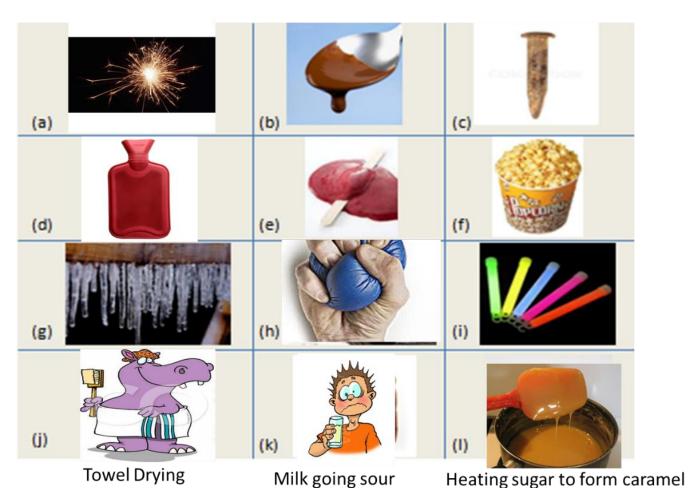


Kirkcaldy High School



BGE Science Science of the House Chemistry in our Home

Name:	
Class:	
Teacher:	

Chamical and phy	Date:
Chemical and phy Starter	Sicai changes
List some examples of chemical reactions:	
Learning Intentions	
 To learn about the differences between chemical changes 	n physical and Tick me at the end if you can
Success Criteria	
I can describe the differences between	physical and chemical changes
I can name examples of chemical and	physical changes
Chemical or Phys	sical Change
A <u>physical change</u> is one in which NO in	new substances are made.
 Physical changes are usually (but not a 	always) quite easily reversed.
 A <u>chemical reaction</u> is a change in which 	ch a new substance is always made.
 A chemical reaction is <u>not</u> easily revers 	ed.
	
Chemical Reaction	Physical change

Extension

a)			
,			

- b) _____
- c)
- d) _____
- e) _____
- f)
- g) _____
- h) _____
- i)
- j) _____
- k)
- l) _____

Date:
Chemical Reactions
Explain why chocolate melting is an example of a physical change.
Give an example of physical changes and chemical changes which happen in your home.
 Learning Intentions To learn how to identify when a chemical reaction is taken place To learn how to write a chemical equation Tick me at the end if you can
.00
☐ I can identify when a chemical reaction has taken place
I can write a chemical word equation
Chemical Reactions
The substances that react together are called the
The new substances made are called the
+ means "and"
means "changes into"

Examples				
Burning coal in a fire				
Coal and oxygen <u>react</u> together to <u>produce</u> carbon dioxide.				
Questions:				
1) What are the reactants? What are the products?				
2) Write the word equation for this reaction.				
Screaming Jelly Baby				
Sugar <u>reacts</u> with potassium chlorate to <u>produce</u> carbon dioxide, water and potassium chloride.				
Write the word equation for this reaction.				
What did you see happening?				
Elephants Toothpaste				
Hydrogen peroxide decomposes to produce oxygen and water.				
Write the word equation for this reaction.				
What did you see happening?				
5				

Whoosh Bottle
Alcohol burns in oxygen to produce water and carbon dioxide.
Write the word equation.
What did you see happening?
Triat did you ooo napponing.

	Date:
Signs of a Chemical	I Reaction
Starter	
You have just baked a cake; how do you know a	chemical reaction has taken place?
Your chocolate melted in the sun, how do you knotaken place?	ow a chemical reaction has not
Learning Intentions	
 To learn how to identify when a chemical re 	eaction has taken place.
Cuana Cuitaria	end if you can
Success Criteria I can state the terms used for the signs of a	chemical reaction.
Signs of a Chemical I	Reaction
There may be a	reaction
There may be	
There may be	
There may be an	
A new substance is formed.	
Effervescence - A is produced durin	g a chemical reaction.
Precipitation - Formation of a wher	n two solutions react together.

Signs of a chemical reaction

<u>Aim</u>: To identify a chemical reaction.

