## Master Kirkcaldy High School



N4/5 Chemistry
Unit 1 - part 6
Acids and Bases
Name: $\qquad$
Class:
Teacher:
Assessment Page
End of topic questions

| Topic title | Date | Mark/Total Mark |
| :---: | :---: | :---: |
|  |  | $I$ |
|  |  |  |

Homework

| Homework title | Date | Mark/Total Mark |
| :---: | :---: | :---: |
|  |  | / |
|  |  | I |
|  |  | $I$ |

Check tests

| Test title | Date | Mark/Total Mark |
| :---: | :---: | :---: |
|  |  | $/$ |

## Teacher comments

$\qquad$

## The pH Scale

## Learning Intentions

- To learn about the pH scale and how to measure it.


## Success Criteria

I can identify acidic, neutral and basic(alkaline) solutions based on their pH .I can state why indicators are used.I can determine the pH of a solution with universal indicator.
## The pH Scale

The pH scale is a number scale from 0 to 14 that tells us how acidic, basic (also called alkaline*), or neutral a solution is:

- Acidic Solutions: These have a pH from 0 to less than 7 . The lower the number, the more acidic the solution.
- Basic (Alkaline) Solutions: These have a pH greater than 7 up to 14 . The higher the number, the more basic the solution.
- Neutral Solutions: A pH of exactly 7 is neutral, meaning it's neither acidic nor basic.

Fill in the table below if the solution will be acidic, basic(alkaline) or neutral

| $\mathbf{p H}$ of Solution | Acidic, neutral or basic? |
| :---: | :---: |
| 2.5 |  |
| 8.0 |  |
| 6.5 |  |
| 9.2 |  |
| 3.8 |  |
| 7.0 |  |
| 11.3 |  |
| 1.0 |  |
| 7.5 |  |

*alkaline and basic are different concepts but they are often used interchangeably, we will define acid and alkaline in a future lesson.

Many solutions look just like water: clear and colourless. It's hard to tell them apart just by looking. This is where indicators are useful.
Indicators are special chemicals that change colour when added to a solution. This colour change shows us if the solution is acidic, neutral or basic. For example, a common indicator called litmus turns red in acidic solutions and blue in basic solutions.

Some fruit and vegetables can act as indicators such as red cabbage and beetroot. These are called natural indicators.

## Indicators experiment (lab book page 20)

Complete the table below to show the colour each indicator goes when acid and basic(alkaline) solutions are added to it are added to it.

|  | Indicator <br> Colour | Colour in <br> Acidic <br> Solutions | Colour in Basic <br> (Alkaline) <br> Solutions |
| :---: | :---: | :---: | :---: |
| Phenolphthalein |  |  |  |
| Bromothymol blue |  |  |  |
| Litmus |  |  |  |
| Methyl orange |  |  |  |
| pH paper |  |  |  |

After experimenting with various indicators, consider their effectiveness. What characteristics do you think make a good indicator?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Universal Indicator

All of the indicators we have used demonstrate varied effectiveness in detecting pH levels.

To pinpoint the exact pH value on the scale, a universal indicator is ideal. A universal indicator is created by blending various individual indicators, resulting in a solution that can display a wide range of colours, each corresponding to a specific pH level. This allows for a more precise determination of the pH value of a solution.

Colour in the scale below to represent the changes in colour observed at different pH levels when using a universal indicator. Label the acidic, neutral and basic(alkaline) regions. Your teacher will show you this.

Observed Colours with Universal Indicator

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fill in the table below with the colour shown with universal indicator. Either write the colours name or use a coloured pencil/pen.

| pH of <br> Solution | Colour Observed with <br> Universal indicator |
| :---: | :---: |
| 2 |  |
| 8 |  |
| 6 |  |
| 9 |  |
| 3 |  |
| 7 |  |
| 11 |  |
| 1 |  |
| 7 |  |
| 5 |  |

Aim: $\qquad$

## Method:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Results:

| Chemical | Colour with <br> Universal Indicator | $\mathbf{p H}(\mathbf{1 - 1 4 )}$ | Acid, Neutral or <br> Basic(alkaline) |
| :---: | :---: | :---: | :---: |
| Vinegar |  |  |  |
| Water |  |  |  |
| Washing Soda |  |  |  |
| Soap Solution |  |  |  |
| Citric Acid |  |  |  |
| Sodium Chloride |  |  |  |
| Sodium <br> Carbonate |  |  |  |

Conclusion: $\qquad$
$\qquad$
$\qquad$

Evaluation: $\qquad$
$\qquad$
$\qquad$

Reaction Title: Natural Indicators (optional)
Aim: $\qquad$

Method:


## Results:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Conclusion: $\qquad$
$\qquad$
$\qquad$

Evaluation: $\qquad$
$\qquad$

## Acids, Alkalis and lons

## Learning Intentions

- To learn about the ions involved in acidic and basic(alkaline) solutions.


