/2025	14/10/2025	14/10/2025

Investigating Craters – The Variables

Over the next 2 lessons we will be writing a full science investigation.

- Aim
- Hypothesis
- Method
- Results
- Graph
- Conclusion
- Evaluation

You will be supported throughout this investigation.

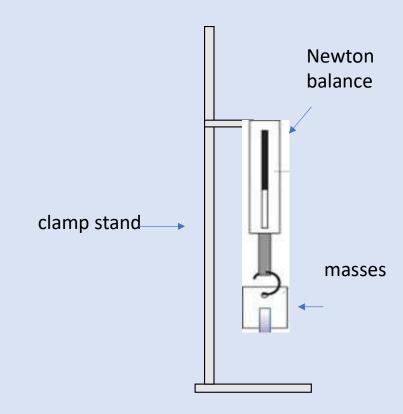
Mass & Weight – Outcome 1 Report

• You can read over the outcome 1 rubric to see what skills are expected at

each level.

Skill Area	Level 2	Level 3	Level 4
	I can ask questions and make simple predictions (what I think will happen) with help.	I can come up with my own questions and predictions using what I already know.	I can make predictions and questions even in tricky situations using what I already know.
Planning and designing investigations	I can spot what I'm changing, what I'm measuring, and what I'm keeping the same (with help).	I can plan a valid investigation (making the test fair) and decide what to change, measure, and keep the same (with a bit of help).	I can plan my own valid investigation clearly and carefully, choosing what to change, measure, and keep the same, and use a control if needed.
	I know some risks and how to be safe.	I can spot most risks and make safe choices.	I think ahead about risks and how to stay safe.
		I help decide what equipment and method to use.	I pick a good range of values to test.
	I use safety rules properly.	I follow safety rules and help keep everyone safe.	I control big risks and work safely.
Carrying out	I help carry out the steps in the experiment.	I collect detailed information using different tools or methods.	I take accurate measurements (with correct units) using the right tools.
activities	using the right equipment and units.	I include a control test (to make comparisons) if	I record data clearly and
	I try to keep the test fair.	needed. I try hard to keep the	carefully using scientific words.
		experiment valid (a fair test).	
Analysing,	I can choose a good way to record my results.	I record my results neatly using the right words and scales.	I record my results neatly in a table and use graphs to look for patterns in my data.
interpreting and evaluating	I can spot patterns between what I changed and what happened.	I can explain what the data shows and link it to my hypothesis (predications).	I explain trends in data clearly and link them to my hypothesis.

	I link my findings back to	I link the results to what I	I suggest other
	my question.	already know in science.	explanations or ideas for future work.
		I can make clear	
	I can explain how it connects to the real world.	conclusions based on my results.	I link my findings to wider science knowledge.
		I think about other	I make a strong conclusion
	I can say what I found out and explain my thinking.	possible explanations or ideas for new experiments.	using data as evidence.
	I can spot anything unusual and suggest why it happened.	I can say how reliable the experiment was and suggest at least two improvements.	I can say how valid and reliable the experiment was and give at least two ways to improve it, with reasons.
	I can suggest one way to make it better next time.	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	I can show my results	I use a range of ways to	I present my results
	using tables and diagrams (with help).	show my results with the right scales such as tables, bar and line	clearly using suitable graphs, tables, and diagrams without help.
		graphs (with some help).	
Presenting scientific	I can present findings as a group or by myself in different ways.	I can explain my findings clearly in writing or when talking.	I choose the best way to present depending on the audience.
findings	n 0 c-		I use data from at least
	I can <u>organise</u> my results using headings or questions with help.	I use the best format for different people (like a report or poster).	two sources to back up my work.
	questions multiletp.	report or poster).	I give full credit to all my
		I include evidence and	sources, like using full
	I use science words and say where I got my	sources (with some help).	web links.
	information (with help).	I	I

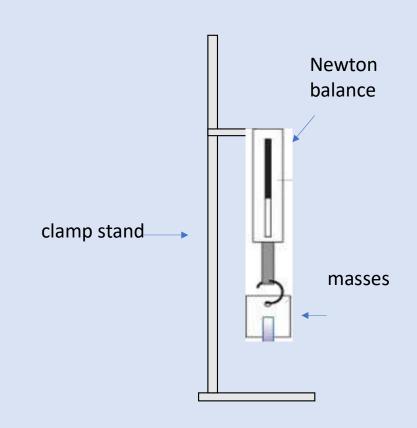

Planning your investigation – the basic instructions

Experiment Instructions

- Investigate the relationship between mass and weight.
- Add masses to the Newton balance and record the weight using the Newton balance.

Safety

- Secure the newton balance with a clamp stand and make sure the clamp is over the base.
- Do not overload the Newton balance 1kg maximum.
- Use masses carefully do not drop them!



Extra Support – not for everyone!

Experiment Instructions

Method:

- Set the Newton balance to zero before starting.
- Hang the first mass of 100 g (0.1 kg) on the hook.
- Record the reading on the Newton balance in newtons (N).
- Repeat with increasing masses 0.2 kg, 0.3 kg, up to 1 kg.
- Record all results in a table.
- Draw a suitable graph of the results.

Mass & Weight– The Variables

Planning your investigation. What factors could you investigate?

Independent variable
What you change or
control

The mass

Dependent variable What you measure

The weight (downwards force) Variable(s) to be kept constant
What you keep the same

- The newton balance
- The position of the mass on the hook (no swinging)
- Masses used
- Zero balance each time

Aim: What are you trying to find out in your investigation?	

Hypothesis: What do you think will happen?

Write your aim – What are you trying to investigate?

Aim: To investigate how the	affects the

Independent variable What you change or control

The mass

Dependent variable What you measure

The weight (downwards force)

Variable(s) to be kept constant What you keep the same

- The newton balance
- The position of the mass on the hook (no swinging)
- Masses used
- Zero balance each time

Hypothesis: When more mass is added the weight will _____.

Variables: To keep your experiment fair, everything should be kept the same except for the factor you are investigating. List the factors (variables) you will need to control throughout your experiment.

Independent variable (what you change or control):

Dependent variable (what you measure):

Variable(s) to be kept constant (what you keep the same):

Mass & Weight–The Variables

Measurements and observations: How are you going to get your results? What will you be looking for or measuring?

Independent variable What you change or control

The mass

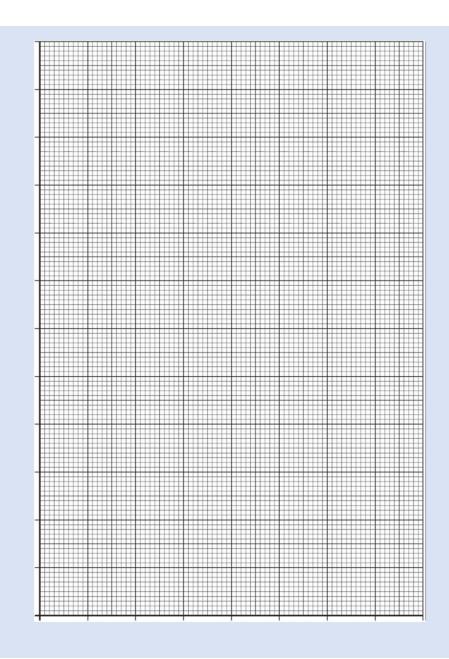
Dependent variable What you measure

The weight (downwards force)

Method: Describe how you will carry out your experiment. Include a labelled diagram.

Safety: Your teacher will observe and make sure you carry out the experiment safely

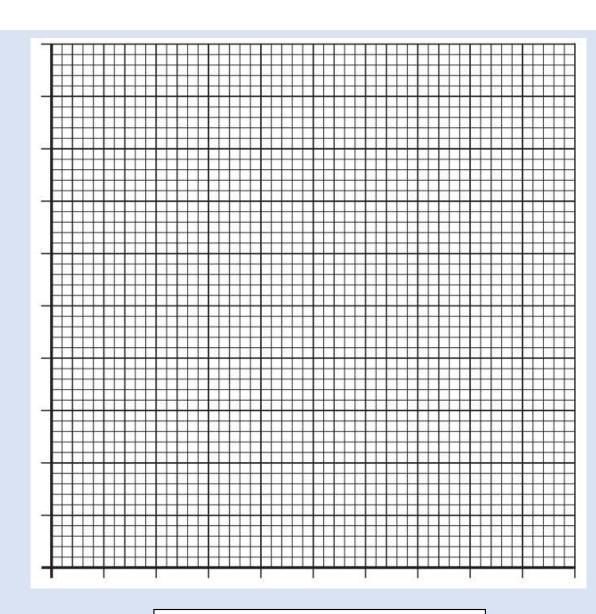
Safety


- Secure the newton balance with a clamp stand and make sure the clamp is over the base.
- Do not overload the Newton balance 1kg maximum.
- Use masses carefully do not drop them!

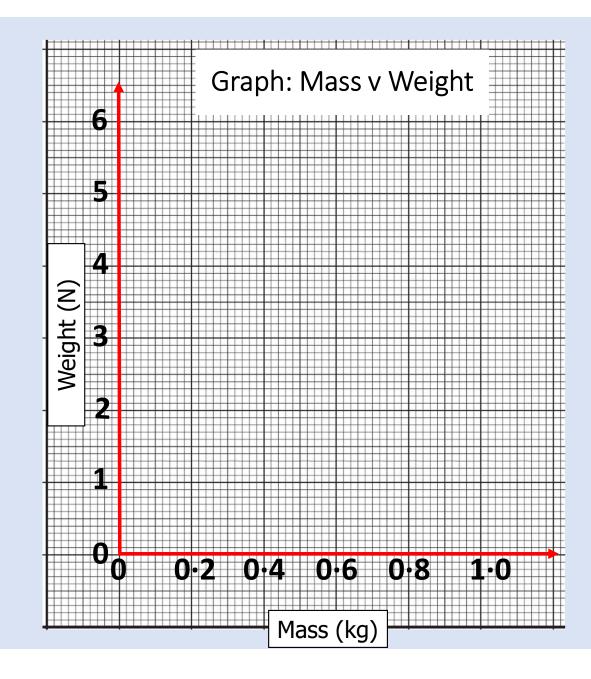
Results: Record your observations/measurements in a table. Remember headings and units.		

Results: Record your observations/measurements in a table. Remember headings and units.

Mass (kg)	Weight (N)
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1.0	


Presentation of Results: Present your findings in a different format. This could be a graph of your results.

Graph:


Plot a scatter graph with a best fit line.

Width of crater (cm)

Diameter of marble (cm)

Plot a scatter graph with a **best fit line**.

Conclusion: What did you find out? This should answer your aim.		

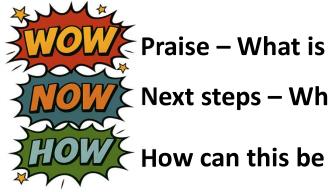
Evaluation: You must identify a factor in your experiment that had a significant effect on the reliability, accuracy or precision of your experiment.

- You must then explain:
- what you did to minimise the effect of this factor or
- what you could have done to minimise the effect of this factor or
- how you know this factor had a significant effect.

