Kirkcaldy High School

BGE Science

Science of the House

Microorganisms

Name: \qquad
Class:
Teacher:

Expectations and Outcomes Learner Evaluation

Topic: Microorganisms

Experience and Outcomes	Date Completed (dd/mm/yy)	Evaluation How happy are you with it? (\%) ?

I can state that the first-lines of defence are the body's natural barriers.		
I can explain how the first-lines of defence can prevent the entry of pathogens.		
I can list different types of white blood cells and explain how they help defend the body against disease.		
I can state that vaccines are used to prevent diseases.		
I can explain how the first vaccine was developed.		
I can explain how vaccinations result in immunity.		

\qquad

Types of Microbes

Starter
What causes rotting and mould?

Learning Intentions

- To identify the different types of microbes.
- To research and describe the structure of microbes.
- To compare the different types of microbes.

Success Criteria

I can state the names and identify the different types of microbesI can describe the structure of microbesI can compare the different types of microbes

A micro-organism is a \qquad .

We can see micro-organisms using a \qquad .

The different groups are:

Using the fact sheets on your table you need to complete your fact file about the different types of microbes.

Microbe	Examples	Structure	Extra Info
Fungi			
Bacteria			
Virus			

You must include a labelled diagram of one microbe for each of the categories:

| | |
| :--- | :--- | :--- |
| | |
| | |
| | |

Extension Activity

1. Read the following passage and then answer the questions below

You may think that the world is full of dangerous, disease-causing microbes. In fact many microbes are useful to us whilst others are not harmful or useful. Organisms, which cause diseases, are called pathogens. They can be divided into 4 main groups

- viruses cause the common cold, flu, measles, chicken pox and AIDS
- bacteria cause Salmonella poisoning, tetanus and cholera
- protists cause malaria and amoebic dysentery
- fungi cause athletes foot and ring worm

Pathogens can spread in many ways. By droplets in the air when you sneeze e.g. flu and the cold spread in this way.

By touch e.g. sharing towels with infected people can spread athletes foot.
By faeces (solid waste) e.g. germs in faeces can sometimes get into food and drinking water. Cholera and dysentery spread in this way.
By animals e.g. rats, mice, cockroaches and flies can spread diseases to humans like malaria.
By blood e.g. blood-to-blood contact in humans can spread AIDS.
a. What is a pathogen?
b. What are the four main groups of pathogens?
c. Using the passage name two diseases caused by viruses and two diseases caused by fungi.

Viruses
Fungi \qquad
\qquad

Microscopes

Starter

What do you think the size order of our three types of microbes might be?

$$
\text { (number them } 1-3: \quad 1=\text { smallest } \quad 3 \text { = biggest) }
$$

Bacteria

Viruses

Fungi

Learning Intentions

- To compare the sizes of bacteria, viruses and fungi.
- To stain yeast cells
- To look at stained yeast cells under a microscope.
- To use numeracy skills to solve simple size and scale problems

Success Criteria

\square I can compare the sizes of bacteria, viruses and fung

Tick me at the end if you can

I can stain yeast cells and identify them under a microscope

Microscopes

Cells are very \qquad .

A microscope is used to make
cells appear \qquad .

Staining Yeast Cells

Aim:

Method:

1. Add 1 drop of \qquad sample to a clean \qquad slide
2. Add 1 drop of \qquad
\qquad stain to the slide
3. Place the \qquad
\qquad over the sample
4. Use the \qquad magnification on your microscope to bring the sample in to focus
Results: Draw a diagram of the yeast cells under the microscope, write down the magnification you used.

