


Kirkcaldy High School

BGE Science

Topic: Science and the environment

Biodiversity

Name: _____

Class: _____

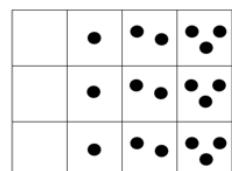
Teacher: _____

Expectations and Outcomes Learner Evaluation

Topic: Biodiversity

Experience and Outcomes	Date Completed (dd/mm/yy)	Evaluation How happy are you with it? (😊 ? 😞)
I can describe an ecosystem		
I can identify a habitat and the community within it		
I can use the terms predator and prey		
I can name examples of carnivores, herbivores and omnivores		
I understand the meaning of the term biodiversity		
I can state the importance of biodiversity to the environment		
I can describe how energy flows between organisms		
I can make a simple food chain		
I can label a food chain		
I can select a food chain from a food web		
I can predict what might happen if an organism is added or removed from a food chain		
I can sample living things using a quadrat		
I can measure factors that affect ecosystems		
I can sample living things using a pit fall trap		
I can identify living things using a biological key		
I can state what an abiotic factor is		
I can name an abiotic factor		
I have investigated an abiotic factor		

I can describe features of plants and animals to identify them from each other		
I can <u>use</u> a biological key to identify living things		
I can <u>make</u> my own biological key		
I can state why plants are vital to life on earth		
I can describe photosynthesis in terms of raw materials and products		
I can describe photosynthesis in terms of raw materials and products		
I can test leaves for starch		
I can state the effect of fertilisers on crop growth		
I can suggest how global food production may be improved		


Look:

Please note.... The experiment on Page 23 needs to be started at the beginning of the topic.

Method:

1. Collect a seed tray propagator.
2. Add an equal mass of soil mix to each pot.
3. Add fertiliser to each compartment as shown in the diagram:
4. Add a radish seed to each compartment.
5. Harvest your radish seedlings after 2-3 weeks.
6. Place in a drying oven for 48 hours
7. Record the dry mass of each seedling and work out an average.

● = one fertiliser pellet

Lesson 1: Introduction to the environment

Starter

In the box below, write down living things that might live in this woodland ecosystem

Learning Intentions

1. To understand and explain what an ecosystem is
2. To define key biological words

Success Criteria

- I can describe an ecosystem
- I can use the biological words in the word bank

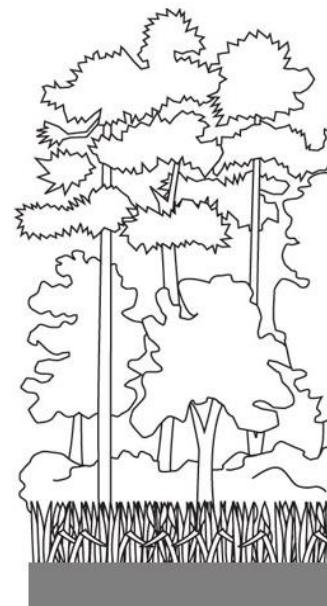
Tick me at the end if ***you can***

...

<u>Word bank</u>			
<i>predator</i>	<i>prey</i>	<i>carnivore</i>	<i>herbivore</i>
<i>producer</i>	<i>consumer</i>	<i>habitat</i>	<i>population</i>
<i>ecosystem</i>	<i>omnivore</i>	<i>community</i>	

Ecosystems

An **ecosystem** is made up of both _____ and _____ parts.


It is made up of a number of _____ and _____.

A **habitat** is the _____

A **community** is _____ the living organisms that live in a specific _____

A community contains lots of different species.

Layer of Ecosystem	Example of plant	Example of animal
Canopy		
Sub-canopy		
Overground		
Herb layer		
Ground layer		
Underground		

Ecosystems are stable if they have large biodiversity

This means that there are _____ living in the ecosystem.

Key term	Definition
Predator	
	An organism that is hunted and killed
Carnivore	
	An organism that only feeds on plants
Omnivore	
	An organism that produces its own food.
Consumer	
	The place where an organism lives
Population	
	All the living organisms in a habitat
Ecosystem	

Lesson 2: Food Chains

Starter

Correct the following statements

1. An omnivore is an organism that eats only plants.
2. A producer gets its energy from consuming other organisms.
3. A population is all the living organisms in a habitat.

Learning Intentions

1. To describe how energy flows between organisms in ecosystems
2. To construct and analyse food chains
3. To label our food chains with the key terms producer, consumer, herbivore, omnivore, carnivore

Success Criteria

- I can describe how energy flows between organisms
- I can make a simple food chain
- I can label a food chain
(with the terms producer, consumer, herbivore, omnivore, carnivore)

Tick me at the end if ***you can*** ...

Interactions in an Ecosystem

Ecosystems survive through the interactions between plants and animals. Without these interactions, ecosystems risk being broken down.

The interactions between plants and animals in an ecosystem can be displayed using _____ and _____.

Food Chains Example

The arrows in a food chain show the _____.

For example, energy flows from the grasshopper to the frog.

Producers and Consumers

Plants are known as _____. This is because they create their own food using a process called *photosynthesis*. Producers are at the bottom of the food chain and serve as the foundation for all food chains. We always draw the producer at the **start** of our chain.

All other organisms in a food chain must eat other organisms to get their energy. They are _____.

EXTRA

Predator:

Prey:

PRODUCERS	CONSUMERS

A food chain shows which _____ eat each other within an ecosystem. It starts at the beginning with _____ which are referred to as a _____ because they make their own food.

