Kirkcaldy High School

BGE Science

Science and the Environment

Space

Name:
Class:

Teacher:

Expectations and Outcomes Learner Evaluation

Topic: Space

Experience and Outcomes	$\begin{array}{c}\text { Date } \\ \text { Completed } \\ \text { (dd/mm/yy) }\end{array}$	$\begin{array}{c}\text { Evaluation } \\ \text { How happy } \\ \text { are you } \\ \text { with it? }\end{array}$
(0)		

$\left.\begin{array}{|l|l|l|}\hline \text { Experience and Outcomes } & \begin{array}{c}\text { Date } \\ \text { Completed } \\ \text { (dd/mm/yy) }\end{array} & \begin{array}{c}\text { Evaluation } \\ \text { How happy } \\ \text { are you } \\ \text { with it? }\end{array} \\ (0) ?\end{array}\right\}$
\qquad

The Earth

Starter

What do you know about space? Write down 5 words or sentences.

Learning Intentions

- To learn that day and night are caused by the Earth rotating on its axis.
- To learn that the Earth orbits the Sun once in one year.
- To learn how the seasons are caused by the tilt of the Earth.

Success Criteria

I can state that day and night are caused by the Earth rotating on its axis.
I I can state that the Earth orbits the Sun once in one year.
I can explain how the seasons are caused by the tilt of the Earth.

The Earth
Daytime Month
Night-time
Year
Seasons Day

Terms	Definitions
	The time of the day between sunrise and sunset.
	The time of the day between sunset and sunrise.
	A 24 hour period corresponding to one rotation of the earth on its axis.
	Each of the twelve named periods into which a year is divided.
	The time taken by the earth to make one revolution around the sun.
	Each of the four divisions of the year resulting from the earth's changing position around the sun.

A Day

A day is the period of time during which the \qquad completes one rotation around its axis.

The Earth has a day of \qquad .

A Year

The Earth orbits the Sun once every \qquad days. This is known as a
\qquad .

Our calendar year is 365 days. Every 4 years we have a leap year and add another day to the calendar. This makes up for the 4 missing quarters.

Day and Night

It is daytime on the slide of the Earth that is \qquad the Sun and night-time on the opposite side of the Earth.

Day and Night Demonstration

Aim: \qquad

Method:

Results:

Time of day	Direction to look to see the Sun
Morning	
Midday	
Evening	

Conclusion: \qquad
\qquad

The Seasons
The Earth's axis is slightly tilted in relation to its orbit around the Sun. This is why we have seasons.

\qquad

The Earth and the Moon

Starter

1. Describe why we have day and night. \qquad
\qquad
2. How long does it take the Earth to rotate on its axis? \qquad
3. How long does it take the Earth to rotate around the Sun? \qquad

Learning Intentions

- To learn how the rotation of the Moon around the Earth creates the phases of the Moon.
- To identify the phases of the Moon.

Success Criteria

Tick me at the end if you can ...

I I can state that the rotation of the Moon around the Earth creates the phases of the Moon.
I I can identify the phases of the Moon.
The Moon

The Moon is a natural \qquad that orbits the \qquad .

It takes \qquad days for the Moon to orbit the Earth. This period is called a lunar
\qquad .

Phases of the Moon

Aim: \qquad

Method:

\qquad
\qquad

KEY:

Conclusion:

What part we can "see" \qquad
crescent moon
\qquad
\qquad

0
gibbous moon

Waxing :

Waning :
\qquad

Moons

Starter

1. What is a moon? \qquad
2. How long does it take the Moon to orbit the Earth? \qquad
3. Explain why the Moon looks a different shape in the night sky. \qquad
4. How many moons are in our Solar System? (Estimate) \qquad

Learning Intentions

- To understand there are other moons in the solar system.
- To describe the conditions on the surface of the Moon.

Success Criteria

I can state that there is more than one moon in the solar system.
I I can describe the conditions on the surface of the Moon.

Moons

There are more than \qquad natural moons orbiting planets in our Solar System.
Most orbit the giant planets - \qquad and \qquad .

The Moon Landings

In total 12 astronauts have walked on the Moon.