Results:

Substances Mixed	Observation	Chemical reaction? (Yes/No)
Dilute Sulfuric Acid (0.5M) + Copper Carbonate		
Dilute Sulfuric Acid + Sodium Hydroxide		
Ethanoic Acid (vinegar) + Baking Soda		
Water + Copper Oxide		
Lead Nitrate Solution + Potassium Iodide Solution		
Dilute Sulfuric Acid + Copper		
Water + Iron nail		
Dilute Sulfuric Acid + Magnesium		
Copper Sulfate Solution + Iron Filings		

Evaluation:	How could you improve your experiment?

Conclusion: What is the answer to your aim?

Speeding up chemical reactions

Starter

Match the term on the left to the correct definition on the right.

- 1. Effervescence
- 2. Chemical Change
- 3. Reactant
- 4. Physical Change
- 5. Precipitation

- A. A change in which a new substance is made.
- B. Formation of a solid when two liquids chemically join.
- C. Gas produced during a chemical reaction.
- D. Chemicals present at the start of a chemical reaction.
- E. A change in which <u>no</u> new substance is made.

Speeding up chemical reactions			
Aim: To find out of	different ways we can speed up a chemical r	eaction.	
Method: Draw your metho	d below		
Results:		,	
Effect	Reaction	Quickest reaction	

Effect	Reaction	Quickest reaction (low/high concentration) (small/large particle size) (low/high temp)
Concentration	5 ml of Low/high concentration vinegar + one small spatula of sodium bicarbonate	
Particle size	5 ml of 0.1M hydrochloric acid + marble lumps/chips	
Temperature	1 Glow stick in cold water and 1 glow stick in hot water	

<u>Conclusion</u> :	: What is the answer to your aim?	
Evaluation:	How could you improve your experiment?	

Particle size

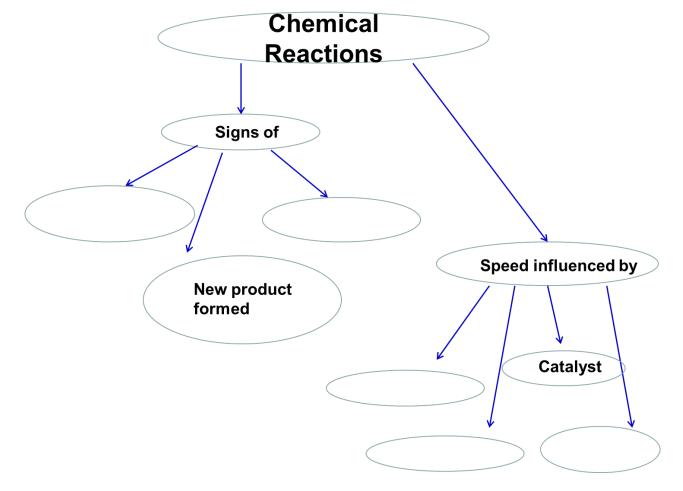
Potatoes cook _____ when cut up into smaller pieces.

A block of wood burns _____ than wood shavings.

Temperature

A car exhaust rusts _____ than the rest of the car.

Food goes off _____ in the fridge and even ____ in the freezer.


Washing powder works _____ in cold water than in warm water.

Plants grow _____ in a greenhouse than outside.

Concentration

Ships rust _____ at sea than on a river because of the higher concentration of salt.

Fill in the blanks

Date:
Acids and Bases
Starter
You are cooking chicken for a stir fry, list 2 different ways to speed up the cooking process?
Why does keeping vegetables in the fridge prevent them from rotting quickly?
Learning Intentions
To learn about acids and bases in our home
Success Criteria Tick me at the end if you can
☐ I can identify examples of acids and bases
I can state the difference between an alkali and a base
I can determine if a substance is acidic or basic using an indicator
Acids
have a taste. The word "acid" comes from the Latin word,, meaning "sour".
Acids are found in our food and drinks. Acids are important as they:
Contribute to the of food.
food preventing food rotting.
Essential for providing for our body.