Learning Intentions:

• To write an Outcome 1 scientific report

Success Criteria


- I can plan an investigation
- I can carry out an investigation safely
- I can write a scientific report to include an Aim

Peer Feedback - Optional

Success Criteria – see pupil rubric

Instructions:

- Carefully read their science report.
- Fill in the NOW WOW HOW feedback sheet
- Return the feedback to your classmate
- Collect and read your peer feedback

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

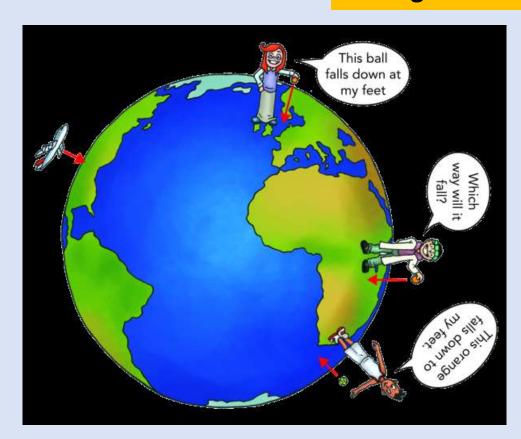
How can this be improved?

Mass & Weight

Plenary:

Read over your feedback carefully.

- 1. WOW, what is good about this piece of work?
- 2. NOW what needs to be improved?
- 3. HOW can this be improved?


20/08/2025

Calculating Weight

Starter: Prior Knowledge

1. What's the difference between mass and weight?

- 2. What force gives an object weight?
- 3. What happens to you if you stand on the Moon? How is this different from Earth?

Page 31

20/08/2025

Page 31

Learning Intentions:

To use the relationship W = mg.

To learn that the force of gravity changes on different planets.

Success Criteria

I can use the relationship W = mg to calculate weight.

I can explain why weight changes on other planets.

I can describe the effect gravitational field strength has on weight.

The weight of an object depends on the mass of the object and the size of the gravitational field strength.

Page 31

Newtons kilograms the amount of the force due to matter gravity

yes no nothing gravity

	Unit	What does it measure?	Is it always the same?	What makes it change?
Mass				
Weight				

We can use the following relationship to calculate the weight of an object:

This can be written as:

$$W = m \times g$$

The gravitational field strength on Earth is roughly 10 N/kg.

 $W = m \times g$

Name	Symbol	Unit	Unit symbol
Weight	W	newtons	N
Mass	m	kilograms	kg
Gravitational field strength	g	Newtons per kilogram	N/kg

Calculate the weight of an 800 kg elephant.

Identify what you know from the question and what you are being asked to find. This can be written at the side or underlined in the question.

$$W = m g$$

$$W = 800 \times 10$$

$$W = 8000 N$$

Write out the equation (relationship)

Substitute in what you know

Write the answer with units

Calculate the weight of an 800 kg elephant.

$$W = ?$$

m = 800 kg

g = 10 N/kg

Identify what you know from the question and what you are being asked to find.
This can be written at the side or underlined in the question.

$$W = m g$$

$$W = 800 \times 10$$

$$W = 8000 N$$

Write out the equation (relationship)

Substitute in what you know

Write the answer with units

Class Questions

Page 33

Calculate the weight of the following:

- 1. A pupil whose mass is 35 kg
- 2. A car whose mass is 600 kg
- 3. A 5 kg bag of potatoes
- 4. A 0.5 kg bag of rice
- 5. A 0.1 kg bar of chocolate

Show ALL your working and lay it out as shown in the previous question.

The gravitational field strength on Earth is roughly 10 N/kg.

- 1. A pupil whose mass is 35 kg
- 2. A car whose mass is 600 kg
- 3. A 5 kg bag of potatoes
- 4. A 0.5 kg bag of rice
- 5. A 0.1 kg bar of chocolate

Page 33

Gravitational field strength

- 1. Is the force of gravity the same on Earth and in space?
- 2. Is the force of gravity the same on every planet?

Gravitational field strength

Page 35

The **gravitational field strength** is different on other planets, the Sun and Moon.

The greater the gravitational field strength the greater your **weight** would be on that planet.

Your **mass** is not affected by gravity and will always stays the same.

	Gravitational field strength (N/kg)
Mercury	4
Venus	9
Earth	10
Mars	4
Jupiter	23
Saturn	9
Uranus	9
Neptune	11
Moon	1.6
Sun	270

Gravitational field strength

Page 35

- 1. What is the value of gravity on the Earth's Moon?
- 2. What happens to your weight when you travel from the Earth to the Moon?
- 3. What happens to your weight when you travel from the Earth to Jupiter?
- 4. Calculate the weight of a 200 kg object on Mercury.

	Gravitational field strength (N/kg)
Mercury	4
Venus	9
Earth	10
Mars	4
Jupiter	23
Saturn	9
Uranus	9
Neptune	11
Moon	1.6
Sun	270

Practice Questions

Practice Problems: Calculating Weight

weight = mass x gravity

W = m x g

- 1. On which planet is gravity strongest?
- 2. On which three other planets would your weight be <u>similar to</u> what it is on Earth?
- Imagine you could travel to Mars. Your mass on Earth is 50 kg. State your mass Mars.
- 4. Calculate the weight of a 10 kg crate on Venus.
- 5. Calculate the weight of a 0.5 kg packet of cornflakes
 - a. on Earth
 - b. on the Moon
 - c. in Space?

Explain why the Sun's gravitational field strength is much bigger than the gravitational field strength of a planet.

- 7. On which planet do you think you could jump the highest Mars or Venus? Explain your answer.
- 8. A small tin of oil has a mass of 0.3 kg.
 - a. Calculate the weight of the oil on Earth.
- b. What would be the mass of the tin of oil on Jupiter?
- c. Calculate the weight of the oil on Jupiter.
- 9. An object on the moon weighs 4.8 N. Calculate its mass.
- An object on Venus weighs 27 N. Calculate its mass.

Pages 36 & 37

Write your own question

On a post it note or whiteboard.

Write a force question for someone else to answer.

Write the question on the front and the answer on the back.

Learning Intentions:

To use the relationship W = mg.

To learn that the force of gravity changes on different planets.

Success Criteria

I can use the relationship W = mg to calculate weight.

I can explain why weight changes on other planets.

I can describe the effect gravitational field strength has on weight.

Plenary:

Your mass on Earth is 60 kg.

Determine your:

- 1. weight on Mercury
- 2. mass on Saturn
- 3. weight on Neptune

	Gravitational field strength (N/kg)
Mercury	4
Venus	9
Earth	10
Mars	4
Jupiter	23
Saturn	9
Uranus	9
Neptune	11
Moon	1.6
Sun	270

Friction

Page 38

Starter: Prior Knowledge

1. What's the formula to calculate weight?

2. If an object has a mass of 2 kg, what is its weight on Earth?

3. What is friction? What can it do to an object?

Page 38

Learning Intentions:

 To learn how friction affects the movement of objects and how it can be useful or a problem.

Success Criteria

- I can describe what friction is and when it occurs.
- I can identify everyday examples where friction is helpful (e.g. brakes, grip) or unhelpful (e.g. slowing things down).
- I can predict and explain how different surfaces affect the amount of friction.

Page 38

What this video about friction - https://youtu.be/VgZTmT2TEso.

Then answer the questions in your booklet.

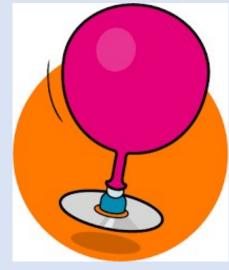
- Comprehension Questions
- What is friction, and how does it affect moving objects?
 Friction is a force that slows things down when two surfaces rub together
- 2. Why is it easier to slide on ice than on a rough carpet? Ice is smooth and has less friction, so things slide more easily.)
- 3. Name one situation where friction is helpful and one where it's a problem?
 - Helpful: car tyres grip the road; Problem: machines wearing down or getting hot.

If there was no friction there would be no grip – you could not walk, pencils couldn't write on paper, you would not be able to run, jump, hold on to a tennis racket.

Page 39

- Friction is a force between two or more objects. It happens when two objects are in contact with each other.
- Friction acts in the opposite direction to movement.
- A large frictional force causes an object to slow down more than a small frictional force.

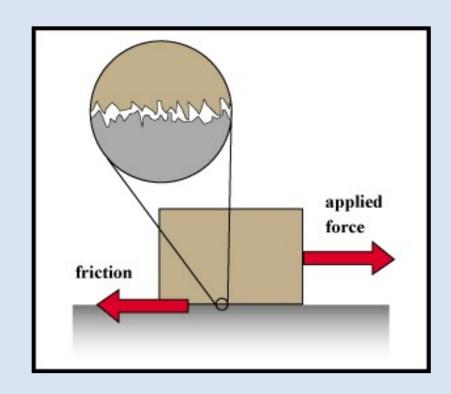
<u>Hands</u>


When you rub your hands together what do you feel?

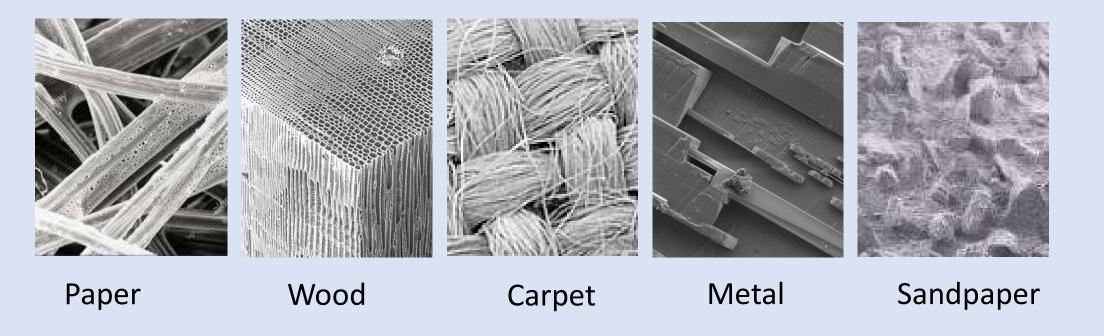
Textbooks

What happens when you try to pull the textbooks apart?

Hoovercraft


What happens when you let go of the balloon?

A Demonstration of Friction | Physics – Bitesize Science

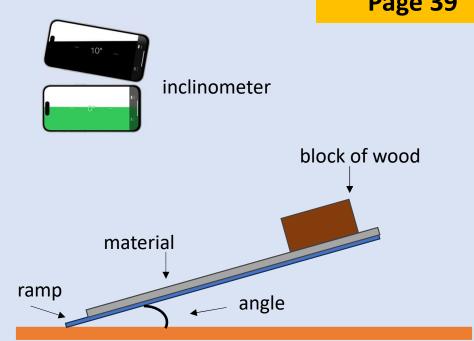

 Friction is a force which exists when two surfaces touch.

 No surface is completely smooth. When two surfaces touch tiny bumps and ridges on one surface can rest in the hollows of the other.

Investigating the friction of different materials

How does the type of material affect friction?

Aim: What are you trying to find out in your investigation?			Page 39
To investigate how different _	materials	affect the amou	nt of
<u>friction</u> between su	urfaces.		


```
Hypothesis: What do you think will happen?

I think that rougher surfaces will increase / decrease friction.
```

Experiment Instructions

Method:

- Place a block on the ramp, with the ramp lying horizontal to the bench.
- Carefully lift the ramp at ne end until the block begins to move.
- Hold the ramp int the position where the block starts to move. Measure the angle of the slope with a protractor or a digital inclinometer (on phone).
- Change the surface and repeat the experiment.