1. What do you know about the Moon landings?
\qquad
\qquad
2. What do you think it would feel like walking on the Moon?
\qquad
\qquad

The Moon Landing Quiz

1. What was the name of the first moon landing mission?
2. What date was the first moon landing?
\qquad
3. How did the astronauts train for the mission?
\qquad
4. How long was the journey from Earth to the moon?
\qquad
5. Name the command module.
\qquad
6. Which astronauts were on the lunar module?
\qquad
7. What was the name of the landing site on the moon?
\qquad
8. If an astronaut and their space suit weigh 383lbs what would their weight be on the moon?
\qquad
9. What did the astronauts do on the moon?
\qquad
\qquad
10. What date did they return to Earth?
\qquad
\qquad

Investigating Craters

Starter

1. What did you learn about the Apollo 11 mission?
\qquad
\qquad
2. Describe the conditions on the surface of the Moon.
\qquad
\qquad

Learning Intentions

- To describe the conditions on the surface of the Moon
- To carry out an experiment to show how craters are formed on the surface of the Moon.
- To draw a scatter graph with a best fit line.

Success Criteria

I can describe the conditions on the surface of the Moon.

I can carry out an experiment to show how craters are formed on the surface of the Moon.
\square I can draw a scatter graph with a best fit line. Investigating Craters

The surface of the Moon has many \qquad .

The craters on the Moon are caused by \qquad and \qquad colliding with the lunar surface.

Investigating Craters

Aim: To investigate how the \qquad affects the
\qquad

Method:

Variables

- I will change the \qquad by \qquad
\qquad
- I will measure the \qquad using \qquad
\qquad
- I will keep the \qquad constant.

Results:

Diameter of asteroid (marble) (cm)	Width of crater (cm)			
	1	2	3	Average
2.5				
3				

Draw a graph of your data ...

Conclusion: \qquad

Evaluation
\qquad
\qquad
\qquad

Investigating Craters (Extension)

Starter

1. Put these scientific investigation headings in the correct order.
Results
Method
Conclusion
Aim
Title
Evaluation
\qquad
\qquad
2. Select two of them and describe what they mean.
\qquad
\qquad
\qquad

Learning Intentions

- To design, carry out and write up my own experiment.
- To state the dependant, independent and controlled variables.

Success Criteria

I can design, carry out and write up my own experiment.
I can state the dependant, independent and controlled variables.

Tick me at the end if you can ...

Investigating Craters (Extension)

Aim: To investigate how the \qquad affects the
\qquad .

Method:

Variables

- I will change the \qquad by \qquad
- I will measure the \qquad using \qquad
- I will keep the \qquad constant.

Results:

	$\mathbf{1}$	$\mathbf{2}$	3	Average

Conclusion: \qquad
\qquad
\qquad

Evaluation
\qquad
\qquad
\qquad

Draw a graph of your data ...

\qquad

The Solar System

Starter
What does our solar system consist of?

Learning Intentions

- To learn that the Solar System consists of eight planets that orbit the Sun.
- To list the planets in order of increasing distance from the Sun.
- To learn about the relative size and scale of the planets in the Solar System.

Success Criteria

I I can state that the Solar System consists of eight planets that orbit the Sun.
I can list the planets in order of increasing distance from the Sun.
I can describe the relative size and scale of the planets in the Solar System

The Solar System

The Earth is one of \qquad planets which orbit the \qquad . Together with other objects like comets, asteroids, and dwarf planets, they make up the
\qquad .

The Scale of the Solar System

Use this data table to help you create a map of the solar system.

Planet	Distance to the Sun (million $\mathrm{km})$	Time for 1 orbit around the Sun (Earth days)	Average surface temperature $\left({ }^{\circ} \mathrm{C}\right)$	Strength of gravity $\left(\mathrm{Nkg}^{-1}\right)$	Moons
Mercury	60	88	167	3.7	0
Venus	110	225	464	8.9	0
Earth	150	365	15	9.8	1
Mars	230	687	-65	3.7	2
Asteroids	400	-	-	-	-
Jupiter	780	4330	-110	23	67
Saturn	1400	10800	-140	9.0	62
Uranus	2900	30600	-195	8.7	27
Neptune	4500	59800	-200	11	14

\qquad

The Scale of the Solar System Continued

Starter

1. How does the size of the four inner planets compare to the size of the four outer planets? \qquad
\qquad
2. Why are the sizes of the four outer planets so different from the four inner planets? \qquad
3. Saturn is 1400 million km away from the sun, Earth is 150 million km. Roughly how many times further away from the Sun is Saturn compared to the Earth?

Learning Intentions

- To learn about the relative size and scale of the planets in the Solar System.

Success Criteria

I can describe the relative size and scale of the planets in the Solar System

Bar Graph Practice

Plot this data on a bar graph:

Planet	Distance to the Sun (million $\mathbf{~ k m}$)
Mercury	60
Venus	110
Earth	150
Mars	230
Asteroids	400
Jupiter	780
Saturn	1400
Uranus	2900
Neptune	4500

Planet Fact File

Distance from the sun

Time taken to orbit the sun

Number of Moons

Description of planet

Interesting Facts
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Asteroids, Comets \& Meteoroids

Starter

Use your Solar System Information Table on page 19 to answer the following questions.