Magnification: \qquad

Conclusion:

Microbes Numeracy

We use micrometres to measure microbes $1 \mathrm{~mm}=$ \qquad
To change mm to $\mu \mathrm{m}$ we \qquad by 1000

To change $\mu \mathrm{m}$ to mm we \qquad by 1000
\qquad

Microbes Numeracy

Starter

1. How many micrometers $(\mu \mathrm{m})$ are there in one millimetre (mm) ?
2. The HPV virus measures $5 \mu \mathrm{~m}$ wide. What is it's width in mm ?
\qquad
3. The bacterium which causes TB is 0.026 mm long, write down it's length in $\mu \mathrm{m}$.
\qquad
Microbes Numeracy
4. E.coli is a type of bacteria that is usually harmless and can be found in your intestines. It measures 2 micrometers ($\mu \mathrm{m}$) in length. The largest known bacteria is called "Thiomargarita namibiensis" can be found in the ocean off the coast of Namibia and measures a massive 750 micrometers $(\mu \mathrm{m})$.
a. What are the sizes in mm of the bacteria mentioned in the passage?
E. Coli
$=$ \qquad
Thiomargarita namibiensis = \qquad
b. How many times bigger are Thiomargarita namibiensis than E. Coli bacteria?
5. Bacteria make more bacteria by dividing. If the conditions are right, bacteria are able to divide every 20 minutes. If there is one single E. coli bacterium on a piece of raw chicken at 11am in the morning, how many E. coli can we expect by 1 pm on the same day?
6. A microbiologist swabbed areas of the kitchen to test for presence of bacteria. The table below shows the number of colonies found at different places in the kitchen. Use the table to produce a bar graph of their results.

Sample site	Number of bacterial colonies
Dishcloth	88
Microwave	42
Floor	64
Sink	20

Remember: Title, x-axis label, y-axis label, even scale, neatly plotted bars

\qquad

Aseptic Technique

Starter
Label parts A-C on the microscope.

A \qquad
B \qquad
C \qquad

Learning Intentions

- To define contamination
- To investigate hand hygiene
- To describe aseptic technique
- To identify ways to prevent contamination of experiments
- To identify ways to prevent contamination of experimenter
- Set up an experiment to show why aseptic technique is important

Success Criteria

I can define contaminationI can describe one or more aseptic technique
I can protect an experiment from contamination
I can show by experiment that microbes are everywhere

Aseptic Technique

Aseptic means the \qquad of microorganisms that can cause
\qquad . Healthcare professionals use aseptic technique to
\qquad patients, themselves and the public from \qquad .

Healthcare professionals include \qquad , \qquad , \qquad and
\qquad .

Examples of Aseptic Technique

- Wear a \qquad —
- Wash your \qquad
- \qquad surfaces
\qquad equipment
- Ensure petri dish is \qquad
- Flame the \qquad loop

Hand Hygiene Experiment
Aim:

Method:

1. Apply a small drop of hand gel to your hands and rub them together
2. Let the gel dry
3. Wash your hands as you would normally
4. Look at your hands under the UV torch

Results: How clean are your hands? Are your hands any cleaner after watching the video and re-washing?

Conclusion: What happened to the pathogens when you washed your hands?
\qquad
\qquad

Aseptic Techniques Quiz

1. $A \quad B \quad C$
2. $A \quad B \quad C$
3. $\mathrm{A} \quad \mathrm{B} \quad \mathrm{C}$
4. $\mathrm{A} \quad \mathrm{B} \quad \mathrm{C}$
5. A B C
6. $\mathrm{A} \quad \mathrm{B} \quad \mathrm{C}$
7. $\mathrm{A} \quad \mathrm{B} \quad \mathrm{C}$
8. A B C
9. A B C

10 A B C
Score: \qquad $/ 10$
\qquad

Growing Microorganisms

Starter

1. Describe what is meant by contamination.
2. State two ways to prevent the spread/growth of microorganisms.
3. Why is it important to wash your hands?

Learning Intentions

- Use an appropriate technique to grow microbes.
- Explain the importance of hand washing in preventing the spread of microbes.
- Understand the difference between direct and indirect spread of microbes

Success Criteria

\square I can grow microbes on an agar plateI can explain the importance of hand hygiene
I can describe the difference between the direct and indirect spread of microbes

Growing Microorganisms Experiment

Aim:

Method:

1. Split your plate into \qquad - remember to write on the bottom of the plate!
2. Take a \qquad and rub it on one section.
3. \qquad this with a fresh bud on different surfaces.
4. Put used buds in the discard jar then carefully
\qquad your plate with two pieces of sellotape.