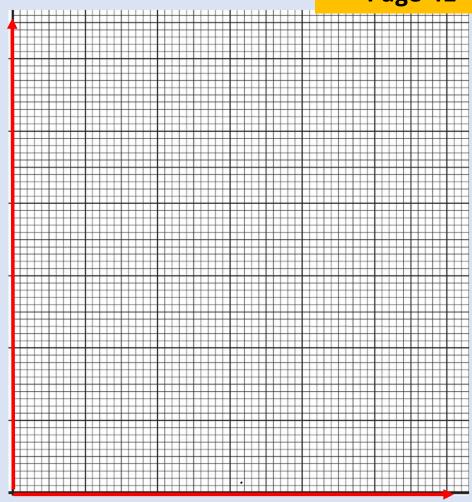
Page 39

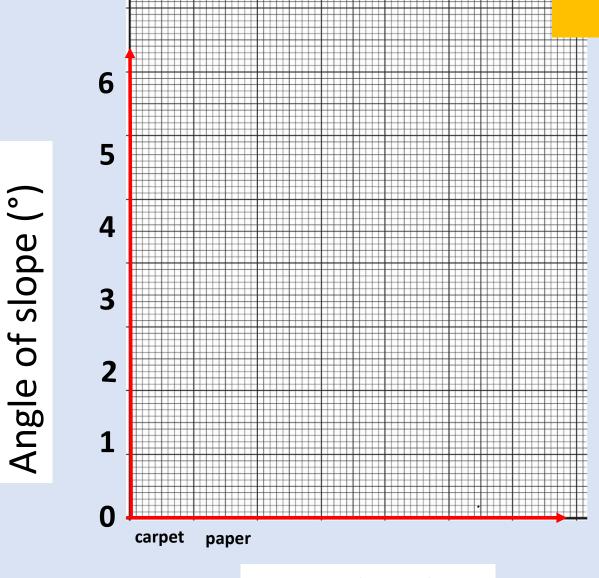
Variables: To keep your experiment fair, everything should be kept the same except for the factor you are investigating. List the factors (variables) you will need to control throughout your experiment.

Independent variable (what you change or control):

Dependent variable (what you measure):

Variable(s) to be kept constant (what you keep the same):


Results: Record your observations/measurements in a table. Remember headings and units.


Type of surface	Angle of slope (°)

Presentation of Results: Present your findings in a different format. This could be a graph of your results.

Which graph is the most suitable?

- A line graph
- A bar graph
- A scatter graph with best fit line
- A pie chart

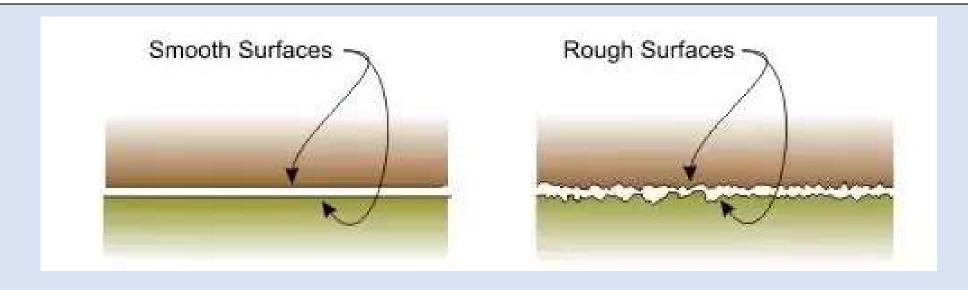
Page 41

Type of surface

Page 41

Friction and Surfaces

Conclusion: What did you find out? This should answer your aim.				


Friction and Surfaces

Evaluation: You must identify a factor in your experiment that had a significant effect on the reliability, accuracy or precision of your experiment.

- You must then explain:
- what you did to minimise the effect of this factor or
- what you could have done to minimise the effect of this factor or
- how you know this factor had a significant effect.

Friction and Surfaces

- **Smoother** surfaces have **less** friction than rougher surfaces. Less force is needed to make the surfaces slide across each other.
- **Rougher** surfaces have **more** friction than smoother surfaces. More force is needed to make the surfaces slide across each other.

Changing Friction

Page 42

Is Friction being increased of decreased in these situations?

- 1. Car tyres on a wet road
- 2. Wearing rubber-soled shoes
- 3. Adding oil to a machine
- 4. Putting sand or grit on an icy path
- 5. Using brakes on a bicycle
- 6. Using smooth plastic on a slide

Changing Friction

Page 43

Think of real-life situations where people might want to **increase** friction (for more grip or control) or **decrease** friction (to make movement easier).

List at least three ways to increase friction and three ways to decrease friction.

Ways to Increase Friction

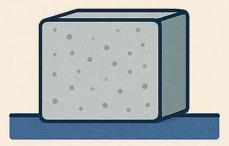
Ι.

2.

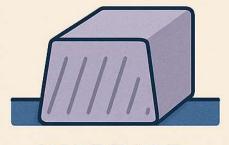
3.

Ways to Decrease Friction

1.


2.

3


Ways to Increase Friction

ADD TEXTURE

MAKE SURFACES ROUGHER

INCREASE SURFACE AREA

USE TREAD

Changing Friction

- Ways to Increase Frictio
- 1. Add texture
- 2. Rough surfaces
- 3. Increase surface area
- 4. Use treads
- 5.Increase weight

Add texture

Increase surface area

Rough surfaces

Use treads

Changing Friction

Lubricate (oil, wax etc.)

Use ball bearings

Reduce contact area

Streamline

Increase weight

- Ways to Decrease Friction
- 1. Lubricate (oil, wax etc.)
- 2. Use ball bearings
- 3. Reduce contact area
- 4. Streamline
- 5. Smooth surfaces

Friction

Learning Intentions:

 To learn how friction affects the movement of objects and how it can be useful or a problem.

Success Criteria

- I can describe what friction is and when it occurs.
- I can identify everyday examples where friction is helpful (e.g. brakes, grip) or unhelpful (e.g. slowing things down).
- I can predict and explain how different surfaces affect the amount of friction.

Friction

Plenary: True or False

- 1. Friction always slows things down.
- 2. Smooth surfaces create more friction than rough ones.
- 3. Lubrication increases friction.
- 4. Friction is helpful when walking.

- 1. True
- 2. False
- 3. False
- 4. True

Page 44

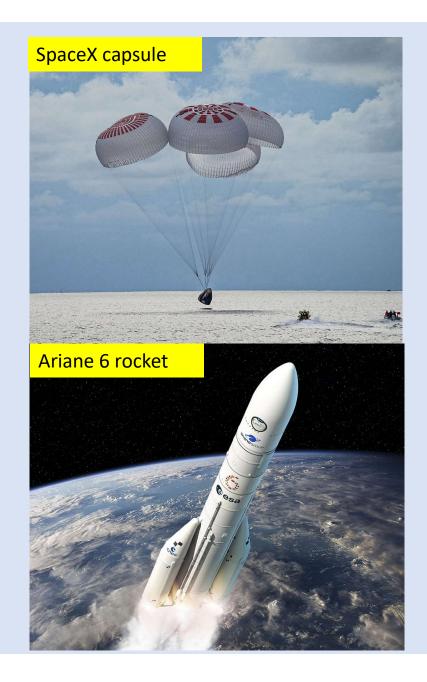
Starter: Prior Knowledge

- What is friction?
- 2. How does surface texture affect friction?
- 3. Name one way to reduce friction.

Page 44

Learning Intentions:

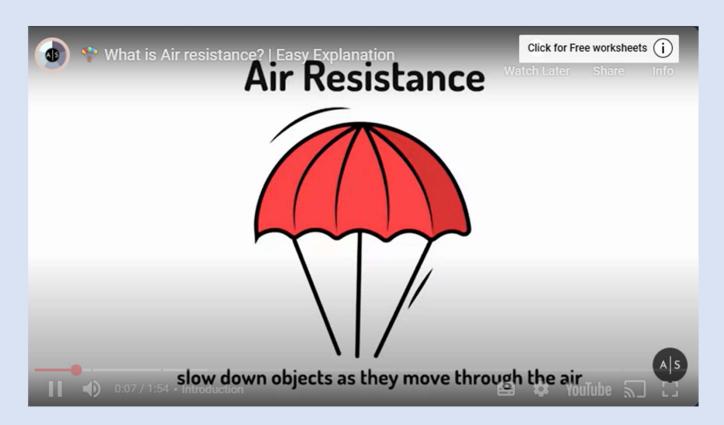
- I will learn what air resistance (drag) is and how it affects moving objects.
- I will explore how shape, surface area, and speed change the amount of air resistance.
- I will carry out an investigation to observe the effects of air resistance.


Success Criteria

- I can define air resistance as a force that slows objects moving through air.
- I can identify factors that increase or decrease air resistance (e.g. shape, size, speed).
- I can predict and explain the motion of falling objects with different surface areas.
- I can investigate how air resistance affects falling speed.

What is Air Resistance?

1. What is air resistance?


2. Where have you seen or experience air resistance in real life?

Page 44

Air Resistance and Drag

Watch the following video and write down 3 facts.

https://youtu.be/x6ovQErh4Mw

Air Resistance and Drag

A simple demo of air resistance – Which falls slower? Explain why.

Air Resistance and Drag

Page 45

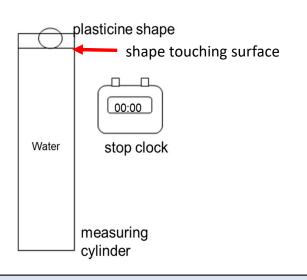
Air resistance is a type of friction that happens when something moves through air. It pushes against the motion of the object, trying to slow it down.

Drag is another word for air resistance — they mean the same thing.

However, drag can happen in liquid and air.

The faster an object moves, the more air resistance it feels.

Pages 44 to 48


Air Resistance and Drag

Complete one of the following investigations:

Title: Streamlining

Aim: To investigate which shape is the most streamlined.

Method:

Title: Air Resistance

Aim: To investigate how increasing the area of the parachute affects the falling time.

Method:

parachute

mass

Repeating your results

Today we will be repeating our measurement three times and calculating an average. – Why do we want to do this?

To get more accurate and reliable results by reducing errors. Our results will be closer to the true value.

Think about how you will draw your results table with repeat measurements in it.

How do we calculate an average (mean) time?

The **mean** is the **average** of the numbers.

To calculate: **add up** all the numbers, then **divide** by how many numbers there are.

Example: Find the average of

6 2 7 2 3

Step 1: **add up** all the numbers

$$6 + 2 + 7 + 2 + 3 = 20$$

Step 2: **divide** by how many numbers there are

$$20 \div 5 = 4$$

The average is 4.

Air Resistance and Drag

Your teacher will give you an information sheet so you can plan and complete your experiment in your group.

Title: Streamlining

Aim: To investigate which shape is the most streamlined.

Important Safety Instructions

- Place the measuring cylinder on a flat surface to prevent tipping.
- Clean up spills immediately Water on the floor can be slippery.
- Work close to the sink.