The first animal in the food chain only eats plants and so it is referred to as a _____. The other animals in the food chain that only eat other animals are known as a _____. The animals, including humans, that eat plants and other animals are known as an _____.

The animals in the food chain which prey on other animals are called _____.

The animals that get hunted by the other animals are called _____.

Food Chain Examples

Producers	1 st Consumer	2 nd Consumer	3 rd Consumer

More Food Chain Examples

Draw food chains for the examples on the powerpoint:

1.

2.

3.

4.

Plenary

Unscramble to reveal some of today's terms!

cup order	green wolfy	mon curse	teardrop	pyre

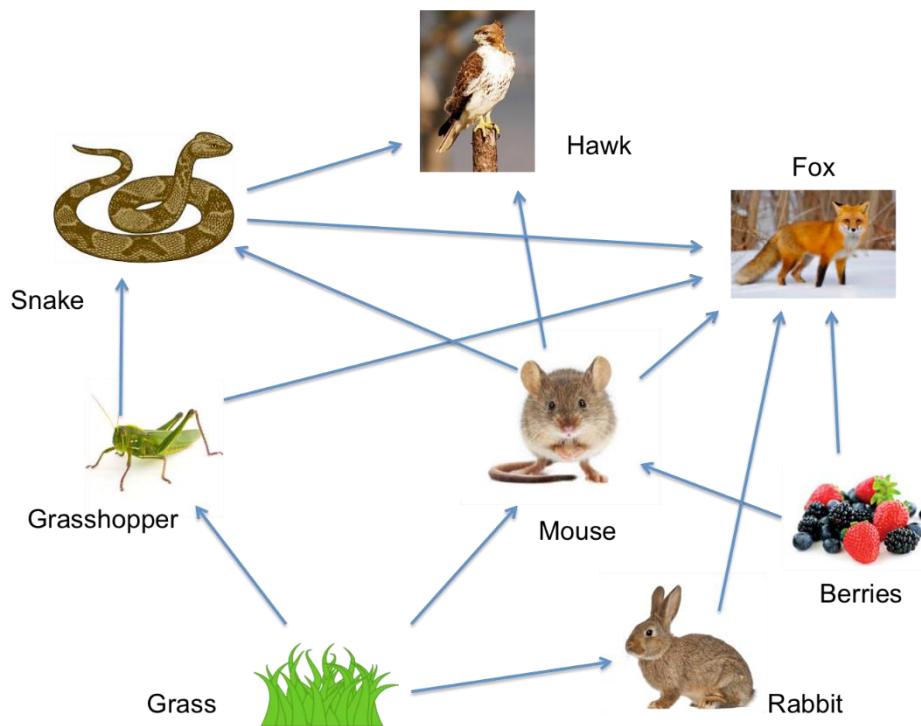
Lesson 3: Food Webs

Starter

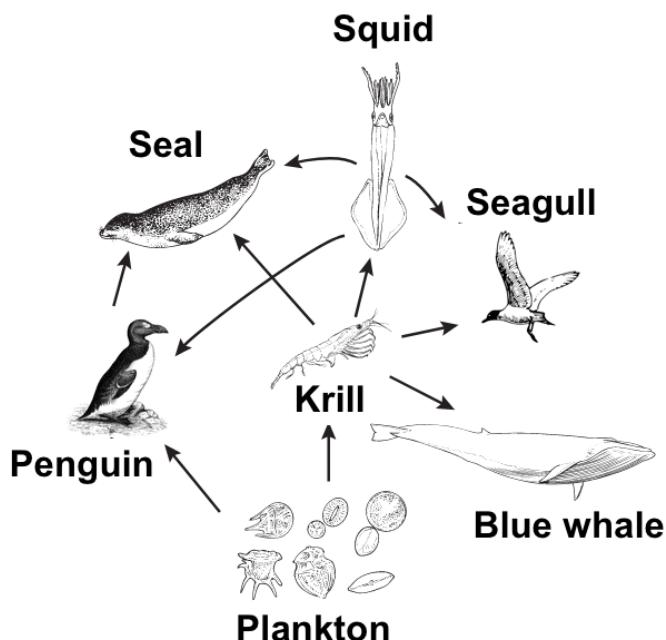
1. Does a grasshopper only eat carrots? Does a snake only eat frogs?
What other things might these organisms eat?
2. How could we display this information?

Learning Intentions

1. To be able to select food chains from a food web
2. To explain what happens when an organism is added or removed from a food web


Success Criteria

- I can select a food chain from a food web
- I can predict what might happen if an organism is added or removed from a food chain

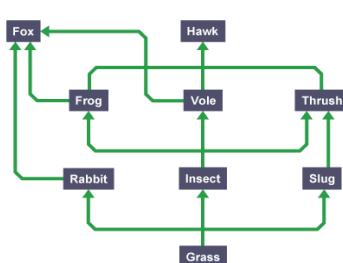

Consumers can't rely on just one food source. For this reason, food chains tend to overlap.

This can be shown using a _____.

- The _____ gets its energy by eating BOTH grass and berries.
- The _____ gets its energy by eating snakes, grasshoppers, mice, rabbits AND berries.
- The _____ gets its energy by consuming mice and snakes.
- The _____ gets its energy by consuming grasshoppers and mice.
- The _____ and the _____ only eat grass.

Aquatic Food Web

This is an example of an aquatic food web.


Can you identify and write down a food chain with **3 organisms only?**

Can you identify and write down a food chain with **4 organisms only?**

What is the **maximum number** of different food chains in this food web?