5. \qquad until next lesson.

Results:

Draw your agar plate once the microbes have grown:

Conclusion:

Evaluation:

\qquad
\qquad

Growing Microorganisms in the Air - Demonstration

Aim: \qquad

Method:

1. Your teacher will label the underside of a petri-dish with todays date.
2. Choose a suitable place to leave the dish open to the air
3. At the end of the lesson, tape the lid onto the dish and incubate.

Results:

Draw your agar plate once the microbes have grown:

Conclusion:

Evaluation:

Extension Activity - Complete table below

Aseptic Technique	Reason measure is needed
No eating or drinking in the lab	
Wiping bench with disinfectant/alcohol	
Not growing microorganisms at body temperature	
Using sterile loops when transferring cultures	
Flaming culture bottle necks to prevent contamination	
Washing hands thoroughly	

\qquad

Spreading Microorganisms

Starter

Complete the Results, Conclusion and Evaluation from the Growing Microorganisms experiment and Growing Microorganisms in the Air demonstration from last lesson.

Learning Intentions

- Use an appropriate technique to grow microbes.
- Explain the importance of hand washing in preventing the spread of microbes.
- Understand the difference between direct and indirect spread of microbes

Success Criteria

I can grow microbes on an agar plateI can explain the importance of hand hygiene $\circ \mathrm{O}$I can describe the difference between the direct and indirect spread of microbes

Aim: \qquad

Method:

Circlewhich group you are in

Group A

- The person with the glitter on their hands should shake hands with the first pair of pupils at the start of their line. This pair should go onto shake hands with the next pair in their line. Repeat until they get to the end of the line.

Group B

- The person with the glitter on their hands should handle a ruler and a pencil. The ruler should be passed down one line from pupil to pupil and the pencil down the other until they reach the end of the line.

Group C

- The person with the glitter on their hands should go and wash them using soap and water. Then repeat activity as for group A. Each group should examine their hands and describe what they see.

Conclusion:

Microbes can be passed from person to person by hand contact. This is called
\qquad spread of microbes.

Touching contaminated surfaces such as door handles can pass microbes on
\qquad spread of microbes.

The simplest and most effective way to prevent the spread of microbes is frequent
\qquad .

Word bank: indirect, hand washing, direct

Seven Wonders of the Microbe World Video

Activity: Watch the video and note down three facts:

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
\qquad
\qquad

Making Alcohol

Starter

1. State the three types of microbes.
2. Name two aseptic techniques.

Learning Intentions

- To state two food products made using yeast
- To carry out a simple fermentation experiment

Success Criteria

\square I can state two food products made using yeast
\square I can describe a simple fermentation experiment Yeast
Making Alcohol

Yeast is a type of \qquad .

Yeast makes alcohol and \qquad from \qquad .

Alcohol makes beer \qquad and carbon dioxide makes beer fizzy.

Copy the fermentation equation into the box below.

Fermentation Experiment

Aim: \qquad

Method:
Draw a diagram of your apparatus:

Results:

Draw a diagram of what you observed.

Conclusion:

Describe what happened to the balloon and give a reason for this.
\qquad
\qquad
\qquad
\qquad

Evaluation:

Yeast is needed to make alcohol. How could we have set up the experiment to prove this?
\qquad
\qquad
\qquad
\qquad
\qquad

Making Bread

Starter

1. Write the fermentation equation.
\qquad
2. Name two products of fermentation.
\qquad

Learning Intentions

- To state two food products made using yeast
- To carry out a simple fermentation experiment

Success Criteria

\square I can state two food products made using yeast
I can describe a simple fermentation experiment

- - - - - - - Yeast $-\infty-\infty-\infty$

Bread

Yeast is a type of \qquad .