D	_	_	_	_
o	6	5	e	3

Bases are another group of chemicals, the _____ of acids.

- We use *weak* bases daily for **cleaning purposes**.
- An _____ is a base, but alkalis also dissolve in water.

AcidOpposite of base

Alkali
Also dissolves
in water

Opposite of acid

Indicators

<u>Indicators</u> are special substances used to tell the difference between acids and bases. Their colours are affected by acids and bases.

Indicator	Colour in acid	Colour in base
Litmus		
Methyl Orange		
Bromothymol Blue		
Phenolphthalein		

										Da	ate: _			
Start	The pH Scale and Universal Indicator Starter													
Starti	EI.													
Vineg						•								
	•			ouldn	't use	hydro	ochlor	ic acio	d on o	ur chi	ps?			
Expla	in you	ır ans	wer.											
														-
														-
Learr	ning I	ntenti	ions											
	 To 	learn	abou	it the i	nH sc	ale							~	
			ify eve				alkali	is		1		k me at		
Succ	ess C	riteri	a							7	end	if you 	can	\mathcal{Y}
									۰ ٥	0		<u>\</u>	ノ	
	I can	identi	fy the	pH of	f a sul	ostano	ce usi	ng un	iversa	al indic	cator			
	I can	identi	fy eve	ryday	acids	s and	alkali							
						The	pH s	cale						
							-							
Acids	<u>s</u> : sub	stanc	e with	а рН	less t	han 7								
Base	: subs	stance	with	a pH ı	more 1	than 7	7							
Colou	ır and	label	the p	H sca	le bel	OW								
	T	T	T	T	T	T	T	T	1		1	T	T	T
	4	2	2	A	_	6	7	0		40	44	40	40	4.4
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Measuring the pH of Household Items

<u> Aim</u> :	To fin	d out	which	househ	old it	ems	are	acids	and	which	are a	alkalis.	

Method:

Draw your	method	below
-----------	--------	-------

Results:

SUBSTANCE	COLOUR	pH (0-14)	ACID or ALKALI
Baking soda			
Fizzy water			
Salt (sodium chloride)			
Distilled (pure) water			
Lemon juice			
Orange juice			
Oven Cleaner			
Soap solution			
Vinegar			
Washing Soda			
Ethanol			

		Date:
Na	tural Indicators	
Starter		
What is an indicator?		
What would be the characteristics	s of a good indicator?	
Learning Intentions • To make a natural indicate	ator from plants	Tick me at the
Success Criteria		end if you can
\square I can make an indicator from	m plants 。o C	
I can determine if an indica	tor is effective or not	
Investig	gating Natural Indicator	s
Aim: To investigate which plant p	part is the best indicator	
Results:		
Plant Part	Colour in Acid	Colour in Alkali
Root (red onion,beetroot)		
Leaves (red cabbage)		
Fruit (blueberries, raspberries)		
Conclusion: What is the answer	to your aim?	
Evaluation: How could you impl	rove your experiment?	

	Date:
01	Neutralisation Reactions
Start	er
1.	Why is universal indicator better than litmus indicator?
2.	What is the pH range of acids?
3.	What is the pH range of alkalis?
4.	What is the pH of a neutral solution?
Lear	ning Intentions
	To learn about neutralisation reactions
Succ	ess Criteria
	I can identify a neutralisation reaction I can describe what happens to the pH when a neutralisation reaction occurs
	Neutralisation
Acids	and alkalis are chemical
They	react together and "cancel each other out".
-	I mix just the right volume and concentration of acid and base together, you get utral solution.
This	is called a reaction.

Dilution Experiment					
<u>Aim</u> : To investigate the effect of dilution on pH.					
Method/results:					
Draw your method below, to show your results colour in each test tube with the corresponding colour shown with universal indicator:					
Conclusion: What is the answer to your aim?					
Evaluation: How could you improve your experiment?					

<u>Aim</u> : To find out when a neutralisation reaction has taken place.	
--	--

Method	
--------	--

Draw your method below

Results:

Volume of alkali added (cm³)	Colour of solution	рН				
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Conclusion:

The exact final volume of alkali needed to neutralise the acid was _____ cm³.

