

Kirkcaldy High School

BGE Science Science of the House

Heat

Name:_____

Class:_____

Teacher:_____

	Date:
Heat and Tempera	iture
Starter	
1. Name 3 sources of heat.	
2. State the piece of equipment used to measure	e temperature
Learning Intentions	
 To learn about heat and temperature and how To undertake an experiment measuring the term 	they are measured mperature cooling curve of water
Success Criteria	Tick me at the end if you can
I can state the definitions of heat and tempera	ture
\Box I can identify the units that heat and temperatu	ure are measured in
Heat and Tempera	
Heat is a type of, measured in	
Temperature is measured using a something is.	_ and tells us how hot or cold
HEAT TEMPERAT	URE

Scenario 1: You have just poured a cup of hot coffee! What happens to the temperature over time? *Explain why.*

Scenario 2: You have just taken a cold can of cola from the fridge. What happens to the temperature over time? *Explain why.*

Heat energy is transferred from the _____ object to the _____object.

1		
Time (mins)	Beaker 1 (°C)	Beaker 2 (°C)
<u>Results</u> :	Be	aker 1 Beaker 2
 Method: Collect two 400 ml bea Add 300 ml of hot wate Add 100 ml of hot wate 	akers. er to beaker 1. er to beaker 2.	80 °C
Aim: To investigate which b	eaker of water loses heat	most quickly.
Со	oling Curve Experii	ment
		Date:

Results: Time (min

Draw a graph of your results.

Conclusion: What is the answer to your aim?

Activity

Fill in the table with appropriate headings and decide if each of the following are

conductors or insulators:

Wooden spoon, aluminium pot, glass, plastic cup, keys, metal fork, oven gloves,

tiles, leather, coins

Good Conductors of Heat

Aim: To investigate which metal is the best conductor of heat.

Method: draw a labelled diagram

Results:

Conclusion: What is the answer to your aim?

Date: _____

Convection in Liquids

Starter

1. Draw the particles in a liquid.

2. Why do you think heat cannot travel through liquids by conduction? (hint: think of the particles)

3. List 3 different liquids in your home that heat can travel through.

Learning Intentions

• To learn how heat travels through liquids

Success Criteria

I can state the term used for heat travelling through liquids.

 \Box I can explain how heat travels through liquids.

Convection of Liquids While watching the demonstration, think about the following questions: What direction does the water 1. move above the Bunsen burner? potassium 2. What direction does the potassium permanganate move? permanganate crystal 3. How did the glass feel just above the Bunsen burner when we stop heating it? water 4. Explain why it feels this way. **Summary** Heat is not transferred in liquids by _____. As the particles are too close together in a solid to move.

In a liquid heat is transferred by ______. A ______ current is formed.

	Convection Current Video	
Summarise what you learned in this video		
Why do you currents hav	think this is relevant in the ocean, what effect do you think convections re in the ocean? (extension)	

Date: **Convection in Gases** Starter 1. Draw the particles in a gas. 2. When you boil a kettle a convection current is formed. Draw a diagram of how this would look. **Learning Intentions** • To learn how heat travels through gases **Success Criteria** Tick me at the end if you can I can complete a scientific report. ° 0 (I can explain how heat travels through gases. **Convection Air Demonstration** Draw and label a diagram, draw arrows to show your observations. 12

Convection

Convection happens in a _____ and a _____.

When the particles get hot they gain _____.

The particles with the most _____ move upwards.

When the particles cool down they move ______ to be heated again until all particles are the same temperature.

Challenge yourself: **Explain** how a coal fire chimney works.

If you prefer, try the extension actives at the back of the workbook.

Radiation
Starter
1. Why is toasting your bread on the grill not an example of conduction?
2. Why is toasting your bread on the grill not an example of convection?
3. What do you understand by the word 'radiation'?
Learning Intentions
 To learn how heat travels through radiation
Success Criteria Tick me at the end if you can
\Box I can complete a scientific report
I can state which heat transfer method the sun uses
I can explain how heat travels by radiation
What is radiation?
Heat can be transferred through radiation.
Some surfaces are better than others at (taking in) radiation. Some
surfaces heat.
Do you feel warmer in the sun wearing black or white? $\langle , , \rangle$
Can you explain why this is?

Radiation Experiment

<u>Aim</u>: To investigate the effect of shiny and black surfaces on the amount of radiation radiated.

Method:

Results:

Time (mins)	Temperature of water of shiny can (°C)	Temperature of water of matt black can (°C)
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Draw a graph of your results.

Conclusion: What is the answer to your aim?

Radiation type of _	n is also known as	(this is invisible) which is a
The	an object is, the	_ infrared radiation it emits.
You can	see infrared radiation using	
Summar cold, wha	ise by writin <u>g or</u> drawing what you seen with at was hot)	the Infrared camera (what was

	Date:
Preventing Heat Loss	
1. Label the heat transfer method in A,B and C.	
 Explain how the infra-red photo shows where most of escaping from. 	the heat energy is
Learning Intentions	
 To learn about reducing heat loss in our home 	
Success Criteria	end if you can
• • • • • • • • • • • • • • • • • • •	
I can interpret thermal imaging diagrams	
	18

Insulators		
are substances that	transfer heat.	
is an excellent heat	and helps to stop heat loss.	
Your body is than the air around you and so it is always		
heat.		