1. Which planet has the highest average surface temperature? \qquad
2. Which planet has the longest year? \qquad
3. How many more moons does Jupiter have compared to Saturn? \qquad
4. On which two planets is the strength of gravity the same? \qquad
5. Which planet has more moons than Saturn? \qquad

Learning Intentions

- To learn about comets and other small objects that orbit the Sun.
- To state the difference between asteroids, comets, meteoroids, meteors, and meteorites.

Success Criteria

I can state that comets and other small objects that orbit the Sun.
\square I can describe the difference between asteroids, comets, meteoroids, meteors and meteorites.

Asteroids, Comets \& Meteoroids

Object	Definition
Asteroids	
Comet	
Meteoroids	
Meteors	
Meteorites	

\qquad

Beyond the Solar System

Starter

1. What is beyond our solar system?

Learning Intentions

- To state and explain what is meant by the terms: planet, moon, star, Solar System, exoplanet, galaxy and universe.
- To understand the scale of the universe.

Success Criteria

\square I can state and explain what is meant by the terms: planet, moon, star, Solar System, exoplanet, galaxy and universe.

- I can describe the scale of the universe.

Important Astronomical Objects

Astronomical Object	Description
	An object which orbits a star.
	A natural satellite which orbits a planet.
	A huge sphere of gas that emits light and heat.
	A star and the objects that orbit it.
	A planet outside our Solar System
	A huge collection of stars.
	Everything that exists including all matter and energy.

Planet Moon	Universe Exoplanet	Solar System Galaxy	Star

The Scale of the Universe

Complete the diagram to show your place in the Universe.

\qquad

Space Observation and Exploration

Starter

1. Put these cosmology terms in order of their size:

Smallest \longrightarrow Largest.
2. Choose one term and state its definition.

Planet
Universe Star Solar system Galaxy Moon

Learning Intentions

- To state the methods used to observe and explore space.
- To describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.

Success Criteria

I I can state the methods used to observe and explore space.

I I can describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.

Space Observation and Exploration

Space can be explored through:

- \qquad using telescopes on Earth and in space.
\qquad .

\qquad

Space Observation and Exploration (Extension)

Starter

1. List the 3 ways we can explore space.
2. Choose one of these methods of exploration and describe an important mission or milestone. (use your timeline from last lesson to help you)

Learning Intentions

- To describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.

Success Criteria

\square I can describe the impact that space observation and exploration has had on our understanding of the universe and planet Earth.

Space Probes Research

Choose one space probe. Carry out some basic research into your probe, answering at least the following:

- What is a space probe?
- What... did the probe look like?
- Who... sent it up?
- When... what date?
- Where... was it launched from?
- Why... was it sent up?
- Where ... is your probe now?

Include some photographs to make your research look interesting!
List of space probes:

- Sputnik - there was more than one!
- Pioneer - there was more than one!
- Voyager - there was more than one!
- Mariner - there was more than one!
- Mars Rover - there was more than one!
- Rosetta
- New Horizons
- Galileo

There are also space telescopes to go looking into space ...

- Hubble Space Telescope
- Kepler Space Telescope
- James Webb Telescope
\qquad

Life Beyond Earth

Starter
The aim of the Mars Rover 2020 mission is to find life on Mars. The rover will drill down about 1-2 metres and analyse the rocks under the surface. Any life would be protected from harmful radiation and may have access to underground water supplies. This mission has a price tag of about US\$2.1 billion.

State one advantage of exploring mars,

State one disadvantage of exploring mars.

Learning Intentions

- To state what an exoplanet is
- To explain what is required for life to survive on a planet.

Success Criteria

I can state what an exoplanet is.
I can explain what is required for life to survive on a planet.
Requirements for Life
The requirements for life on Earth are:

- \qquad
\qquad
- \qquad
- \qquad
\qquad
\qquad

Candidates for life in our solar system

There are very few places in the Solar System, other than on Earth, that life could have evolved and still be thriving today. A few possibilities are
\qquad , \qquad and
\qquad .

Exoplanets

An \qquad is a planet outside our \qquad .
It is a planet which orbits a star other than our own Sun.

The Habitable Zone

The \qquad zone (Goldilocks zone) is the name given to an area around a star which is 'just right' for life.
This area is not too \qquad or too \qquad for liquid water to exist on a planet.