Title: Air Resistance

Aim: To investigate how increasing the area of the parachute affects the falling time.

Important Safety Instructions

- Stand on a stable surface Never climb on chairs or desks without supervision.
- Watch your surroundings Make sure the drop zone is clear before releasing the parachute.

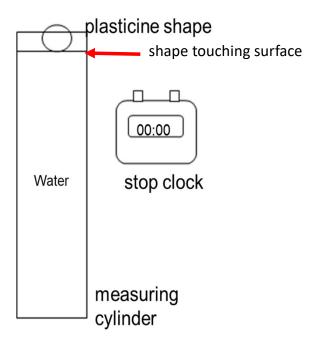
The next few slides a for Teacher use to show to groups who need support.

Aim: What are you trying to find out in your investigation?

Page 45

To investigate which shape is the most streamlined.

Hypothesis: What do you think will happen?


Variables: To keep your experiment fair, everything should be kept the same except for the factor you are investigating. List the factors (variables) you will need to control throughout your experiment.

Independent variable (what you change or control):

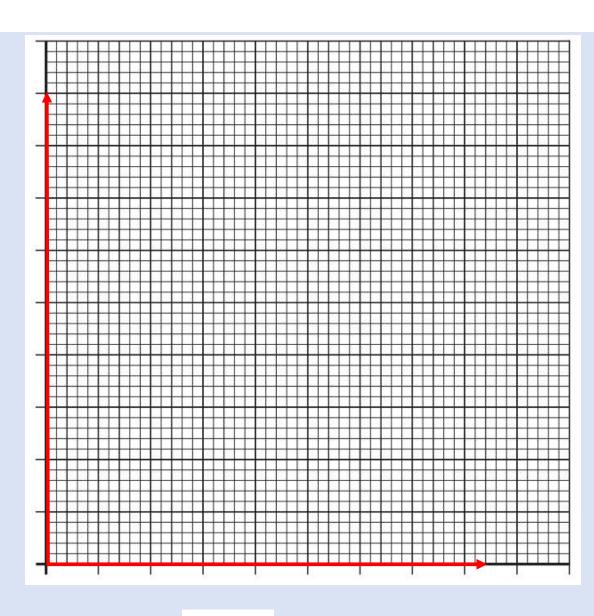
Dependent variable (what you measure):

Variable(s) to be kept constant (what you keep the same):

Method: Describe how you will carry out your experiment. Include a labelled diagram.

Results: Record your observations/measurements in a table. Remember headings and units.

Shape of Plasticine	Time taken to fall (s)			
Plasticine	1	2	3	Average
			Rei	member:


The **mean** is the **average** of the numbers.

To calculate: **add up** all the numbers, then **divide** by how many numbers there are.

Page 47

Extension: Plot a bar graph

Average time taken to fall (s)

Shape

Page 48

Conclusion: What did you find out? This should answer your aim.	

Evaluation: You must identify a factor in your experiment that had a significant effect on the reliability, accuracy or precision of your experiment.

- You must then explain:
- what you did to minimise the effect of this factor or
- what you could have done to minimise the effect of this factor or
- how you know this factor had a significant effect.

Challenge Question Streamling Experiment: Can you make a shape which travels down in

- a. 3.0s
- b. 1.0 s
- c. under 0.5s

Draw the shape when you hit the target time.

Parachutes

Aim: What are you trying to find out in your investigation?

To investigate how increasing the area of the parachute affects the falling time.

Hypothesis: What do you think will happen?

Parachutes

Variables: To keep your experiment fair, everything should be kept the same except for the factor you are investigating. List the factors (variables) you will need to control throughout your experiment.

Independent variable (what you change or control):

Dependent variable (what you measure):

Variable(s) to be kept constant (what you keep the same):

Parachutes

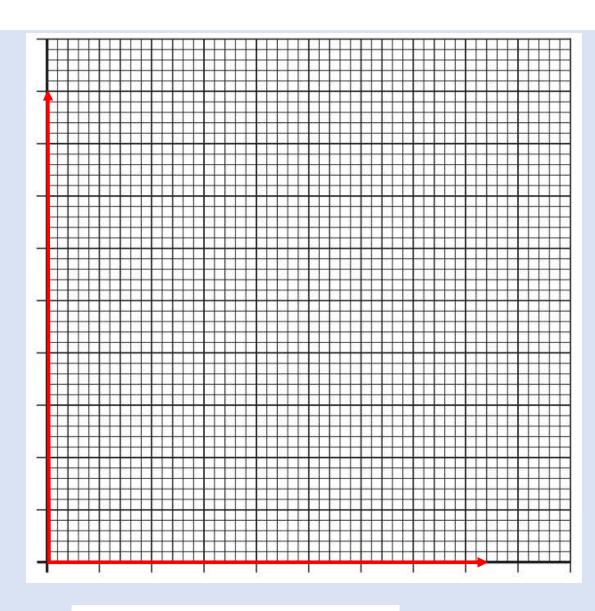
Method: Describe how you will carry out your experiment. Include a label diagram.	lled

Air Resistance and Drag

Results: Record your observations/measurements in a table. Remember headings and units.

Area of	Time taken to fall (s)			
parachute (cm²)	1	2	3	Average
100				
400				
900			Ramai	mhar:

The **mean** is the **average** of the numbers.


To calculate: **add up** all the numbers, then **divide** by how many numbers there are.

Parachutes

Page 47

Extension: Plot a scatter graph with a best fit line.

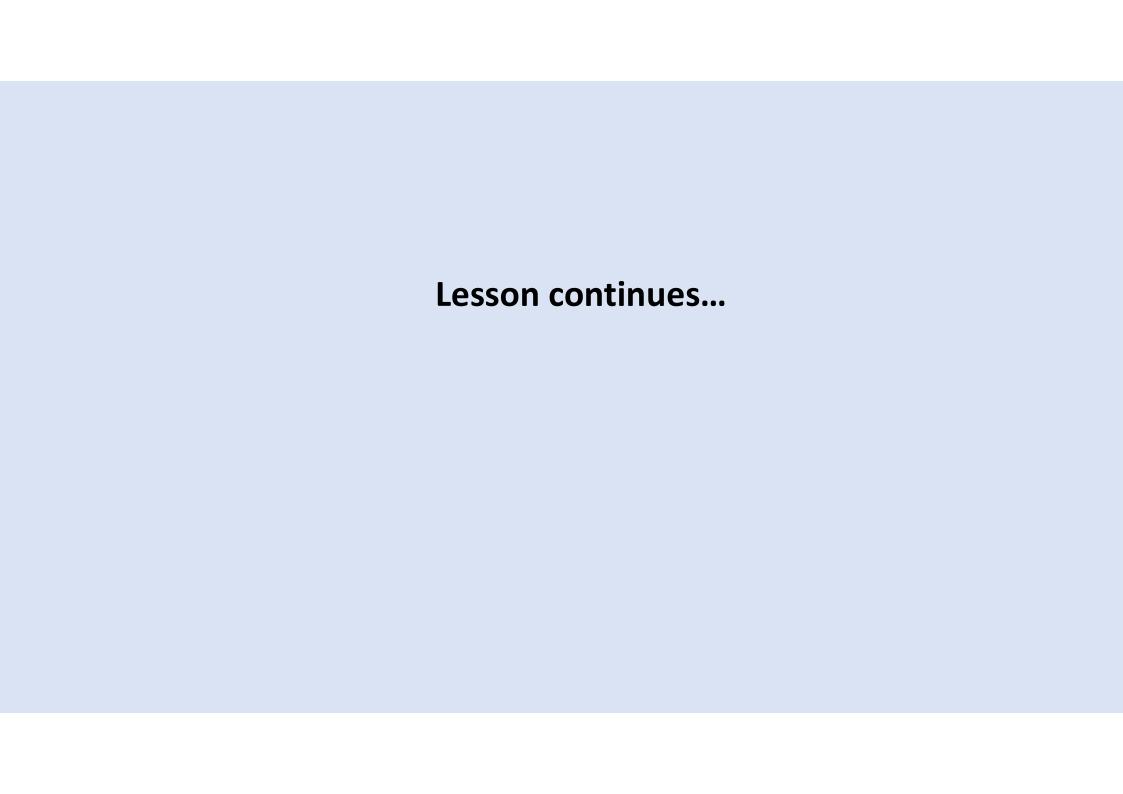
Average time taken to fall (s)

Area of parachute (cm²)

Parachutes

Conclusion: What did you find out? This should answer your aim.	Page 48
Concident titrate and you jirra out. This should all street your airm	

Parachutes


Evaluation: You must identify a factor in your experiment that had a significant effect on the reliability, accuracy or precision of your experiment.

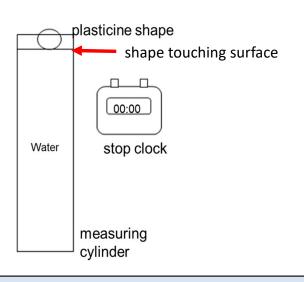
- You must then explain:
- what you did to minimise the effect of this factor or
- what you could have done to minimise the effect of this factor or
- how you know this factor had a significant effect.

20/08/2025

Parachutes

Challenge Question Parachutes Experiment:	

Air Resistance and Drag


Share your conclusions with the class.

Title: Streamlining

Aim: To investigate which shape is the

most streamlined.

Method:

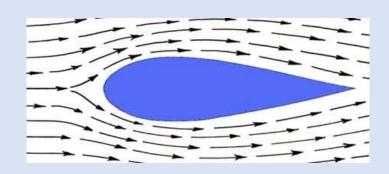
Title: Air Resistance

Aim: To investigate how increasing the area of the parachute affects the falling time.

Method:

parachute

mass


Air Resistance and Drag

Page 49

Streamlining means shaping an object to reduce air or water resistance (drag), helping it move faster.

Streamlined shapes face less friction, while wide or flat shapes (like parachutes) feel more drag and slow down.

Examples of drag - streamlining (an aerodynamic shape) to increase speed.

Examples of drag - spee decreasing

Challenge Questions: Streamlining and Drag

- 1. What does it mean to streamline an object?
- 2. Why do streamlined objects move faster?
- 3. What is drag?
- 4. Which shape feels more drag: a smooth cone or a flat wide sheet?
- 5. Why does a parachute fall slowly?
- 6. How can we reduce drag on a moving object?
- 7. Give one example of a streamlined object in real life.
- 8. What forces slow an object down in air or water?

Air Resistance and Drag

Learning Intentions:

- I will learn what air resistance (drag) is and how it affects moving objects.
- I will explore how shape, surface area, and speed change the amount of air resistance.
- I will carry out an investigation to observe the effects of air resistance.

Success Criteria

- I can define air resistance as a force that slows objects moving through air.
- I can identify factors that increase or decrease air resistance (e.g. shape, size, speed).
- I can predict and explain the motion of falling objects with different surface areas.
- I can investigate how air resistance affects falling speed.

Air Resistance and Drag

Plenary: How does the shape of the plane match its speed...?

20/08/2025

Page 50

Starter: Prior Knowledge

- 1. What forces slow an object down in air or water?
- 2. Draw a force diagram to show the forces acting on spacecraft returning to Earth.
- 3. How do we explore space?