Insulators at Home

<u>What</u>	<u>How</u>	Heat Transfer
Paint radiators black	Black surfaces emit more heat than shiny surfaces	Radiation

Match

Heat energy can easily pass through this material

Convection

A device used to measure temperature

How hot or cold something is

Conduction

Radiation

Heat energy cannot easily pass through this material

A measure of energy

Temperature

Thermometer

Particles in a Gas

Particles in a Liquid

Particles in a Solid

Conductor

Insulator

Heat

3 ways heat energy can be transferred

Date: Preventing Heat Loss Challenge Starter						
1. How would you prevent a flask from losing heat?						
Learning Intentions						
To design an experiment to prevent heat loss						
Success Criteria						
• • • • • • • • • • • • • • • • • • •						
I can interpret thermal imaging diagrams						
You will design, write-up and carry out an experiment to devise a way of keeping						
100 ml of hot water as hot as possible.						
i.e. keep the heat lost to a minimum						
The resources available are:						
Containers – metal, glass, plastic						
Materials – cloth, bubble wrap, polystyrene, black card, aluminium foil, cotton wool						
To be able to compare how well your set-up has worked, you should set up a control						
experiment (with no heat loss reduction).						
Use the following blank page to design your own experiment and write it up as a lab report.						

Design your experiment

Preventing Heat Loss Challenge Write-up

Aim: To devise a way of keeping 100 ml of hot water as hot as possible.

Method:

<u>**Results**</u>: What was your initial temperature and temperature after 5 mins for your control and heat-loss reduction set up?

Conclusion: How well did your set up reduce heat-loss?

Extension Tasks

You will be presented with a series of real-world scenarios.

For each scenario, identify which type(s) of heat transfer (conduction, convection, radiation) are primarily involved and explain why.

Scenarios:

Cooking on a Stove: Describe how heat is transferred from the stove to the pot and then to the food.

Feeling Warm in Sunlight: Explain how heat reaches you from the sun and why you feel warmer in sunlight.

Using a Thermos Flask: Discuss how a thermos flask minimizes heat loss or gain and which types of heat transfer it's countering.

Global Wind Patterns: Explain how convection plays a role in forming wind patterns around the Earth.

Research:

Research one technological advancement or invention that utilises principles of heat transfer in an innovative way. Describe its function and the science behind it.

Heat

D	Α	Ι	Ν	S	U	L	Α	Т	Ι	0	Ν	D	Т
м	С	Α	R	Α	Ι	Ν	0	L	R	Ι	Α	С	Ε
R	U	L	U	R	Α	Н	Ν	Т	С	Ι	Н	Α	Μ
Ι	R	м	Ε	S	Ν	Т	Ι	Т	R	Т	U	R	Ρ
Ν	Т	Α	Α	R	Т	0	Ν	U	Ι	0	С	Ρ	Ε
S	Α	Ι	Н	Н	Α	Т	Ι	0	Α	0	0	Е	R
U	Ι	Ν	Ν	R	Е	D	Ν	Т	N	Ι	Т	Т	Α
L	Ν	F	Ι	Ν	L	J	Ι	D	Α	R	L	U	Т
Α	S	R	D	Ι	0	L	U	Α	Т	R	Α	S	U
Т	R	Α	Т	U	Ν	С	Ν	Α	Т	W	В	Α	R
0	Ρ	R	L	R	Т	D	Ε	Ι	Μ	Ι	Т	Ι	Ε
R	L	Ε	Ε	I	S	Η	Ν	S	N	0	0	R	۷
S	S	D	0	N	Ρ	F	Α	R	0	L	N	N	Ν
Ε	Т	Ν	D	0	W	N	W	Α	R	D	S	Ν	S

RADIATION HOT JOULES DOWNWARDS CONDUCTION INSULATORS VIBRATION CARPET TEMPERATURE INFRARED CURTAINS INSULATION HEAT

Crossword

Heat Complete the crossword puzzle below 10 11 12 14

Across

2. The sun transfers heat through _

5. Can be put in front of windows to prevent heat loss.

6. Poor conductors of heat are known as

7. air travels upwards

8. Hot areas in an infrared camera are coloured

9. This can be added to the walls and roof of a house to keep it warm.

- 10. Measured in degrees Celsius(°C)
- 12. Cold air travels _

 12. Cold air travels _____.

 13. All energy is measured in _____.

14. A form of energy.

15. Can be used to prevent heat loss through floors.

Down

1. Particles _____ in a solid during conduction.

3. This type of light is used to 'see' heat energy.

4. The method of heat transfer in a solid.

_ excluders are put below doors to 11. prevent heat loss.

Plenary (end of lesson summaries)

Lesson	Key Concents Learned	Real-World Applications
Heat and Temperature		
Heat Transfer Scenarios		
Cooling Curve Experiment		
Conduction		
Convection in Liquids and Gases		
Radiation		
Preventing Heat Loss		