## Success Criteria

I can state what ions water dissociates into.I can identify reversible reactions.$\square$ I can determine the relative $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ion concentrations in an acidic, neutral and basic(alkaline) solution.I can identify common laboratory acids and bases.

## Dissociation of Water and Reversible Reactions

Water, a simple yet vital molecule, undergoes a fascinating chemical process known as dissociation. In this process, water molecules $\left(\mathrm{H}_{2} \mathrm{O}\right)$ naturally break down into hydrogen ions $\left(\mathbf{H}^{+}\right)$and hydroxide ions $\left(\mathbf{O H}^{-}\right)$. This dissociation is an example of a reversible reaction. Reversible reactions are shown by the symbol " $\rightleftharpoons$ ".

Dissociation of water reaction:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

## Questions

1. State the definition of the word dissociation.
2. State what is meant by the symbol " $\rightleftharpoons$ ".
3. Challenge: Water molecules are covalent molecular (a non-conductive substance) and yet water is conductive. Explain the reason behind water's conductive properties.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## The pH Scale and $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions

As discussed previously, the pH scale ranges from 0 to 14 . It's a measure of how acidic or basic a water-based solution is.

The key to this scale is the concentration of hydrogen ions $\left(\mathrm{H}^{+}\right)$and hydroxide ions $\left(\mathrm{OH}^{-}\right)$in a solution.

- Acidic Solutions: These have a pH less than 7.

In such solutions, the concentration of hydrogen ions $\left(\mathrm{H}^{+}\right)$is greater than that of hydroxide ions $\left(\mathrm{OH}^{-}\right)$.

- Basic (Alkaline) Solutions: These have a pH greater than 7. Here, the concentration of hydroxide ions $\left(\mathrm{OH}^{-}\right)$is greater than that of hydrogen ions $\left(\mathrm{H}^{+}\right)$.
- Neutral Solutions: A pH of exactly 7 is neutral, which means the concentrations of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions are equal. Pure water is a prime example of a neutral solution.

Acidic solution


Neutral solution


Alkaline solution


Fill in the table below for the relative concentrations of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions.

| $\mathbf{p H}$ of <br> Solution | Relative Concentration of $\mathbf{H +}$ and $\mathbf{O H}$ - ions |
| :---: | :---: |
| 8 | Greater $\mathrm{H}^{+}$ions than $\mathrm{OH}^{-}$ions |
| 4 |  |
| 7 |  |
| 3 |  |
| 7 |  |
| 11 |  |
| 1 |  |
| 6 |  |
| 5 |  |
| 2 |  |

## Common laboratory Acids and Bases

certain acids and bases are frequently encountered due to their essential roles in various chemical reactions and experiments. Understanding these common substances, their properties, and their chemical formulae is fundamental for anyone working in a lab.

Common Laboratory Acids

| Acid Name | Chemical Formula | lonic Formula |
| :---: | :---: | :---: |
| Hydrochloric Acid | $\mathbf{H C l}$ | $\mathbf{H}^{+} \mathbf{C l}^{-}$ |
| Nitric Acid | $\mathbf{H N O}_{3}$ | $\mathbf{H}^{+} \mathbf{N O}^{3-}$ |
| Sulfuric Acid | $\mathbf{H}_{2} \mathbf{S O}_{4}$ | $\mathbf{H}^{+} \mathbf{S O}_{4}{ }^{2-}$ |
| Phosphoric Acid | $\mathbf{H}_{3} \mathrm{PO}_{4}$ | $\mathbf{H}^{+}{ }_{3} \mathbf{P O}^{3-}$ |

Common Laboratory Bases

| Base Name | Chemical Formula | Ionic Formula |
| :---: | :---: | :---: |
| Sodium Hydroxide | $\mathbf{N a O H}$ | $\mathbf{N a O H}^{-}$ |
| Potassium Hydroxide | $\mathbf{K O H}$ | $\mathbf{K O H}^{-}$ |
| Ammonia | $\mathbf{N H}_{3}$ | $\mathbf{N H}_{3}$ |
| Calcium Hydroxide | $\mathbf{C a}(\mathbf{O H})_{\mathbf{2}}$ | $\mathbf{C a}^{2+}\left(\mathbf{O H}^{-}\right)_{\mathbf{2}}$ |
| Magnesium Hydroxide | $\mathbf{M g ( O H})_{\mathbf{2}}$ | $\mathbf{M g}^{2+}\left(\mathbf{O H}^{-}\right)_{\mathbf{2}}$ |