20/08/2025

Page 50

Learning Intentions:

- To state the methods used to observe and explore space.
- To describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.

Success Criteria

- I can name different ways we observe space (e.g. telescopes, satellites).
- I can explain how space exploration has helped us understand Earth's weather, climate, or resources.

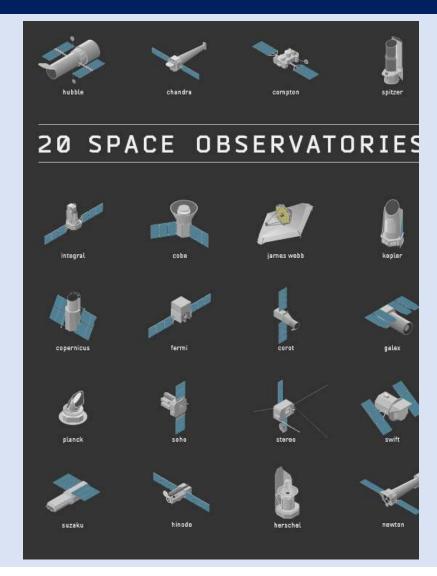
Until the middle of the twentieth century, the only way to explore space was through observing it by eye.

Galileo was an Italian astronomer who first used a telescope to look at the sky.

Space Observation

Many ground based observatories were built to observe light coming from space using telescopes.

Scotland has a number of working observatories. The most recent is the Scottish Dark Sky Observatory in the Galloway Forest park. The lack of light pollution in that area makes it ideal for observing the night sky.



Space Observatories

In 1968, America launched the first telescope into orbit.

These telescope (space observatories) eliminate the problems caused by light pollution.

Light pollution is when the observation of stars and planets is made more difficult due to the night sky in town and cities being brightened by street lights and other artificial lights.

Space Observatories - Telescopes

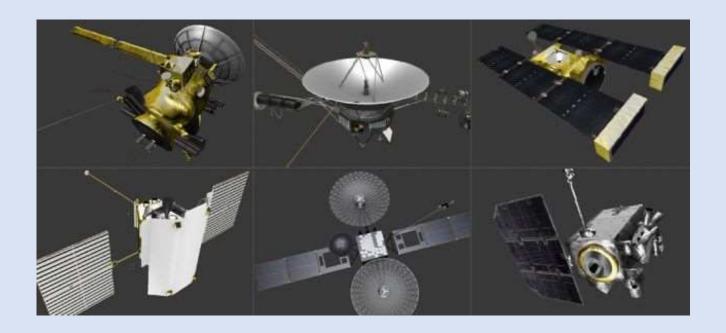
Space observatories such as the Hubble Space Telescope and the Kepler Observatory have significantly improved astronomers' understanding of the

Universe.

Telescopes are used to detect radiation from all sections of the electromagnetic spectrum.

Space Observatories - Telescopes

The Hubble telescope can view light from all parts of the electromagnetic spectrum. Images taken from the Hubble telescope have helped astronomers understand how the Universe has changed over time. It was launched into low Earth orbit in 1990 and remains in operation.


This is the first image taken by the Hubble telescope.

The Kepler observatory was launched in 2009 and is designed to discover Earth – sized planes orbiting around other stars. The Kepler telescope was retired in 2018. It detected 2,662 planets.

Space Probes

Space Probes are a robotic unmanned spacecraft used to explore space. Many nations have sent space probes into space to explore other planets, moons, asteroids and comets.

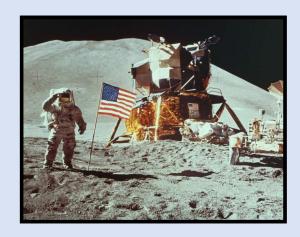
Missions involving space probes last for several years due to the large distances they need to travel.


Space Probes

Voyager 1 is the longest lasting NASA mission to date. It was launched in September 1977 and has explored Jupiter, Saturn and their moons.

It is now travelling out with our Solar System into interstellar space. It still send data back to Earth.

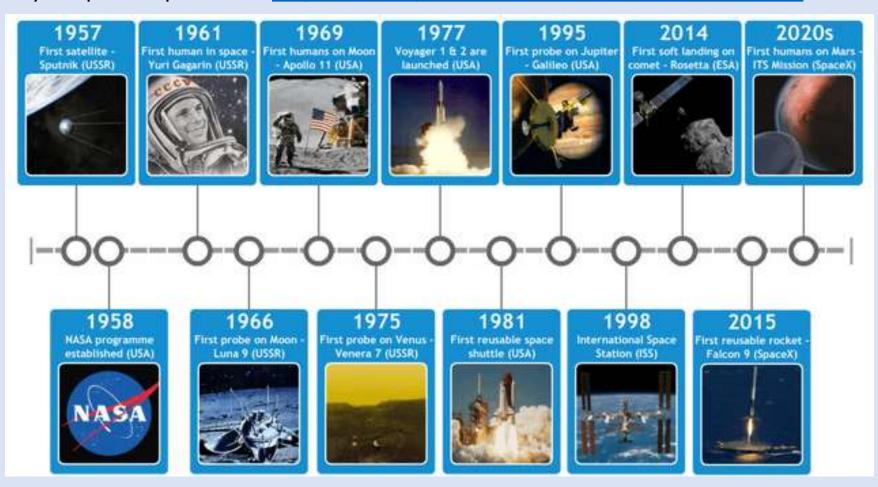
Some probe land robots on planets. The robotic rover, Curiosity has been on Mars since 2012 studying its climate and geology.



Manned Space Mission

- is space travel with a crew or passengers aboard the spacecraft.

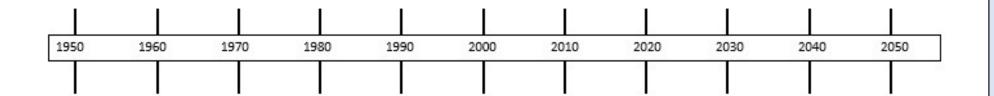
- The first human in space was Yuri Gagarin, who flew the Vostok 1 spacecraft, launched by the Soviet Union in 1961.
- Humans have flown to the Moon nine times from 1968 to 1972 in the United States Apollo program.
- Humans have been continuously present in space on the International Space Station since November 2000.

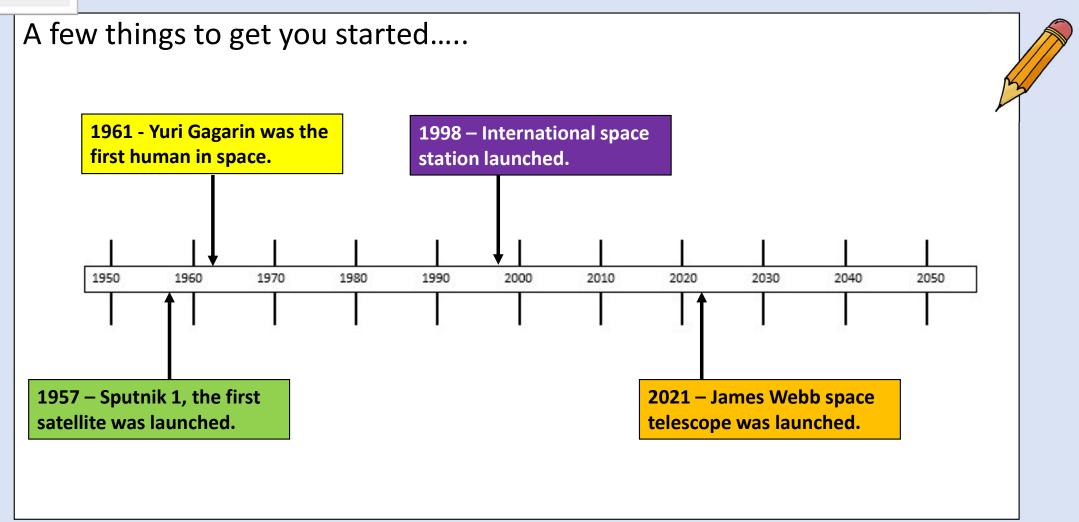

Page 50

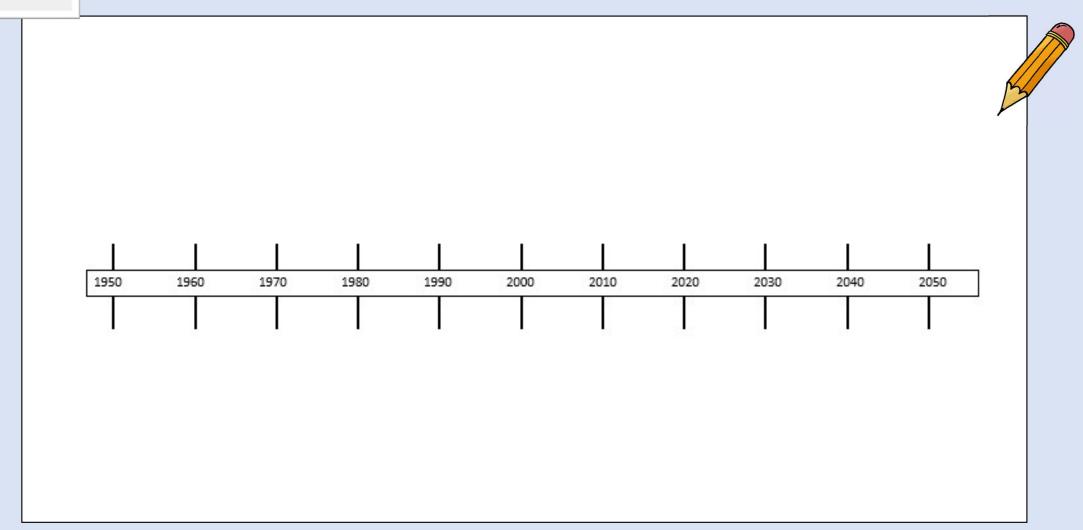
Space can be explored through:

- Observation using telescopes on Earth and in space
- Space probes
- Manned space mission

Quick history of space exploration: https://www.youtube.com/watch?v=PLcE3AI9wwE




Create your own space exploration timeline. You can focus on a specific type of exploration (space probes, manned mission etc.) or choose events which interest you.


Search online to research the major events and add them to your timeline.

Space Exploration

Learning Intentions:

- To state the methods used to observe and explore space.
- To describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.

Success Criteria

- I can name different ways we observe space (e.g. telescopes, satellites).
- I can explain how space exploration has helped us understand Earth's weather, climate, or resources.

Space Exploration

Plenary:

- 1. List the three way we explore space.
- 2. Write down one fact or mission you found out about today?
- 3. What will you do to improve your timeline next lesson?