		Date:
		Neutralisation Reactions
Sta	rter	
1.	Nan	me 2 everyday neutralisation reactions.
2.		versal Indicator was added to an acid, an alkali and a neutral substance. tch acid, alkali and neutral to their correct colours below:
	Re	ed:
	Pu	urple:
	Gr	reen:
3.	(a)	What is the name given to the reaction where an acid is added to an alkali and they cancel each other out?
	(b)	What will be the pH of the final solution?
Lea	rnin	g Intentions
	•	To learn how to obtain a salt from a neutralisation reaction
Suc	_	s Criteria Tick me at the end if you can
	lc	can describe what happens to the pH when a neutralisation reaction occurs
	l c	an identify the products of a neutralisation reaction

Word Equa	ations
-----------	--------

Word Equations
The new substances made when a base is exactly neutralised by an acid are a salt and water .
The reaction can be shown by a word equation.
acid + base + water
Forming Salt Experiment
Aim: To obtain a salt from a neutralisation reaction.
Method:
Results: What did you observe?
Conclusion: what is the answer to your aim?

Experiment extension:

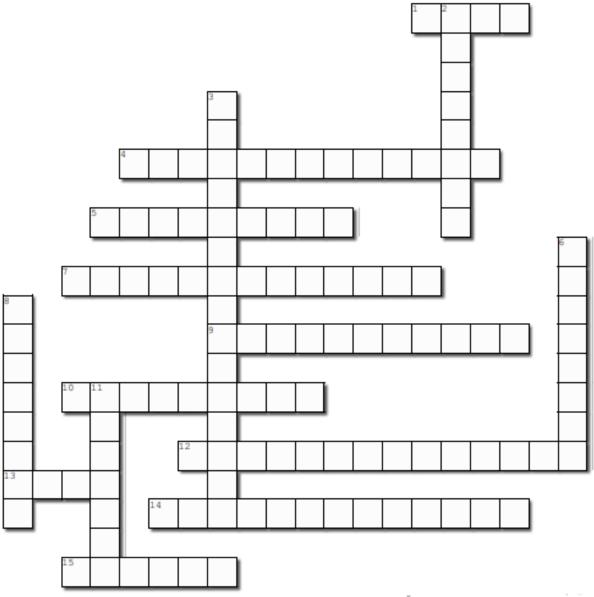
We can identify the metal in the salt we have made by carrying out a **flame test**.

Flame colour: _____ Metal identified: _____

Extension Tasks

Word Search

Chemistry in our home


С	0	N	С	Ε	N	Т	R	Α	Т	I	0	N	R
S	Α	I	S	Α	L	Т	Т	S	N	Α	R	S	Ε
N	В	L	Р	U	N	Α	Α	T	Ε	I	С	U	Α
0	Α	Α	S	Р	Н	Υ	S	I	С	Α	L	М	С
I	M	K	S	Ε	С	Α	T	Α	L	Υ	S	T	T
S	S	L	I	Ε	T	T	F	N	N	Ε	T	I	I
0	0	Α	Α	С	I	D	E	I	T	I	T	L	0
L	L	P	Α	R	T	I	С	L	Ε	Ι	P	N	N
P	E	F	F	E	R	V	E	S	С	E	N	С	Ε
X	I	C	T	L	Α	С	I	M	Ε	Н	С	R	T
E	0	I	T	E	M	Р	E	R	Α	T	U	R	Ε
R	L	Α	Ι	N	D	I	С	Α	T	0	R	С	N
N	0	Ι	T	Α	T	I	P	Ι	С	Ε	R	Р	D
N	Ε	U	T	R	Α	L	I	S	Α	T	Ι	0	N

NEUTRALISATION PHYSICAL **EFFERVESCENCE** ALKALI **PRECIPITATION** CONCENTRATION ACID TEMPERATURE PARTICLE LITMUS CATALYST INDICATOR SALT BASE REACTION **EXPLOSION** CHEMICAL