Yeast feeds on sugar to produce \qquad and \qquad .

In bread-making the \qquad gas is trapped in the bread dough. This makes the dough \qquad .

The alcohol \qquad during baking.

Copy the fermentation equation into the box below.

Making Dough

Aim: \qquad

Method:
Draw a diagram of your apparatus:

Results:

Draw a diagram of what you observed.

Conclusion:

Describe what happened to the dough and give a reason for this.
\qquad
\qquad
\qquad
\qquad

Evaluation:

Yeast is needed to make dough rise. How could we have set up the experiment to prove this?
\qquad
\qquad
\qquad
\qquad
\qquad

Making Yoghurt

Starter

1. Name the gas which makes dough rise.
\qquad
2. What happens to the alcohol in bread when it is baked?

Learning Intentions

- To state two food products made using bacteria
- To carry out a simple experiment using bacteria

Success Criteria

\square I can state two food products made using bacteria
\square I can describe a simple fermentation experiment

Bacteria

Making Yoghurt

Yoghurt is made by adding a bacterial \qquad to \qquad .

Probiotic products contain billions of \qquad bacteria which benefit the digestive system.

Lactobacillus is a type of \qquad used in yoghurt making. It changes the milk sugar lactose into lactic acid.

Making Yoghurt

Aim: \qquad

Method:

1. Measure 50 mL of \qquad into a beaker. Use pH paper to record the starting pH .
2. Stir the milk while heating gently on a tripod over a \qquad .
3. When it begins to bubble, turn off the gas and leave to cool.
4. Place a \qquad into the milk.
5. When the milk has cooled to 350 C , transfer milk to plastic cup, add 3 spatulas of \qquad into the cup and stir.
6. Place your mixture into an \qquad until next lesson.

Results:

	Colour of pH paper	pH Number	pH: Acid/Alkali/Neutral?
Start			
Final			

Conclusion:

Describe what happened to the pH of the milk.

Evaluation:

Bacteria is needed to make milk thicken into yoghurt. What would we do to make our results more reliable?
\qquad
\qquad
\qquad
\qquad

Making Cheese

Starter

Write the word equation for the fermentation for sugar in milk, labelling the raw materials and end products in the box below.

Learning Intentions

- To state two food products made using bacteria
- To understand how to make cheese

Success Criteria

I can state two food products made using bacteria
I can understand how to make cheese

Making Cheese

There are two stages in making cheese:

1. Cheese-making bacteria, which feed on milk sugar, multiply and produce \qquad . This gives the cheese its flavour and helps the milk to \qquad .
2. Adding an \qquad called \qquad to milk, which makes the milk curdle (clot).

Making Cheese

Aim: \qquad
Method:

1. Test your \qquad from last lesson with pH paper
2. Record the pH in your table from last lesson and write a conclusion
3. Add one drop of \qquad to the beaker and stir.
4. This should be covered with clingfilm and left in a \qquad environment for 24 hours.
5. Your teacher will put the beakers in a fridge if longer than 24 hours.

Results:

Look at your cheese from last lesson.
The yoghurt has turned into \qquad and \qquad .
The solid \qquad are dried to become \qquad .

Conclusion:

Answer your aim.

Evaluation:

Rennet is needed to make cheese. How could we have set up the experiment to prove this?
\qquad
\qquad

Making Cheese Video

1. The video shows the production of which type of cheese?
2. How long does the milk get pasteurised for?
3. Once the whey is drained off, what is it used for?
4. What is added to increase the flavour and preserve the cheese?
5. The length the cheese is stored for affects what?
\qquad

Immune System

Starter

1. Where in the body can microorganisms enter?
2. Can you think of anything that stops microbes from getting in?

Learning Intentions

- To describe the role of the immune system
- To investigate the different ways that the body defends itself from microbes

Success Criteria

\square I can state that the first-lines of defence are the body's natural barriers.
\square I can explain how the first-lines of defence can prevent the entry of pathogens.
\square I can list different types of white blood cells and explain how they help defend the body against disease.