Space Exploration

Page 52

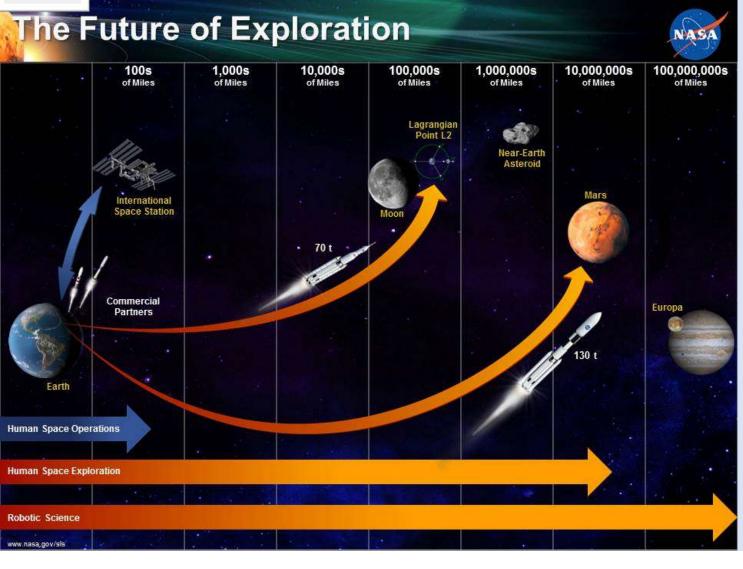
Starter: Prior Knowledge

 Which works better: telescopes on Earth or telescopes in space – and why?

2. Explain why there aren't many manned space mission compared to space probes.

Page 52

Learning Intentions:

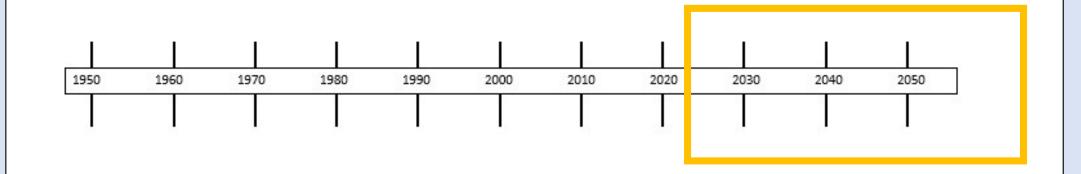

- To describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.
- To evaluate benefits and challenges of space travel.

Success Criteria

- I can name different ways we observe space (e.g. telescopes, satellites).
- I can explain how space exploration has helped us understand Earth's weather, climate, or resources.
- I can give an opinion on whether space travel is worth it, with a reason.

The Future of Space Exploration

The future of space exploration involves both telescopic exploration and the physical exploration of space by unmanned robotic space probes and human spaceflight.


The Future of Space Exploration

Page 51

Think about future

Research important current or future events and add them to your timeline.

Extension: Space Probes Research

Choose one space probe. Carry out some basic research into your probe, answering at least the following:

- What is a space probe?
- What... did the probe look like?
- Who... sent it up?
- When... what date?
- Where... was it launched from?
- Why... was it sent up?
- Where ... is your probe now?

Include some photographs to make your research look interesting!

List of space probes:

Sputnik – there was more than one!

Pioneer – there was more than one!

Voyager - there was more than one!

Mariner - there was more than one!

Mars Rover - there was more than one!

Rosetta

New Horizons

Galileo

There are also space telescopes to go looking into

space ...

Hubble Space Telescope

Kepler Space Telescope

James Webb Telescope

Page 53

The Future of Space Exploration

Page 52

Challenge Question:

How has space travel improved life on Earth and changed our understanding of the universe?

Prompts to Guide Thinking:

- What everyday technologies have come from space travel?
- How has space exploration helped us understand Earth better (e.g. climate, weather)?
- What new discoveries have we made about space since the first missions?
- How has our view of the universe changed over time (e.g. from geocentric to Big Bang)?
- What have space telescopes and probes revealed about planets, stars, and galaxies?

Suggested sources:

ESA, NASA websites, BBC Bitesize, National Geographic Kids

The Future of Space Exploration

Page 52

Structure help:

- Introduction: What is space travel?
- Part 1: Benefits on Earth (tech, health, communication)
- Part 2: Understanding of the universe (key discoveries)
- Conclusion: Why this matters today

Space Exploration

Learning Intentions:

- To state the methods used to observe and explore space.
- To describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.

Success Criteria

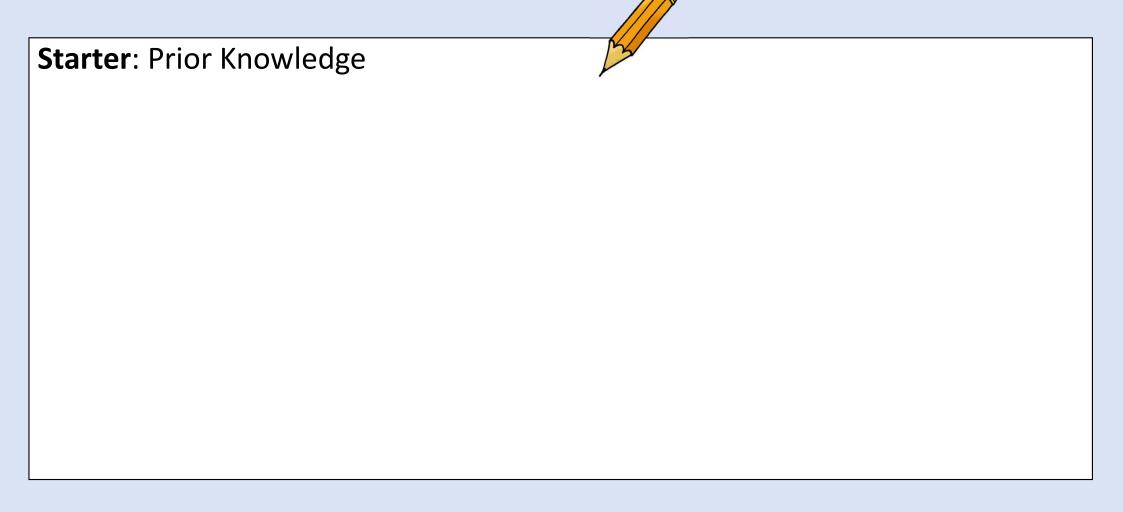
- I can name different ways we observe space (e.g. telescopes, satellites).
- I can explain how space exploration has helped us understand Earth's weather, climate, or resources.

20/08/2025

Beyond the Solar System

Plenary:

- 1. What are the **benefits** of space exploration?
- 2. What are the **risks** of space exploration?


Success Criteria

- ☐ I can state the methods used to observe and explore space.
- ☐ I can describe the impact that space observation and exploration has had on our understanding of the

Tick me at the end if **you can**

Revision

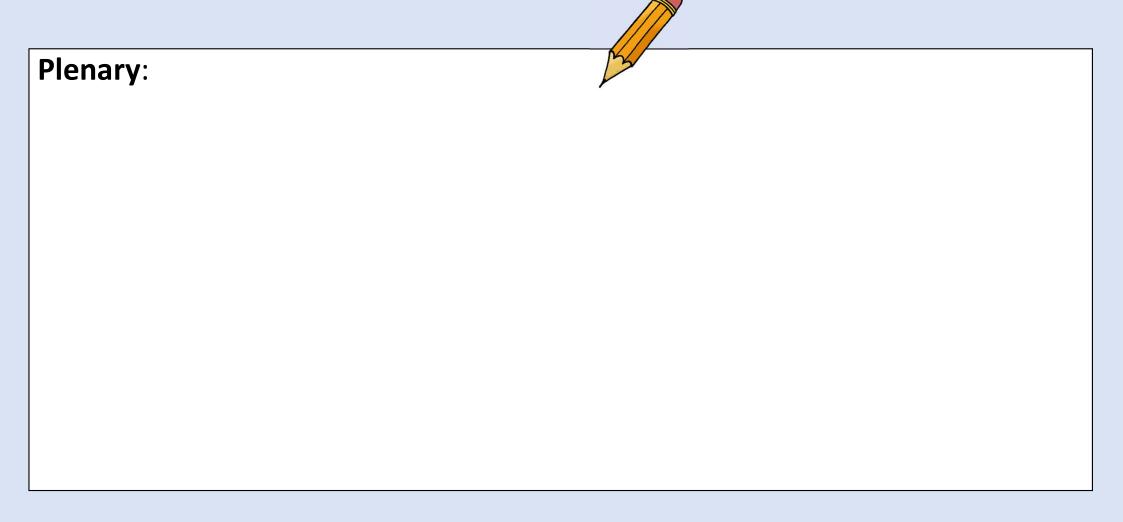
Revision

Revision Tasks:

- 1. Knowledge organiser
- 2. Quiz
- 3. Problem Solving Practice
- 4. Challenge Questions

Revision

Learning Intentions:


To review key concepts and prepare for assessment.

Success Criteria

- I can complete knowledge organiser and quiz.
- I can know what I need to do to prepare for my assessment.

20/08/2025

Revision

Forces & Space Assessment

Starter: Get organised for your Forces & Space Assessment.

Equipment needed:

- Pencil or pen
- Rubber
- Ruler
- Calculator
- Test Paper

Assessment Expectations

No talking to or distracting others.

If you have a question raise your hand and wait for your teacher to come to you.

When finished:

Hand your assessment to your teacher

Log on to Teams and complete the task set

Feedback & Intro to AVU

20/08/2025

Page 54

Starter: Prior Knowledge

- 2. Was there anything you found difficult or confusing?
- 3. Do you have any ideas to make the lessons better?

Or complete learner feedback form!

QR code here if available.

Page 54

Learning Intentions:

- To receive feedback from assessment
- To start AVU research on Exoplanets.

Success Criteria

- I know what level I'm working at
- I know my next steps and what I need to do to improve
- I can explain what is required for life to survive on a planet.

Praise – What is good about this piece of work?

Next steps – What needs to be improved?

How can this be improved?

Introduction to AVU: Life Beyond Earth

Humans often wonder if there is life in space......

Life does not mean human-like life. Bacteria and plants are also forms of life!

If there is life in other parts of the universe, it may not be of a similar form to life on Earth at all.

Life Beyond Earth

We know of only one planet in the universe that contains life......

Earth

Requirements of life

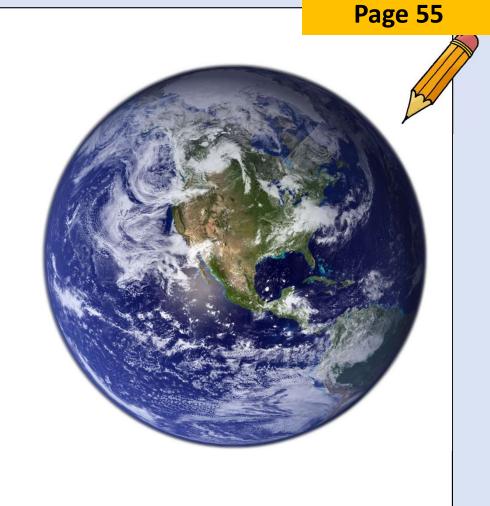
É

What is required for life on Earth?

Requirements for Life

The requirements for life on Earth are:

Liquid water


Oxygen – to allow respiration

Food - nutrients

•

Energy from the sun

- to provide warmth.