Food Webs

A _____ shows the feeding relationships among different species within a habitat. The _____ in a food chain and food web show the direction that the energy is flowing.

Can you complete the food chains in this food web?

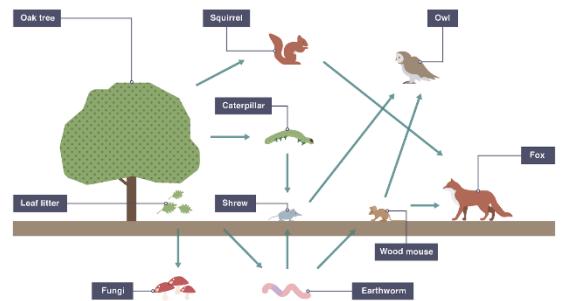
grass → insect → _____ → _____
grass → insect → _____ → _____
grass → slug → _____ → _____

Look at the food web above (or on the screen)

1. What would happen if the grass died?

2. If the population of slugs decreased, what would happen to the population of
a) grass? _____ b) thrush? _____
3. Challenge: a large population of bears were introduced to the ecosystem. Bears prey on foxes.

Predict what would happen to


a) the fox population? _____ b) the rabbit population? _____

Lesson 4/5: Sampling

Starter

What would happen if the wood mouse was removed from the food web?

- To the fox population?
- To the shrew population?
- To the red squirrel population?

Learning Intentions

- To explain why we need to take samples
- To describe how to measure living and non-living factors

Success Criteria

- I can sample living things
- I can measure factors that affect ecosystems

Tick me at the end if **you can**

Why do we need to sample?

It is **impossible** for us to count each and every kind of plant and animal in a habitat. It would be like trying to count different grains of sand on the beach!

The _____ (how many different species) and _____ (how many individuals in a population) tells us about the level of biodiversity. The level of biodiversity tells us how healthy an ecosystem is.

lots of species + lots of individuals = high biodiversity
few species + few individuals = low biodiversity
few species + lots of individuals = unstable biodiversity

Ecosystem	Variety <i>How many different species</i>	Abundance <i>How many of each species</i>	Biodiversity level <i>Low / high / unstable</i>

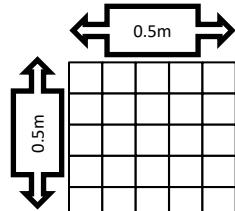
Sampling Ecosystems: Quadrats

Date: _____

We can investigate an ecosystem by using _____.

We can sample variety and abundance of plants and animals:

We can also measure _____ such as temperature, soil pH and light intensity.


How to use a quadrat:

1. **Identify** a plant (daisies/clover/etc.)
2. **Record** the name of your plant in the table
3. Throw the quadrat randomly
4. **Count the number of squares** that have **your plant**
5. Record the abundance score in the table
6. **Repeat** another 9 times
7. Take an average of the ten throws

Quadrat	Number of _____
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Average per quadrat	

Numeracy extension:

1. Our quadrat measures 0.5 metres by 0.5 metres.
What is the area of ONE quadrat?
space for working

Answer = _____ m²

2. What was the **average** abundance score (*from table*)?
Answer = _____ plants
3. The area we sampled was 20 metres by 60 metres
Work out the area of our sample?
space for working

Answer = _____ m²

4. What is our estimate of the total number of plants in our sample area?
space for working

Answer = _____ estimated plants in area.

Hint: Divide the total area (qn 3) by the area of one quadrat (qn 1)
Then, multiply this by our average abundance score (qn 2)

Starter

1. State the piece of equipment that can be used to sample plants
2. Three quadrats were thrown. The results were as follows:

Quadrat Number	Abundance of daisies
1	12
2	10
3	5

Calculate the average number of daisies per quadrat.

3. The area of the quadrat is **1 m²** and the area of the whole field is **100 m²**. Calculate the estimated number of daisies in the **whole field**.

Learning Intentions

1. To sample invertebrates using a pit fall trap
2. To identify some invertebrates using a biological key

Success Criteria

- I can sample living things using a pit fall trap
- I can identify some invertebrates using a key

Pitfall traps are used to sample the _____ that live in the _____.

How to set up a pitfall trap:

1. Dig a hole in the soil
2. Pierce drainage holes in the bottom of the pitfall trap
3. Place the pitfall trap into the soil, level with the ground
4. Cover the trap with a leaf

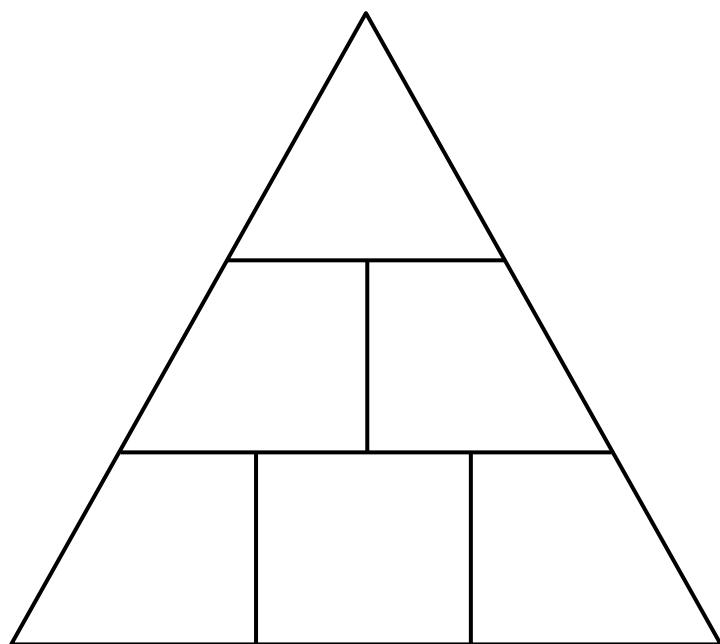
The pitfall trap was checked after 4 days and the following organisms counted:

Activity: Construct a graph using this information

Organism	Number of individuals
Ladybird	6
Ant	10
Butterfly	0
Woodlouse	4
Centipede	3

Results:

Conclusion:



Plenary:

Measuring Abiotic Factors

Date: _____

Starter

Write down the names of as many measuring devices as you can and/or what factor they can be used to measure

Learning Intentions

1. To state what an abiotic factor is
2. To name some examples of abiotic factors
3. To investigate an abiotic factor
4. To explain why measuring abiotic factors m

Success Criteria

- I can state what an abiotic factor is
- I can name an abiotic factor
- I have investigated an abiotic factor

Tick me at the end if *you can*

Word bank: **abiotic factor** **measure** **specific**

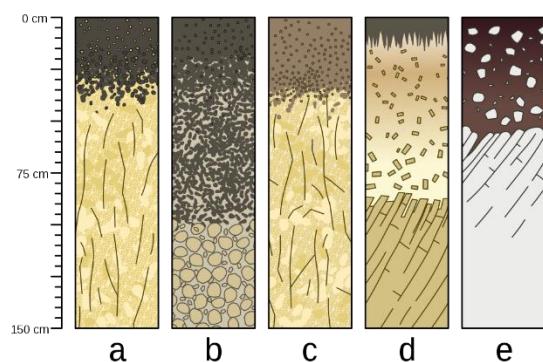
_____ factors are non-living factors such as temperature, soil pH and light intensity. Other examples include wind speed, carbon dioxide/oxygen levels, humidity, rainfall and air pressure but there are **MANY MORE!**

Living things need _____ environmental conditions to survive.

For example:

_____ need water, oxygen and a suitable temperature to germinate.

When the _____ comes through the soil it needs water, carbon dioxide, a suitable temperature and _____ to carry out photosynthesis (we will be learning about this soon!).


Plants need moisture to grow. You can use a soil moisture meter to measure soil moisture in the garden. You can also carry out an experiment to measure the moisture content in soil samples:

The picture shows 5 soil samples and the different compositions they have.

What do you think the y-axis scale shows?

How might soil type affect living things?

On the next page you will be carrying out an experiment on some different soil samples.

Experiment: Moisture Content in different soil samples

Aim:

Method:

1. Use a large spatula to take soil samples from different areas in the school grounds.
2. Put each sample in a labelled sample bag
3. In the lab, weigh an EMPTY crucible and record the mass in your results table.
4. Transfer your soil sample to the crucible and re-weigh. Record the mass in your results table.
5. Place the crucibles in a warm place (your teacher may put them in an oven until next lesson)
6. Next lesson, re-weigh the crucible and work out how much water has evaporated.

Results:

Sample Number	Sample location	Mass of empty crucible (g)	Mass of crucible + "wet soil" (g)	Mass of "wet soil" (g)	Mass of crucible + "dry soil" (g)	Mass of "dry soil" (g)	Mass of water evaporated (g)	Percentage water content of sample %
		a	b	c (b - a)	d	e (d - a)	f (c - e)	$\frac{f}{c} \times 100$
example	playing field	0.2	2.4	2.4 - 0.2 = 2.2	0.8	0.8 - 0.2 = 0.6	2.2 - 0.6 = 1.6	$\frac{1.6}{2.2} \times 100$ = 73 %
1								
2								
3								

Conclusion:

Evaluation:

Starter

Did you take any pictures of the insects you found in your pitfall traps?

If yes, draw them here!

If no, draw a few of the insects below!

Learning Intentions

1. To identify differences between species of **plants**
2. To identify differences between species of **animals**
3. To **use** a biological key

Tick me at the end if **you can**

Success Criteria

- I can describe features of plants and animals to identify them from each other
- I can use a biological key to identify living things
- I can make my own biological key

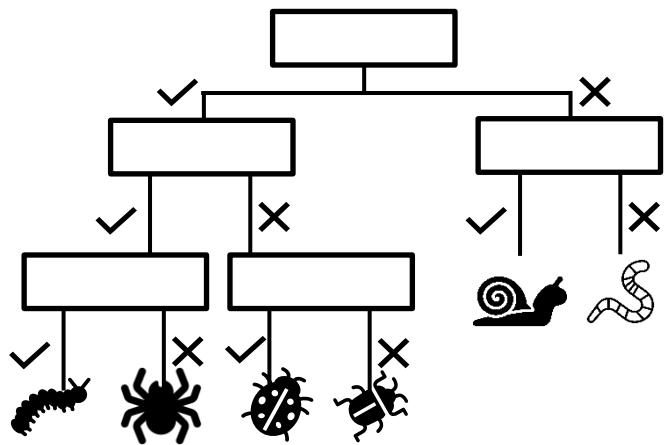
Word bank: **feature** **characteristic** **key** **differences** **similarities**

A biological _____ is use to identify living things by the features they have. There are so many different living things on Earth that it is IMPOSSIBLE for anyone to learn them all!

Over **one million** species of insects have been discovered and described but it is estimated that there may be as many as **10 million** species on earth.

What percentage of insect species have still to be discovered??