## Questions

1. Identify the ion released by hydrochloric acid $(\mathrm{HCl})$ that makes it acidic.
2. Explain why sodium hydroxide $(\mathrm{NaOH})$ is a base based on its ions.
3. Compare the acid strengths of nitric acid $\left(\mathrm{HNO}_{3}\right)$ sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ based on their ionization.
$\qquad$
$\qquad$
$\qquad$

## Neutralisation and Dilution

## Learning Intentions

- To learn about the effect of neutralisation and dilution on the pH of a solution.


## Success Criteria

I can determine the effect neutralisation and dilution on the pH of a solution.$\square$ I can determine the effect neutralisation and dilution on the $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions of a solution.

## $\square-\square-\square=-\square=\square=\square$

A neutralisation reaction occurs when an acidic solution and basic solution are mixed. This results in the pH of the solution moving towards 7 (neutral).

In neutralization, the pH of an acidic solution (originally below 7) will increase, moving closer to 7 .

- This leads to a decrease in the concentration of $\mathrm{H}^{+}$ions and an increase in the concentration of $\mathrm{OH}^{-}$ions.

Conversely, the pH of a basic solution (originally above 7) will decrease, also moving towards 7.

- This leads to an increase in the concentration of $\mathrm{H}^{+}$ions and a decrease in the concentration of $\mathrm{OH}^{-}$ions.

The pH change is a direct result of the interaction between the hydrogen ions $\left(\mathrm{H}^{+}\right)$ and hydroxide ions $\left(\mathrm{OH}^{-}\right)$in the solutions, leading towards a more balanced, neutral state. The $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions react to from $\mathrm{H}_{2} \mathrm{O}$ (water):

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

## Neutralisation Experiment (lab book page 22)

Method:

1. Use a measuring cylinder to measure $10 \mathrm{~cm}^{3}$ acid into a clean small beaker.
2. Add a few drops of universal indicator and note the colour and pH in your table.
3. Rinse the measuring cylinder with water.
4. Add $1 \mathrm{~cm}^{3}$ alkali to the beaker.
5. Note the colour and pH in your table.
6. Add another $1 \mathrm{~cm}^{3}$ alkali and note result.
7. Repeat until you have added $9 \mathrm{~cm}^{3}$.
8. Now use a dropper and add alkali drop by drop until the solution turns green.
9. Note the final volume of alkali used.

| Volume of Base(Alkali) <br> Added $\left(\mathbf{c m}^{3}\right)$ | Colour of Solution | pH |
| :---: | :---: | :---: |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |

Final volume of alkali used: $\qquad$

## Dilution and pH Changes

Dilution is the process of adding water (solvent) to a solution.
In dilution, the concentration of an acidic or basic solution is reduced, leading to changes in pH levels. This process involves adding more solvent (typically water) to a solution, which affects the concentration of $\mathrm{H}^{+}$ions in acids and $\mathrm{OH}^{-}$ions in bases.

- For an acidic solution (initially with pH below 7), dilution leads to a decrease in the concentration of $\mathrm{H}^{+}$ions. As a result, the pH of the solution increases, moving closer to 7 .
- In contrast, for a basic solution (initially with pH above 7), dilution results in a decrease in the concentration of $\mathrm{OH}^{-}$ions. Consequently, the pH of the solution decreases, also moving towards 7 .

The change in pH during dilution is the outcome of altering the concentrations of hydrogen ions $\left(\mathrm{H}^{+}\right)$and hydroxide ions $\left(\mathrm{OH}^{-}\right)$in the solution.

Unlike neutralization, where $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions react to form water, dilution simply involves a reduction in the concentration of these ions due to the addition of more solvent.