Page 55

There are very few places in the Solar System, other than on

Earth, that life could have evolved and still be thriving today. A

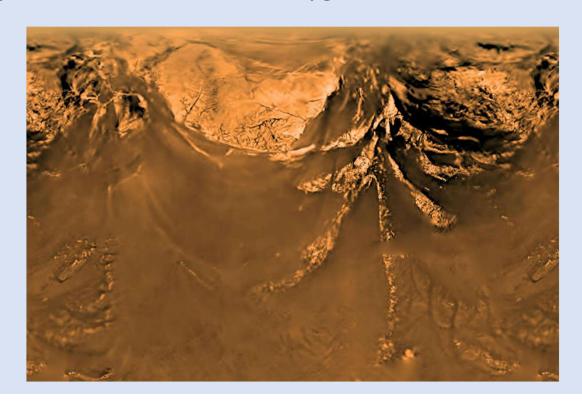
few possibilities are ____Europa (Jupiter's moon)

Titan (Saturn's moon) and Mars

Find out why these areas may support life

Europa

Europa is one of Jupiter's moons.


There may be a large volume of liquid water below the icy surface which could support some form of life.

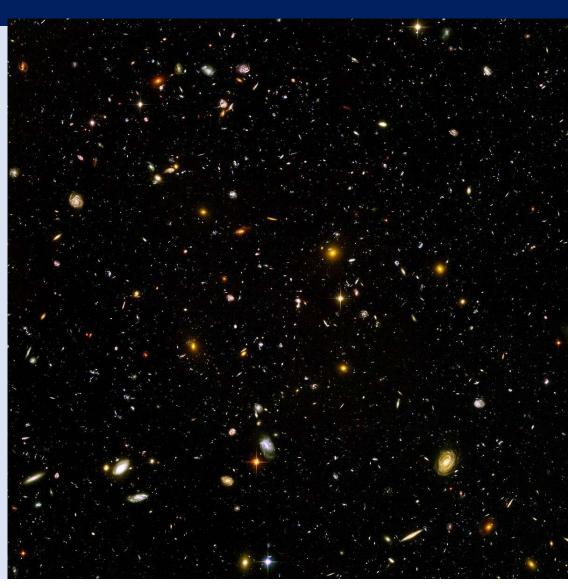
https://www.bbc.co.uk/bitesize/guides/zmwfr82/revision/4

Titan


Titan is the largest of Saturn's moons. Its atmosphere is pure methane and life as we know it on Earth would never survive there. However, it is possible that life could evolve to respire using methane rather than oxygen.

Mars

Mars is like Earth but has no signs of life. It has water ice at both poles. Features on its surface, such as valleys, may have been created by historic


liquid water.

Life in the rest of the universe

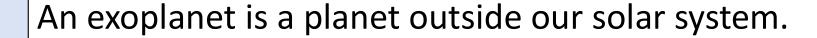
There is no real evidence of life in our Solar System.

- Could there be life outside our solar system?
- Where could scientists look?

Life in the rest of the universe

There are billions of stars in our galaxy and an estimated 200 billion galaxies in the universe.

Each one of these stars may have planets and moons.


These **exoplanets** and moons may harbour life.

What is an **exoplanet**?

Exoplanets

Page 56

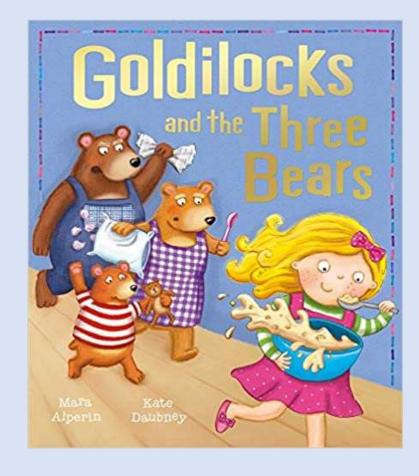
Life in the rest of the universe

What is the likelihood of finding life on another planet?

Introduction to Exoplanets-ROE

How many have we found now?

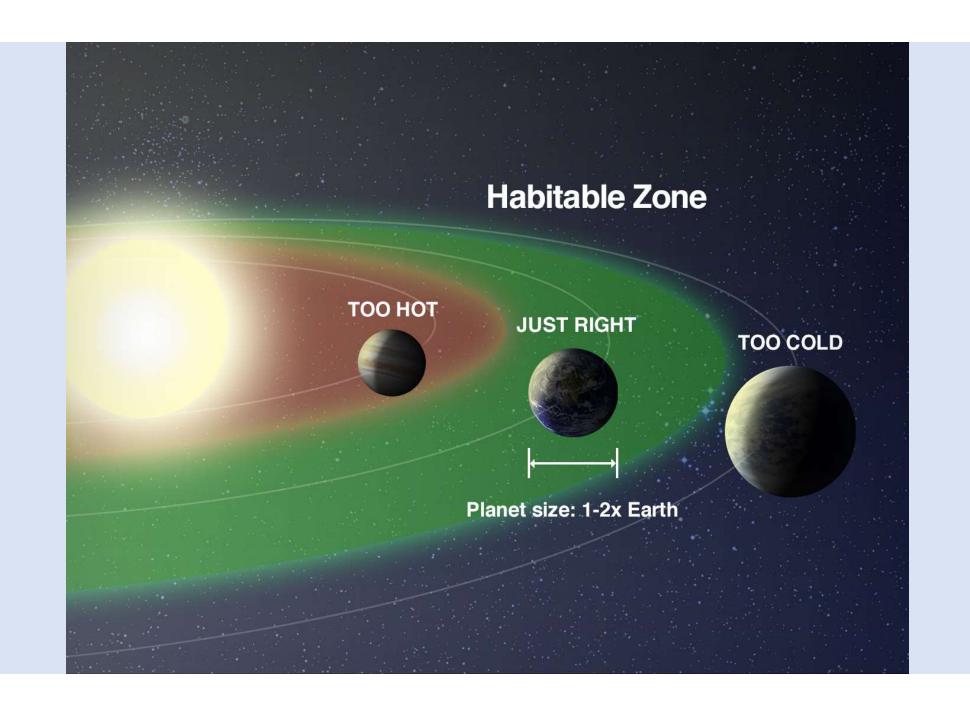
NASA Discovery Dashboard


The Habitable Zone

The **habitable zone** is the name given to an area around a star which is

'just right' for life.

Why is it also called the **Goldilocks zone?**



The Habitable Zone

The <u>habitable</u> zone (Goldilocks zone) is the name given to an area around a star which is 'just right' for life.

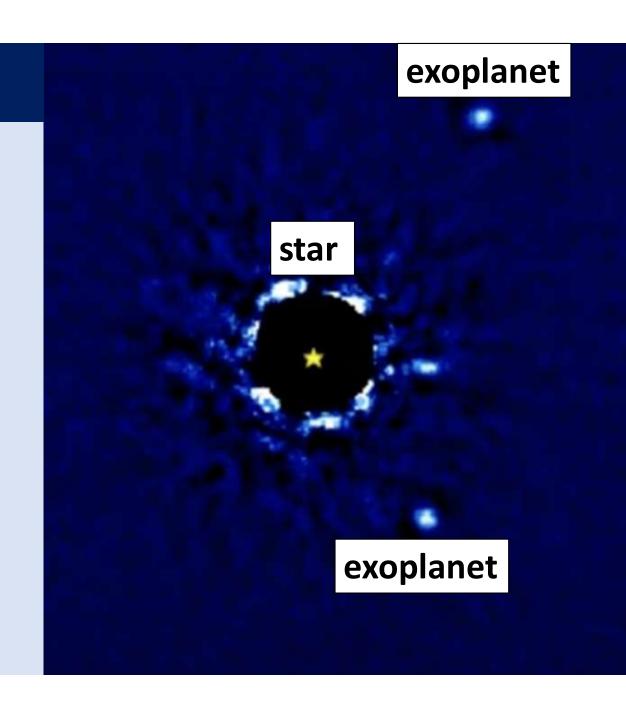
This area is not too <u>hot</u> or too <u>cold</u> for liquid water to exist on a planet.

Looking for exoplanets

Discovering exoplanets is extremely difficult. They are so far away that we cannot simply look through a regular telescope and see them.

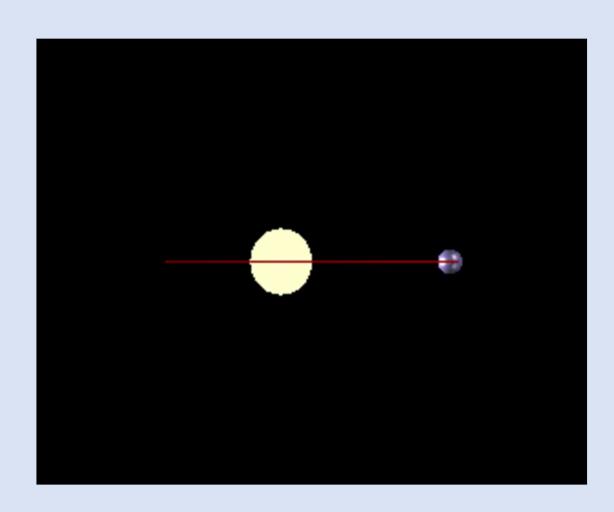
This means that exoplanet-hunting astronomers need to use some clever techniques!

How to Find an Exoplanet: minutephysics 2.35


Exoplanets 101 | National Geographic (3:53)

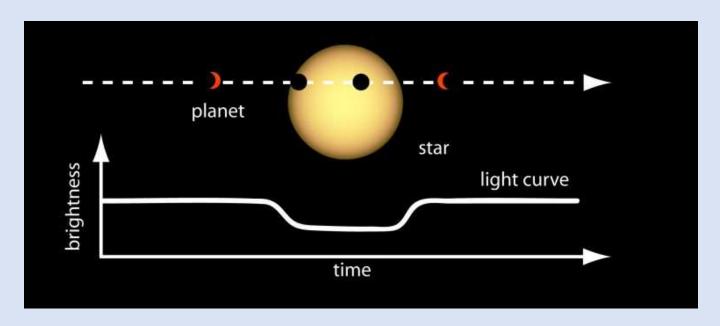
Direct Imaging

Exoplanets are very small, and faint compared to the stars that they orbit, this makes seeing them through a regular telescope difficult.


Scientist can block the light from the star to help see the exoplanets that are orbiting it.

Wobble Method

As a planet orbits a star, the planet's gravity pulls on the star, making the star wobble.


This wobble is evidence of an exoplanet.

Transit Method

The transit method is where astronomers detect very small changes in the brightness of stars.

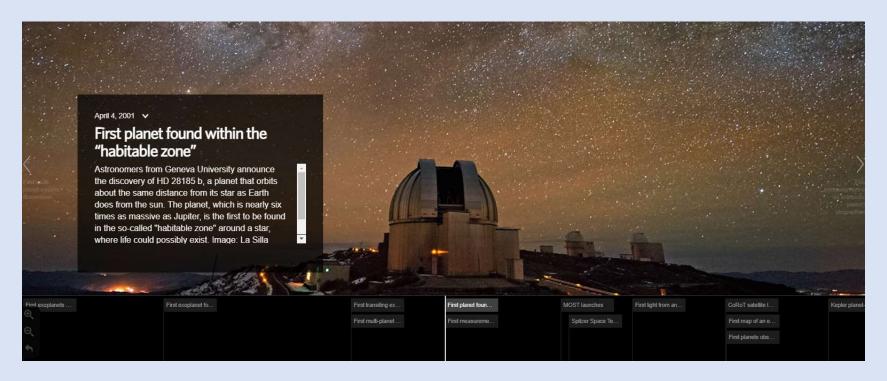
When a planet passes in front of its star, it causes the light level from the star to drop slightly. The changes are observed over many years to prove a planet is orbiting a star.