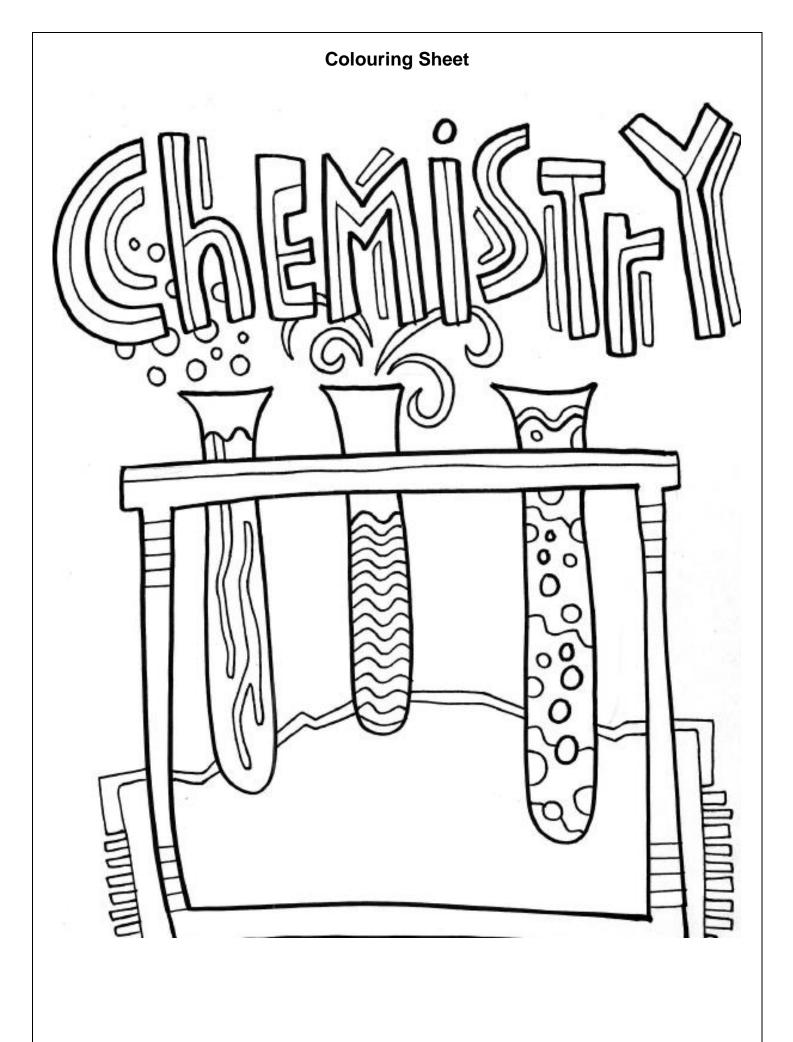
Crossword

Chemistry in our home

Complete the crossword below

Across

- 1. A solution with a pH less than 7.
- **4.** The word given for a reaction that forms a gas (bubbles).
- **5.** An example of a very fast chemical reaction.
- **7.** A reaction where a solid forms when two solutions react.
- **9.** The _____ of the room can be increased to increase the rate of chemical reactions.
- 10. A substance added to a solution to show the pH.
- 12. A reaction where an acid and alkali are added
- together to form a neutral solution


 13. The product of a neutralisation reaction, which can be extracted by evaporation.
- **14.** The _____ of an acid can be increased to increase the rate of reaction.
- 15. A solution with a pH more than 7

Down

- **2.** A _____ reaction is one where a new substance is always made:
- **3.** A pH indicator that is colourless in acid and pink in alkaline solutions.
- **6.** A chemical _____ occurs when a new substance is made.
- **8.** A substance that speeds up a chemical reaction.
- **11.** A solution with a pH of 7.

Plenary (end of lesson summaries)

Lesson	Key Concepts Learned	Real-World Applications
Chemical and physical changes		
Chemical Reactions		
Signs of a Chemical Reaction		
Speeding up chemical reactions		
Acids and Bases		
The pH Scale and Universal Indicator		
Neutralisation Reactions		