## Dilution Experiment (lab book page 21)

Follow the method in page 21 of the lab book then draw, label and colour in your apparatus at the end of the experiment below.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fill in the table below.

| Initial pH of Solution | Action Taken (Acid/Base/Water Added) | pH Change (Increase/ Decrease/ Stay the Same) | Effect on $\mathrm{H}^{+}$ Ion Conc. | Effect on OHIon Conc. |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Acid Added | Decrease | Increase | decrease |
| 8 | Base Added |  |  |  |
| 3 | Water Added |  |  |  |
| 7 | Acid Added |  |  |  |
| 9 | Water Added |  |  |  |
| 5 | Base Added |  |  |  |
| 2 | Water Added |  |  |  |
| 10 | Acid Added |  |  |  |
| 6 | Base Added |  |  |  |
| 7 | Water Added |  |  |  |
| 3 | Base Added |  |  |  |
| 11 | Water Added |  |  |  |
| 4 | Acid Added |  |  |  |
| 5 | Water Added |  |  |  |
| 2 | Base Added |  |  |  |
| 9 | Acid Added |  |  |  |
| 8 | Water Added |  |  |  |
| 6 | Acid Added |  |  |  |
| 7 | Base Added |  |  |  |

$\qquad$

## Bases, Oxides and Neutralisation Reactions

## Learning Intentions

- To learn about bases and their reactions with acids.


## Success Criteria

I can state the definition of a base.I can state the 3 main examples of a base and use the solubility table to determine if they are bases.I can state the definition of a neutralisation reaction.I can identify the salt in a neutralisation reaction.I can name the salt given the acid and base in a neutralisation reaction.I can write the balanced chemical/ionic equation for a neutralisation reaction.

In the context of aqueous solutions, a base is defined as a substance that dissolves in water to produce an alkaline solution. So soluble bases form alkaline solutions.


This alkalinity is characterized by a pH greater than 7 . When bases dissolve in water, they release hydroxide ions $\left(\mathrm{OH}^{-}\right)$, which are responsible for the basic, or alkaline, nature of the solution.

## Examples of bases

General examples of bases are soluble metal oxides, metal hydroxides and metal carbonates.

The solubility of these substances can be found on page 8 of the data booklet. You match the metals from the rows to the non-metal ions in the columns. If it says s or vs it means it is soluble. Ignore ammonium as it is a non-metal group ion.

| vs | means very soluble | (a solubility greater than $10 \mathrm{gl}^{-1}$ ) |
| :--- | :--- | :--- |
| s | means soluble | (a solubility of between $1 \mathrm{and} 10 \mathrm{gl}^{-1}$ ) |
| i | means insoluble | (a solubility of less than $1 \mathrm{gl}^{-1}$ ) |
| - | no data |  |


|  | bromide | carbonate | chloride | iodide | nitrate | phosphate | sulfate | oxide | hydroxide |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| aluminium | VS | - | VS | VS | VS | i | VS | 1 |  |
| UTITITOTIUTI | VS |  |  |
| barium | Vs | ; | Vs | Vs | Vs | i | i | (vs | vs |
| calcium | vs | ; | Vs | Vs | Vs | ; | S | (5) | (S) |
| copper(II) | VS | i | VS | - | VS | i | VS | 1 | 1 |

Using your data booklet, give 2 examples of bases from each of the general categories.

| Base | Example 1 | Example 2 |
| :---: | :---: | :---: |
| Soluble metal oxide |  |  |
| Soluble metal hydroxide | $\square$ |  |

Classify if these substances would be bases or not using your data booklet.

| Compound Name | Is it a Base? (Yes/No) |
| :---: | :---: |
| Sodium Chloride ( NaCl ) |  |
| Sodium Hydroxide ( NaOH ) |  |
| Calcium Carbonate ( $\mathrm{CaCO}_{3}$ ) |  |
| Potassium Oxide ( $\mathrm{K}_{2} \mathrm{O}$ ) |  |
| Aluminium Oxide ( $\mathrm{Al}_{2} \mathrm{O}_{3}$ ) |  |
| Copper(II) Sulfate ( $\mathrm{CuSO}_{4}$ ) |  |
| Zinc Hydroxide ( $\left.\mathrm{Zn}(\mathrm{OH})_{2}\right)$ |  |
| Iron(III) Chloride ( $\mathrm{FeCl}_{3}$ ) |  |
| Potassium Carbonate ( $\mathrm{K}_{2} \mathrm{CO}_{3}$ ) |  |
| Barium Oxide (BaO) |  |
| Magnesium Carbonate ( $\mathrm{MgCO}_{3}$ ) |  |
| Silver Oxide ( $\mathrm{Ag}_{2} \mathrm{O}$ ) |  |
| Lithium Hydroxide (LiOH) |  |
| Calcium Sulfate ( $\mathrm{CaSO}_{4}$ ) |  |

## Neutralisation Reactions

A neutralisation reaction is one in which a base reacts with an acid to form a salt and water.
e.g. hydrochloric acid + sodium hydroxide $\rightarrow$ sodium chloride + water

| HCl | +NaOH |
| ---: | ---: |
| acid | $\rightarrow$ |
| base |  |
| salt |  |

The salt's name is derived from the metal in the base (like sodium) followed by the non-metal ion from the acid (like chloride), resulting in names such as Sodium Chloride.