Space for working



There are two main types of biological key:

A paired statement key

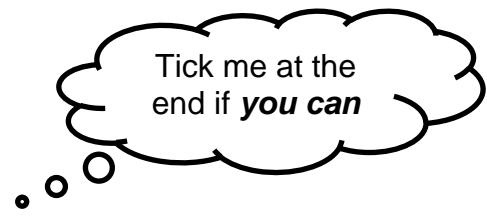
1. Insect has legs.....	Go to 2
Insect has no legs....	Go to 3
2. Insect has 8 or more legs.....	Go to 4
Insect has less than 8 legs....	Go to 6
3. Insect has a shell....	SNAIL
Insect has no shell....	WORM
4. Insect has antennae....	CATERPILLAR
Insect has no antennae...	SPIDER
5. Insect has spots...	LADYBIRD
Insect has no spots....	BEETLE

A branching key

Use the paired statement key to complete the branching key

..... to complete the branching key

Starter


Pick your favourite leaf. Write down two characteristics that you like:

Learning Intentions

1. To identify differences between species of **plants**
2. To **construct** a biological key

Success Criteria

- I can describe features of plants to identify them from each other
- I can make my own biological key

Word bank:	<i>variegated</i>	<i>serrated</i>	<i>lobular</i>	<i>pinnate</i>
	<i>venation</i>	<i>needle</i>	<i>spiny</i>	

Identifying animals seems straightforward..... but what about plants?

The features that plants have include leaf colour, leaf shape, leaf arrangement, leaf surface, leaf edges, vein patterns, etc.

Leaf Term	Description	Sketch
variegated		
serrated		
lobular		
pinnate		
venation		
needle		
spiny		

Starter

Pick your favourite leaf.
Write down two
characteristics
that you like about it!
Use the words from
Pg 17

Learning Intentions

1. To identify why plants are vital to sustaining life on earth.
2. To describe the process of photosynthesis in terms of raw materials and products

Success Criteria

- I can state why plants are vital to life on earth
- I can describe photosynthesis in terms of raw materials and products

Word bank:	photosynthesis water	reactants/raw materials carbon dioxide	oxygen sugars	starch
------------	-------------------------	---	------------------	--------

Quoting the legendary David Attenborough

1

The biggest living thing that exists on this planet is a _____, like this giant sequoia tree in _____.
Plants, whether they are _____, like this one, or _____, are the basis of all life, including ourselves.
We _____ upon them for every mouthful of _____ that we eat and every lungful of _____ that we breathe.

2

Throughout this forest, plants are competing ferociously with one another to claim the _____. The battle is at its fiercest on the forest floor where only _____ of the sunlight filters through.

3

That fuel is created in a plant's _____, as they soak up the sun. It's a process called photosynthesis.....
A _____ _____ that is the basis of all life on Earth. Leaves are covered by thousands of microscopic pores called stomata. When open, they extract _____ from the air, and, using _____ from the sun, combine it with nutrients to build the plant's tissues. And critically for us, the process releases the _____ that we and all animals need in order to breathe.

Missing words:

chemical reaction

2%

light

energy

leaves

California

depend

air

microscopic

carbon dioxide

plant

oxygen

enormous

food

Read over the speech bubbles on page 18. Your next task will involve two skills:

1. Memorising facts
2. Understanding information (sometimes called “interpreting”)

Memorising facts:

Question 1: What is the biggest living thing that exist on our planet? _____

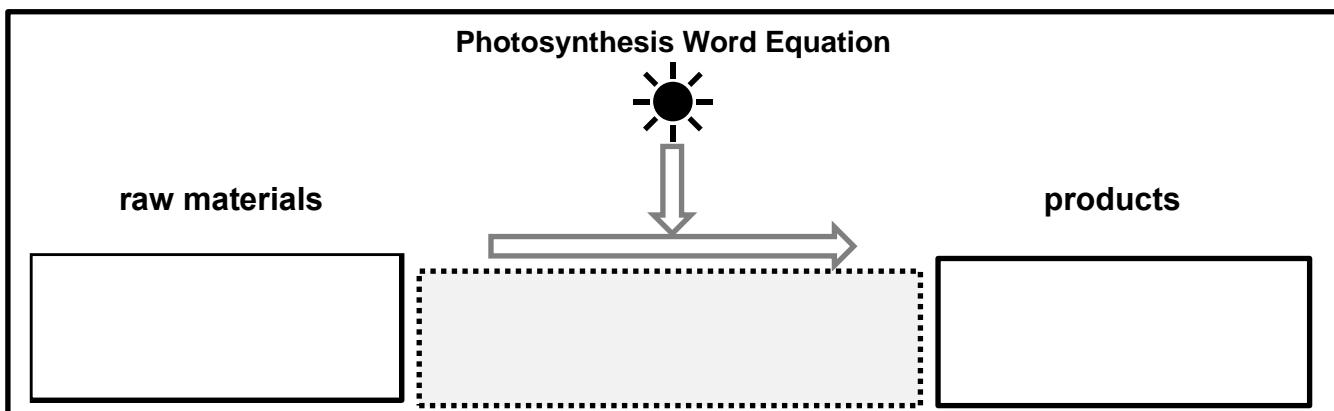
Question 2: Why are plants important? _____

Question 3: What is the chemical process that allows plants to make food? _____

Question 4: What percentage (%) of light filters through the forest? _____

Understanding information:

Question 5: The process that plants use to make food is an example of a chemical reaction. Chemists call the materials that are needed for a chemical reaction “reactants”. Biologists sometimes call reactants “raw materials”. What might you call the reactants/raw materials in Home Economics? _____