Defending ourselves against microbes

The body's defences:
\bullet \qquad microbes getting into the body

- \qquad microbes once they have got in

The first-line of defence

The first line of defence preventing \qquad from entering are the body's
\qquad . These can be physical or chemical barriers.

White Blood Cells

There are two main groups of white blood cells which are involved in the immune system:
1.

- engulf bacteria

2.

- produce antibodies

Sustainable Development Goals Extension Task - part 1

Coverage of the required three doses of the vaccine that prevents diphtheria, tetanus and pertussis increased from 72 per cent in 2000 to 85 per cent in 2015 and has remained unchanged between 2015 and 2017.

1. Make a table using the information above
2. Label one column "Year" and the other "Percentage coverage of vaccine (\%)"
3. Fill in information for each of the years 2000,2015,2017

\qquad

Immunity and Vaccinations

Starter

Can you remember any vaccinations you've had?

Learning Intentions

- To describe the development of vaccinations and their importance in preventing diseases

Success Criteria

I can state that vaccines are used to prevent diseases.
I can explain how the first vaccine was developed.
I can explain how vaccinations result in immunity. Immunity

Immunity is when your body is able to resist a \qquad or infection. Immunity results from either being exposed to the disease before or by
\qquad .

Vaccines

We are injected with a \qquad or dead form of a disease causing
\qquad -

Our body think the microbe is real and makes \qquad against it. If the person becomes infected for real the \qquad system acts more
\qquad because it already has antibodies.

Activity: Watch the Smallpox video and note down three facts

1. \qquad
2. \qquad
3. \qquad

Sustainable Development Goals Extension Task

Part 2.

An estimated 19.9 million children did not receive the vaccines during the first year of life, putting them at serious risk of these potentially fatal diseases. The estimated number of children in the whole world is 1.9 billion.

1. Using the information above, work out how many children in the whole world have been vaccinated during the first year of life
2. Challenge yourself: work out the percentage of children in the world that have been vaccinated.

Part 3.

Two doses of the measles vaccine are required to prevent the disease and the illnesses, disabilities and deaths caused by complications associated with it.
Coverage with the second dose of measles vaccine increased from 59 per cent in 2015 to 67 per cent in 2017, but that is still insufficient to prevent this highly contagious disease.

- Make a bar graph using the information above

1. Label the x-axis "Year"
2. Label the y-axis "Percentage coverage of vaccine (\%)"
3. Make a bar for each of the years $2000,2015,2017$

Graph paper for numeracy task:

Microbes and Health

Watch the Scientific Eye video about Microbes and health.
Take brief notes about:

- the diseases mentioned
- what causes them
- the treatments
- how to prevent the disease
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Create a storyboard of Edward Jenner and his discovery of the first Smallpox vaccine.

Graph paper for numeracy tasks:

Extension Tasks

Microbes in the Food Industry Mindmap

Word Search

Microbes

\mathbf{N}	\mathbf{O}	\mathbf{I}	\mathbf{T}	\mathbf{A}	\mathbf{T}	\mathbf{N}	\mathbf{E}	\mathbf{M}	\mathbf{R}	\mathbf{E}	\mathbf{F}	\mathbf{M}	\mathbf{I}
\mathbf{P}	\mathbf{S}	\mathbf{S}	\mathbf{E}	\mathbf{I}	\mathbf{E}	\mathbf{F}	\mathbf{L}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{O}	\mathbf{S}	\mathbf{E}
\mathbf{N}	\mathbf{A}	\mathbf{E}	\mathbf{C}	\mathbf{I}	\mathbf{I}	\mathbf{N}	\mathbf{E}	\mathbf{N}	\mathbf{O}	\mathbf{I}	\mathbf{I}	\mathbf{I}	\mathbf{T}
\mathbf{G}	\mathbf{H}	\mathbf{T}	\mathbf{A}	\mathbf{A}	\mathbf{P}	\mathbf{L}	\mathbf{F}	\mathbf{T}	\mathbf{N}	\mathbf{G}	\mathbf{N}	\mathbf{N}	\mathbf{I}
\mathbf{M}	\mathbf{G}	\mathbf{Y}	\mathbf{H}	\mathbf{S}	\mathbf{L}	\mathbf{T}	\mathbf{O}	\mathbf{I}	\mathbf{T}	\mathbf{C}	\mathbf{C}	\mathbf{A}	\mathbf{M}
\mathbf{A}	\mathbf{E}	\mathbf{O}	\mathbf{G}	\mathbf{O}	\mathbf{A}	\mathbf{E}	\mathbf{B}	\mathbf{B}	\mathbf{A}	\mathbf{O}	\mathbf{U}	\mathbf{G}	\mathbf{N}
\mathbf{S}	\mathbf{N}	\mathbf{B}	\mathbf{T}	\mathbf{I}	\mathbf{G}	\mathbf{E}	\mathbf{F}	\mathbf{O}	\mathbf{M}	\mathbf{I}	\mathbf{B}	\mathbf{R}	\mathbf{E}
\mathbf{E}	\mathbf{C}	\mathbf{I}	\mathbf{I}	\mathbf{N}	\mathbf{E}	\mathbf{E}	\mathbf{I}	\mathbf{D}	\mathbf{I}	\mathbf{E}	\mathbf{A}	\mathbf{O}	\mathbf{G}
\mathbf{P}	\mathbf{R}	\mathbf{M}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{O}	\mathbf{T}	\mathbf{O}	\mathbf{I}
\mathbf{T}	\mathbf{E}	\mathbf{M}	\mathbf{E}	\mathbf{M}	\mathbf{I}	\mathbf{E}	\mathbf{E}	\mathbf{G}	\mathbf{A}	\mathbf{E}	\mathbf{E}	\mathbf{R}	\mathbf{T}
\mathbf{I}	\mathbf{C}	\mathbf{U}	\mathbf{C}	\mathbf{T}	\mathbf{B}	\mathbf{A}	\mathbf{R}	\mathbf{A}	\mathbf{T}	\mathbf{O}	\mathbf{E}	\mathbf{C}	\mathbf{N}
\mathbf{C}	\mathbf{E}	\mathbf{N}	\mathbf{R}	\mathbf{E}	\mathbf{M}	\mathbf{C}	\mathbf{B}	\mathbf{G}	\mathbf{I}	\mathbf{A}	\mathbf{N}	\mathbf{I}	\mathbf{A}
\mathbf{A}	\mathbf{U}	\mathbf{E}	\mathbf{S}	\mathbf{G}	\mathbf{C}	\mathbf{E}	\mathbf{O}	\mathbf{A}	\mathbf{O}	\mathbf{L}	\mathbf{M}	\mathbf{M}	\mathbf{A}
\mathbf{T}	\mathbf{N}	\mathbf{M}	\mathbf{M}	\mathbf{N}	\mathbf{A}	\mathbf{I}	\mathbf{E}	\mathbf{R}	\mathbf{N}	\mathbf{I}	\mathbf{N}	\mathbf{N}	\mathbf{E}

LACTOSE
ANTIGEN
ANTIBODY
SCALE
AGAR

FERMENTATION hyGiene
pathogen
ASEPTIC CONTAMINATION

INCUBATE
IMMUNE
MICROORGANISM

Crossword

Microbes

Complete the crossword below.

Across

1. Hand \qquad must be practiced when growing microbes.
2. A gel like substance used to grow bacteria.
3. A microbe that can cause infection and disease
4. A technique used to prevent unwanted microbes growing.
5. Has a role in the specific immune system.
6. The bodies defence against pathogens

Down

2. When microbes are left in warm conditions to grow.
3. If something has been made impure, polluted or poisoned.
4. A sugar found in milk products
5. A type of fungus used to make bread and beer.
6. Must be seen under a microscope.