Simulation: https://svs.gsfc.nasa .gov/13022

Finding Exoplanets

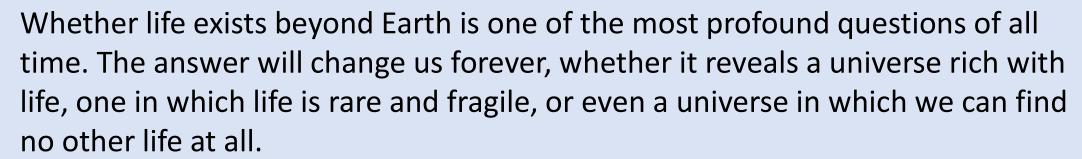
Page 56

Exoplanets are very far away. They are also verysm	all and
faint compared to the stars that they orbit. Thi	s makes seeing
them through a regular telescope difficult	_•


Finding Exoplanets

Detection Method	How it works Page S
Direct imaging	Taking a picture of an exoplanet with a telescope
Wobble method	As the exoplanet orbits a star, the exoplanet's gravity pulls on the star, making the star wobble.
Transit method	Astronomers detect very small changes in the brightness of stars as an exoplanet passes in front of a star and blocks out a little bit of the star's light.

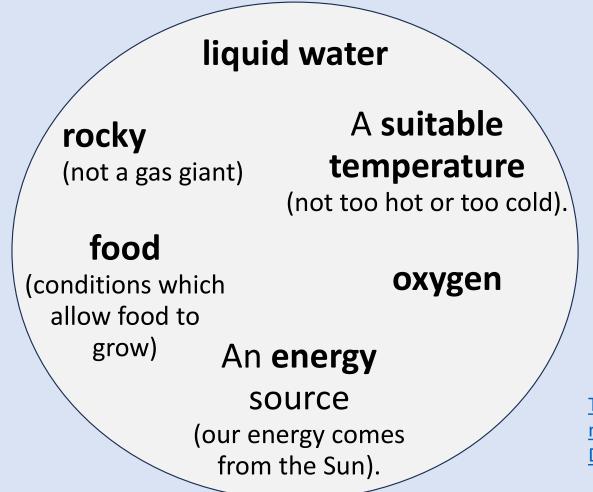
Finding Exoplanets


Explore the NASA Exoplanet Exploration Historic Timeline.

Find out about the Hubble Space Telescope, MOST, Spitzer Space Telescope, CoRoT satellite launched, Kepler Space Telescope, TESS

The Planet Hunters

Why do we search?


The hunt for an answer also is revealing important details about our own place in the universe – where we came from, how life came about and, perhaps, where we're headed.

The goal of NASA's Exoplanet Program is to find unmistakable signs of current life.

A habitable exoplanet - what are we looking for?

The conditions for a habitable exoplanet are:

Page 57

TED talk - What a planet needs to sustain life | Dave Brain.

Life elsewhere in the Universe

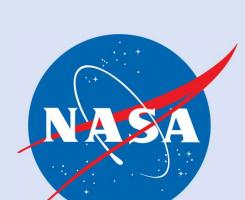
Page 56

Class Question

Use all the information in this section to explain, with reasons, whether you think there is life elsewhere. Think about the requirement for life, what is meant by life and the size of the Universe.

Different Exoplanets

Extension


Page 57

What Is an Exoplanet? NASA (4:34)

Exoplanet Types: Worlds Beyond Our Solar System (1:42)

Exoplanets: Weird, Wondrous Worlds (1:59)

Looking for Exoplanets

Plenary:

Congratulations! You have now completed "Space".

Think about the whole topic and complete one of the thoughts below.

The part I enjoyed the most was.....

One thing I need to remember is.....

I was successful when

Expectations and Outcomes Learner Evaluation

• Topic: Space

Page 2

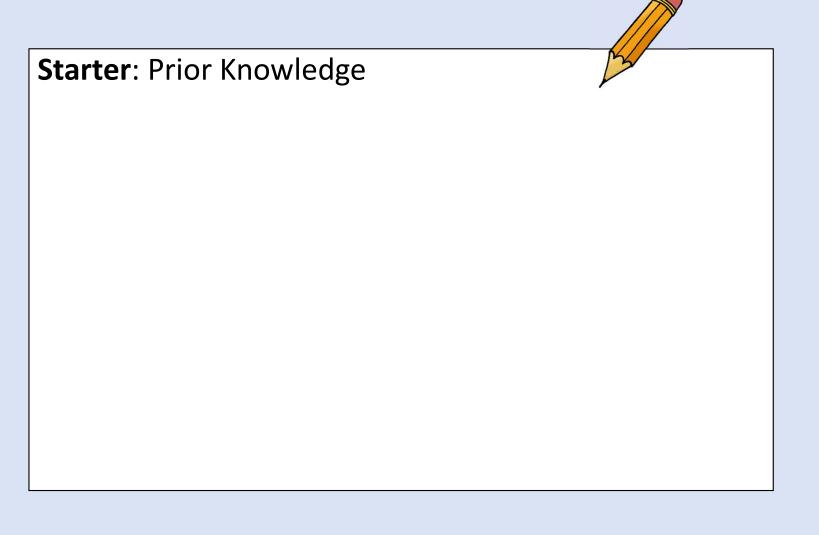
Experience and Outcomes	Date Completed (dd/mm/yx)	
I can state that day and night are caused by the Earth		
rotating on its axis.		
I can state that the Earth orbits the Sun once in one		

Starter:

1. Some exo-planets orbit stars in an area known as the habitable zone or 'Goldilocks zone'. State what is meant by the habitable zone.

Looking for Exoplanets

2. State 4 basic requirements for an exo-planet to support life.

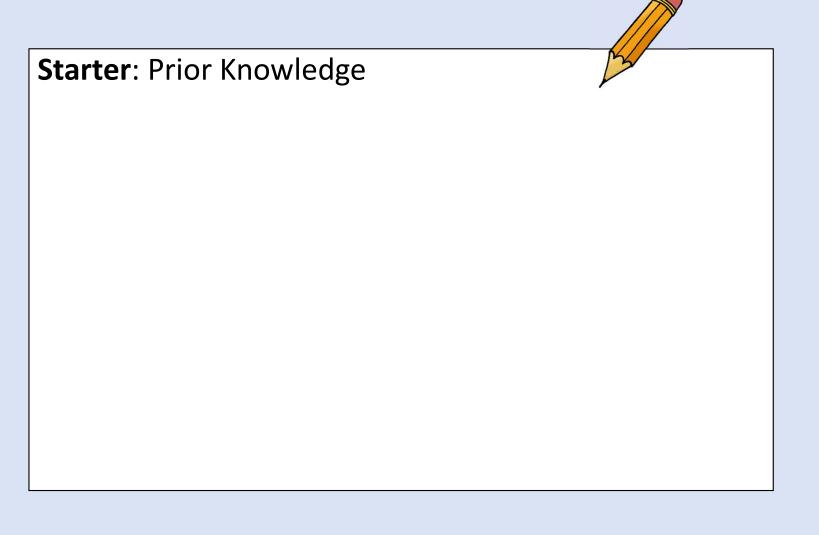


20/08/2025

AVU: Exoplanets

Page 7

AVU: Exoplanets


20/08/2025

	Page 4
Learning Intentions:	
Success Criteria	

20/08/2025

AVU: Exoplanets

Page 7

AVU: Exoplanets

20/08/2025

	Page 4
Learning Intentions:	
Success Criteria	

Extension Tasks

Space Tourism

Extension

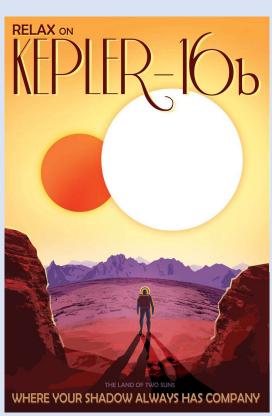
Design a travel poster advertising space tourism.

Identify a favourite exoplanet, planet or moon.

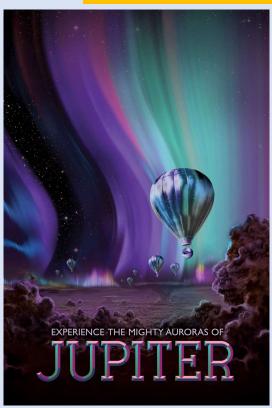
Imagine what the surface and conditions of that exoplanet might be like.

Design a travel poster highlighting the key characteristics of the exoplanet.

Check out NASA's travel posters and be creative!



Space Tourism

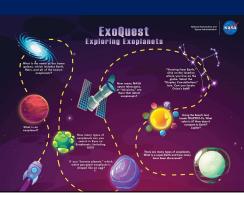

Extension

Page 33&34

Exoplanets - NASA

Find out about exoplanets using the <u>NASA exoplanets website</u>. Click on the tabs across the top and explore. Make any relevant notes in your jotter.

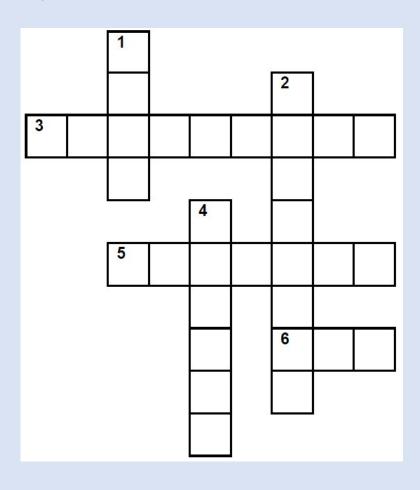
https://exoplanets.nasa.gov/


Explore the "Eyes on Exoplanets" animation – you will need to use it to complete the next task

Eyes on Exoplanets - ExoQuest

Using the <u>Eyes on Exoplanets</u> animation, explore the universe and complete the ExoQuest. Take the interactive ExoQuest quiz or answer the questions below.

https://exoplanets.nasa.gov/


- 1. What is an exoplanet?
- 2. What is the name of our home galaxy, which includes Earth, Mars and all of the known exoplanets?
- 3. How many types of exoplanets can you search in Eyes on Exoplanets (including All!)?
- 4. If you "browse planets," which weird gas-giant exoplanet is shaped like an egg?
- 5. How many NASA space telescopes, or "missions," are there that detect exoplanets?
- 6. "Viewing from Earth," click on the location where you live on the globe. Did you find it?
- 7. Select the "Display Constellations" box. Can you locate Orion's belt?
- 8. Using the Search tool, locate TRAPPIST-1b. What colour is it shown as? How does it compare to Earth? Jupiter?
- 9. There are many types of exoplanets. What is a Super-Earth and how many have been discovered?

Eyes on Exoplanets - ExoQuest

Complete the crossword of astronomical terms.

Page 39

Clues Across

- 3. A planet outside our solar system.
- 5. These orbit a star.
- 6. The star in our solar system.

Clues Down

- 1. A natural satellite.
- 2. All the space we can observe.
- 4. Our one is called the Milky Way.

Plenary - complete one of the sentences below

I was successful when

A question I have about today's lesson is

Today I learnt

The part of the lesson I enjoyed the most was.....

The skills I used in today's lesson were......

One thing I need to remember from today's lesson is.....