Question 6: What are the raw materials plants use in photosynthesis? _____

Question 7: Where does the energy come from for photosynthesis? _____

Question 8: Is energy a raw material? Why? _____

Question 9: What we are left with after a reaction takes place is called a “product”. What are the two products of photosynthesis? _____

Question 10: Complete the word equation below to show what you have learned about photosynthesis (the shaded box is for anything extra you want to say about photosynthesis that will impress your teacher!!):

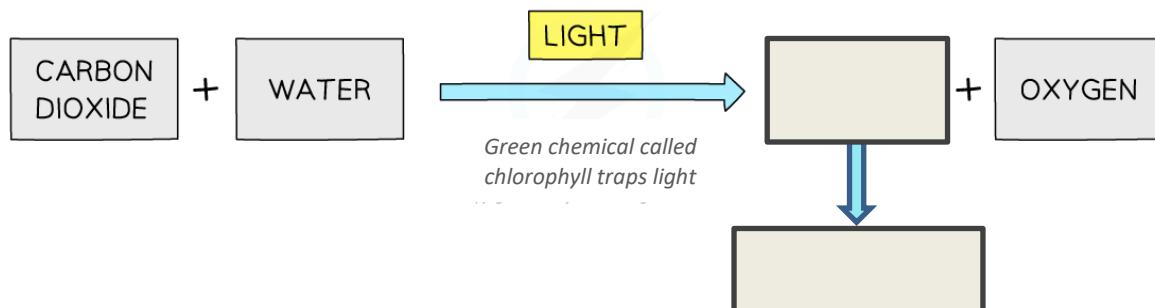
Starter

What were your three photosynthesis facts from the post-it plenary?

- 1.
- 2.
- 3.

Learning Intentions

1. To describe the process of photosynthesis in terms of raw materials and products
2. To test leaves for starch


Success Criteria

- I can describe photosynthesis in terms of raw materials and products
- I can test leaves for starch

Word bank: **photosynthesis** **water** **glucose** **carbon dioxide** **iodine** **starch**

When a plant photosynthesises, it produces a sugar called _____. It can't use all of the glucose at once, so it joins the sugar molecules together to make a storage carbohydrate called _____.

Testing Leaves for Starch

We can prove that photosynthesis is taking part in green leaves by testing them for starch.

We use _____. Iodine goes _____ - _____ when in the presence of starch.

Aim: _____

Results:

Part of leaf	Starch present? ✓ / X
Green	
White	

Conclusion: _____

Evaluation: _____

Plants 3: Fertilisers

Date: _____

Starter

What do farmers put on fields? Why?

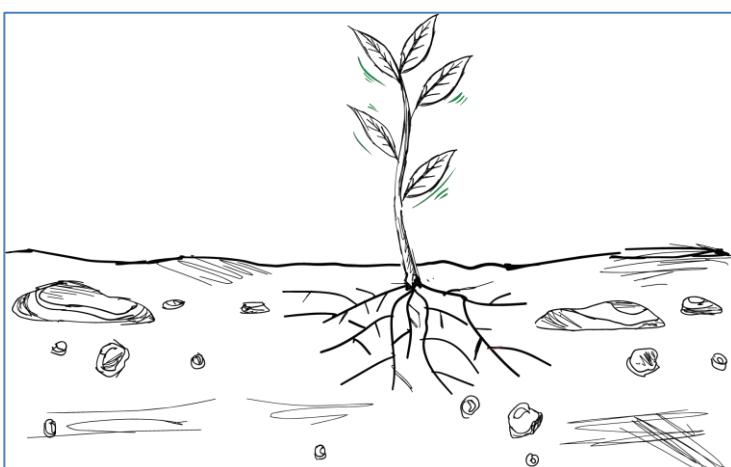
Learning Intentions

1. To investigate chemical fertilisers
2. To evaluate the impact on food production

Success Criteria

- I can state the effect of fertilisers on crop growth
- I can suggest how global food production may be improved

Tick me at the end if *you can* ...


Word bank: *photosynthesis* *manure* *fertiliser* *nitrogen* *phosphorus* *potassium*
roots *minerals* *harvest* *fertile* *yield*

F

As plants grow, they absorb minerals from the soil through their _____.

When crops are _____, nitrogen is removed from the soil (in the protein of the plant products). Adding fertilisers to the soil can replace soil nitrogen. This makes the soil _____ again, allows more plant growth to occur and _____ of the next crop.

Fertilisers can be manmade _____ or _____ organic waste materials (manure and compost).

Literacy task:

Plants 3: Fertiliser experiment

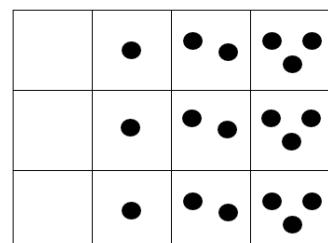
Aim: To investigate the effect of increasing fertiliser concentration on growth of radish seeds

Managing Variables:

Look at the **aim** and answer the questions:

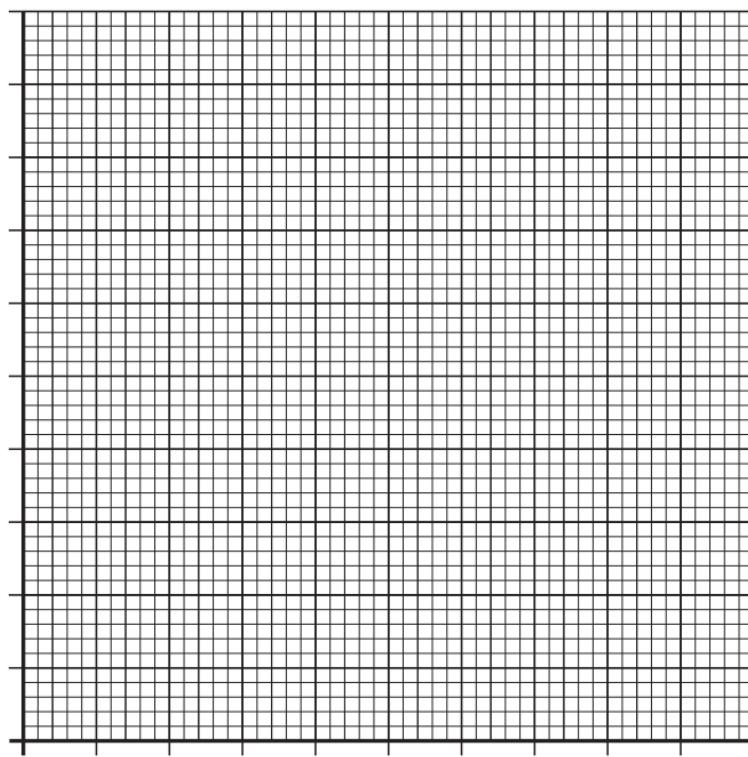
What is the independent variable? _____

What is the dependent variable? _____


List the variables that need to be controlled for a fair experiment:

Method:

1. Collect a seed tray propagator.
2. Add an equal mass of soil mix to each pot.
3. Add fertiliser to each compartment as shown in the diagram:
4. Add a radish seed to each compartment.
5. Harvest your radish seedlings after 2-3 weeks.
6. Place in a drying oven for 48 hours
7. Record the dry mass of each seedling and work out an average.



● = one fertiliser pellet

Results:

Fertiliser Number of pellets	Dry mass (grams)			
	Experiment 1	Experiment 2	Experiment 3	Average
0				
1				
2				
3				

Graph:

Conclusion:

Extension Tasks

L	P	H	C	V	H	E	F	R	A	Y	W	R	W	B
F	S	F	F	L	F	A	O	J	S	D	I	M	U	H
F	A	E	C	F	F	T	B	B	M	P	W	E	T	E
O	R	W	C	A	A	N	K	I	P	L	C	Q	S	R
T	L	X	O	D	R	C	K	H	T	T	B	H	N	B
A	U	P	E	B	P	N	R	K	W	A	Q	K	E	I
R	G	R	M	R	Y	I	I	B	U	O	T	K	C	V
C	P	E	E	K	D	V	F	V	K	U	R	V	O	O
A	F	Y	G	L	Y	R	D	N	O	C	K	I	S	R
F	O	O	D	C	H	A	I	N	A	R	Q	Q	Y	E
D	Z	D	O	S	X	E	V	Q	R	X	E	T	S	X
K	D	E	J	D	E	W	Y	C	T	W	L	Y	T	T
E	P	Z	B	Y	W	H	J	S	M	J	W	B	E	A
E	M	F	Y	Z	I	E	H	P	Y	K	G	O	M	Z
S	O	X	L	A	D	K	B	G	E	Z	H	O	U	V

Find these words in the word search and then use those words to fill in the gaps in the sentences below:

ecosystem habitat prey carnivore herbivore food chain
food web dry wet humid predator

An _____ is where animals and plants live along with the conditions there. A small part of an ecosystem where certain animals and plants live is called a _____. We can use words to describe ecosystems, for example: _____, _____ and _____. Some animals eat other animals, they are the _____. Some animals are eaten by other animals, they are called the _____. We can show simply how animals eat other animals using a _____. A _____ is lots of food chains joined together. A _____ eats only other animals. A _____ eats only other plants.

Riddles/Word searches

Predator/Prey

Task 1:

- Unscramble the words below
- Follow the instructions in brackets.
- All six are **PREY** species

1. REDE (Take the 3rd letter)
2. SAVEREB (Take the 4th letter)
3. HERWSWS (Take the 5th letter)
4. OSINB (Take the 4th letter)
5. SOMEO (Take the 4th letter)
6. LETANPOE (Take the 5th letter)

Task 2:

- * Use the letters you have got from Task 1 to unscramble and find a **PREDATOR** species.

— — — — — —

Hints:

*All of the species can be found in American forests.
Only 1, 2 and 3 can be found in the wild in Scotland
2 became extinct in Scotland in the 16th Century but was successfully reintroduced in 2009
The predator has been extinct in Scotland since 1680!
5 was successfully reintroduced to the Scottish Highlands in 2008
4 can be found in captivity in the Highland Wildlife Park
6 can be found in captivity at Blair Drummond Safari Park*

— / —

— — —

— — —

— / —

— / —

— / —

— / —

— — —

— / —

— / —

Native biodiversity!

COSTS/NEPI

— / —

CUTPETRUB

— — —

HICNEL

— — —

AKBIGSGN/KARSH

— / —

HSENICROOR/ELBETE

— / —

ERD/LESRIURQ

— / —

HITOSTSC/ACIWTL

— / —

NUPFIF

— — —

REPNERIEG/NOLCAF

— / —

CARICT/RENT

— / —

Draw a comic strip on one of the topics. Ask your teacher for ideas.