\qquad

Looking for Exoplanets

Starter

1. Some exo-planets orbit stars in an area known as the habitable zone or 'Goldilocks zone'. State what is meant by the habitable zone.
\qquad
\qquad
2. State 4 basic requirements for an exo-planet to support life.
\qquad
\qquad

Learning Intentions

- To produce reasoned arguments on the likelihood of life existing elsewhere in the universe.

Success Criteria

I I can produce reasoned arguments on the likelihood of life existing elsewhere in the universe.
 Finding Exoplanets

Exoplanets are very far away. They are also very \qquad and \qquad compared to the stars that they orbit. This makes seeing them through a regular telescope \qquad .

Detection Method	How it works
	Taking a picture of an exoplanet with a telescope
	As the exoplanet orbits a star, the exoplanet's gravity pulls on the star, making the star wobble.
	Astronomers detect very small changes in the brightness of stars as an exoplanet passes in front of a star and blocks out a little bit of the star's light.

The conditions for a habitable exoplanet are:

Life elsewhere in the Universe

Use all the information in this section to explain, with reasons, whether you think there is life elsewhere. Think about the requirement for life, what is meant by life and the size of the Universe.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Different Exoplanets

Facts from the NASA Exoplanet series:
\square

Space Tourism

Design a travel poster advertising space tourism.
Identify a favourite exoplanet, planet, or moon.
Imagine what the surface and conditions of that exoplanet might be like.
Design a travel poster highlighting the key characteristics of the exoplanet.
There is space on the next page for your poster.

Space for Space Tourism poster

Additional graph paper for numeracy tasks:

Additional graph paper for numeracy tasks:

Extension Tasks

Word Search

SPACE 1

H	H	W	A	N	I	N	G	S	L	I	E	C	T	SATELLItE
M	T	S	S	C	R	E	M	M	U	S	E	H	M	DAY
A	R	N	A	W	R	E	T	N	I	W	Q	I	W	SUN
U	A	P	0	L	L	0	A	C	E	I	U	T	A	ECILPSE
T	E	C	R	A	T	E	R	T	Y	E	A	R	X	APOLLO
U	A	A	N	E	C	E	I	R	R	S	T	S	I	WAXING SEASONS
M	I	E	A	I	S	L	I	A	0	E	0	H	N	NICHT
N	A	S	L	C	L	N	X	H	T	A	R	H	G	WINTER
C	T	P	E	E	0	I	L	L	A	S	R	T	T	ROTATE
R	S	N	T	0	S	X	U	N	T	0	T	N	E	SUMMER EARTH
E	T	A	M	A	P	Y	A	D	E	N	C	0	I	WANING
0	S	A	E	G	N	I	R	P	S	S	0	M	R	EQUATOR
G	I	B	B	0	U	S	0	0	M	S	T	I	I	GIBBOUS CRATER
I	T	E	A	N	U	S	G	S	N	I	G	H	T	CRESCENT

Play this puzzle online at : https://thewordsearch.com/puzzle/6240759/

Extension Tasks

Word Search

Space 2

N	R	M	T	A	L	A	H	T	E	M	0	C	K	NEPTUNE
E	V	M	E	R	C	U	R	Y	V	T	S	I	I	VUBbLE
S	H	R	P	U	B	T	S	G	R	E	R	N	N	URANUS
R	A	U	E	B	G	N	Y	A	A	E	E	P	T	EXOPLANET
E	B	R	L	I	M	S	T	H	L	L	G	E	U	STAR
T	I	E	0	A	R	U	E	R	G	Y	A	T	P	SPUTNIK GALAXY
I	T	S	K	J	R	N	X	U	R	U	Y	X	S	SATURN
P	A	V	K	0	U	A	0	N	A	U	0	B	Y	KEPLER
U	B	Y	E	T	R	R	P	I	V	E	V	X	M	UNIVERSE MERCURY
J	L	T	P	N	U	U	L	V	I	S	T	A	R	METEOR
S	E	E	L	K	U	0	A	E	T	N	R	A	U	MARS
M	N	T	E	A	T	S	N	R	Y	E	M	T	E	COMET
A	M	A	R	S	P	K	E	S	A	T	U	R	N	
H	S	H	T	R	A	E	T	E	B	U	A	T	S	

Crossword

Clues Across
3. A planet outside our solar system.
5. These orbit a star.
6. The star in our solar system.

Clues Down

1. A natural satellite.
2. All the space we can observe.
3. Our one is called the Milky Way.

Colouring Sheet