Aim: To produce a poster on a chosen ecosystem:

DESERT or TUNDRA or MARINE or FOREST or GRASSLAND

Success Criteria:

- State **WHERE** on Earth your ecosystem can be found.
- Identify **CLIMATE** in your chosen ecosystem (*temperature range, rainfall, wind speed, etc.*)
- Identify **EXAMPLES** of both plants and animals

 Comment on the **BIODIVERSITY** of your chosen ecosystem

 Suggest how **HUMANS** may impact on the **BIODIVERSITY** of your ecosystem

BINGO

Colouring Sheets

British wildlife colouring page – How many plants, insects and animals can you find?

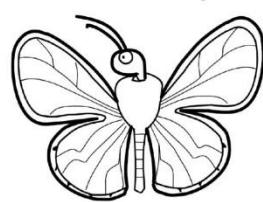
This UK nature colouring sheet is teeming with animals, birds, insects and flowers that can all be found living in Britain. Their common English names are hidden alongside them – how many of these species have you seen in the wild?

As well as a Barn Owl, see if you can find all of these animals, birds, insects and plants in the picture:

Red Squirrel	Oak tree	Foxglove
Badgers	Tawny owl	Ivy
Fox	Peacock butterfly	Bumble bee
Rabbit	Silver-washed fritillary butterfly	Dunbar caterpillar
Honeysuckle	Common Ink Cap toadstools	Banded Snail
Blue Tits	Cuckoo Pint	Primrose

If you see a wild Barn Owl anywhere in the UK please help our research by recording it on the [Barn Owl survey website](#).

(Remember never to disturb nesting birds and follow the Countryside Code.)

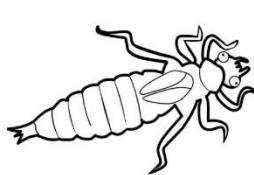

Wildlife Watch

Minibeasts

Garden Tiger Moth

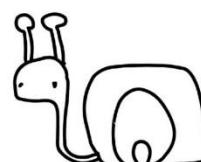
Common Blue Butterfly

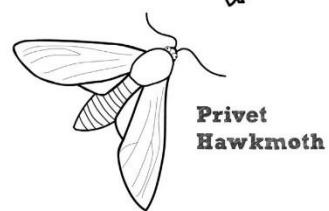
Bumblebee

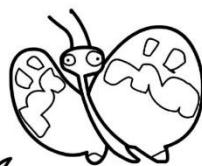


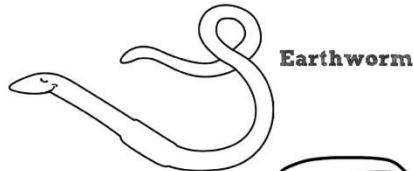
Dragonfly

Brimstone Butterfly

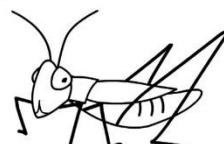

Ladybird


Dragonfly Nymph


Garden Spider


Snail

Privet Hawkmoth


Red Admiral Butterfly

Earthworm

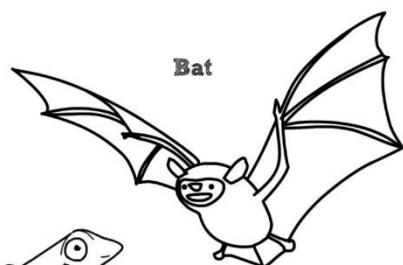
Caterpillar

Grasshopper

www.wildlifewatch.org.uk

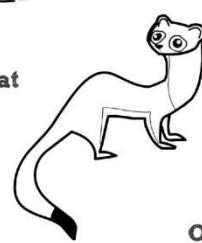
Wildlife Watch

Mammals, reptiles and amphibians

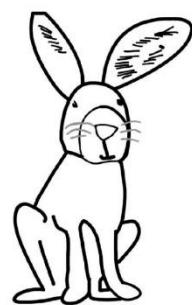


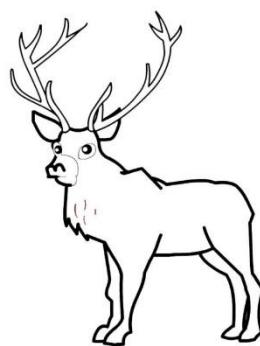
Water Vole

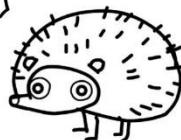
Red Squirrel


Bat

Common Lizard


Stoat


Otter


Frog

Brown Hare

Red deer

Hedgehog

Newt

www.wildlifewatch.org.uk

Additional Activity / Cover Lesson

Poster:

Use the web links to research insects.

Success Criteria:

- Title
- Poster describes what features insects have
- Identified one insect and drawn a picture
- Included “fun facts”

★ Why are insects so important?

More Fun Facts!

1. There are approximately 1.4 billion insects for every person on Earth. The total weight of all the insects is about 70 times more than all the people.
2. It takes bees about 10 million nectar-collecting trips to make one pound of honey
3. The only insect indigenous to Antarctica is the wingless midge, *Belgica Antarctica*
4. Scientists estimate that insects make up to 90% of all species of animals on the planet and more than half of all living things.
5. Insects can be found in almost every habitat, from mountain ranges covered in snow to the hottest deserts on the planet.
6. Insects have been around for more than 350 million years, longer than the dinosaurs and flowering plants.
7. The largest known order of insects is Coleoptera (beetles), some 300,000 to 400,000 species of beetle have been described to date. The next largest is the Lepidoptera (butterflies and moths), followed by the Diptera (true flies) and then the Hymenoptera (ants, bees and wasps).

<https://www.royensoc.co.uk/understanding-insects/classification-of-insects/>

<https://www.woodlandtrust.org.uk/blog/2023/10/common-uk-insect-identification/>