Remember, a neutralisation reaction causes the pH to approach 7.

## Examples of neutralisation reactions

The word and chemical equations for each type of base going through a neutralisation reaction are below:

## 1. Reaction with Metal Oxides:

magnesium oxide + hydrochloric acid $\rightarrow$ magnesium chloride + water

## Chemical Equation:

$$
\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

2. Reaction with Metal Hydroxides:

## Word Equation:

sodium hydroxide + sulfuric acid $\rightarrow$ sodium sulfate + water

## Chemical Equation:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

## 3. Reaction with Metal Carbonates:

calcium carbonate + nitric acid $\rightarrow$ calcium nitrate + water + carbon dioxide

## Chemical Equation:

$$
\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

## Questions

1. State the definition of a neutralisation reaction
2. Identify the type of base that produces an additional product during neutralization. State this additional product.
3. Label the following reactions to show the acid, base and salt:

| HCl | +NaOH |
| ---: | :--- |
| 2 NaOH | $\rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$ | $\rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$ |
| $\mathrm{MgO}+2 \mathrm{HCl}$ | $\rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ |

4. Write balanced chemical equations for the following reactions:
lithium hydroxide + hydrochloric acid $\rightarrow$ lithium chloride + water

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

potassium hydroxide + sulfuric acid $\rightarrow$ potassium sulfate + water

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\text { sodium oxide }+ \text { nitric acid } \rightarrow \text { sodium nitrate }+ \text { water }
$$

lithium carbonate + hydrochloric acid $\rightarrow$ lithium chloride + water + carbon dioxide
5. Complete the word equation then write the balance chemical formula below. sodium hydroxide + hydrochloric acid $\rightarrow$ $\qquad$ $+$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

sodium hydroxide + nitric acid $\rightarrow$ $\qquad$ $+$ $\qquad$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

lithium hydroxide + hydrochloride acid $\rightarrow$ $\qquad$ $+$ $\qquad$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

sodium + hydrochloric acid $\rightarrow$ $+$ $\qquad$ $+$ carbonate

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

potassium + sulfuric acid $\rightarrow$ $\qquad$ $+$ $\qquad$ $+$ $\qquad$ carbonate

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Reaction Title: Neutralisation Reactions (separating the salt formed)
Aim: $\qquad$

Method:


## Results:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Conclusion:

$\qquad$
$\qquad$
$\qquad$

Evaluation: $\qquad$
$\qquad$
$\qquad$
$\qquad$

## Non-metal oxides

## Learning Intentions

- To learn about non-metal oxides and the solutions they form.


## Success Criteria

I can state the type of solution formed when soluble non-metal oxides dissolved in water.$\square$ I can state the names of the gases involved in acid rain.

## Soluble non-metal oxides

Soluble non-metal oxides a form acidic solutions when dissolved in water.
This property is crucial in understanding environmental phenomena like acid rain.

## Examples of Non-Metal Oxides and Their Reactions:

Carbon Dioxide ( $\mathrm{CO}_{2}$ ): Reacts with water to form carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, a weak acid that contributes to the natural acidity of rainwater.

Nitrogen Dioxide ( $\mathrm{NO}_{2}$ ): This oxide reacts with water to form a mixture of nitric acid $\left(\mathrm{HNO}_{3}\right)$ and nitrous acid $\left(\mathrm{HNO}_{2}\right)$.

Sulfur Dioxide $\left(\mathbf{S O}_{2}\right): \mathrm{SO}_{2}$ in the atmosphere can dissolve in water droplets to form sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$. This process significantly contributes to the acidity of rainwater.

## ACID RAIN



List the negative effects of acid rain on the environment.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Spectator Ions

## Learning Intentions

- To learn about spectator ions in neutralisation reactions.


## Success Criteria

I can state the definition of spectator ions.$\square$ I can identify spectator ions given the full ion equation.
$\square$ I can identify spectator ions given a chemical equation.

## Spectator Ions

Spectator ions are ions in a solution (must be aqueous) that do not participate in the chemical reaction and remain unchanged throughout the process.

They are present in the reactants and can be found unchanged in the products as well.

## Identifying spectator ions

1. Chemical Equation: Start with the standard chemical equation for the neutralization reaction.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

2. Ionic Equation: Next, write the full ionic equation, which breaks down the soluble compounds into their constituent ions. Only aqueous (aq) substances break down to soluble components.

## Full Ionic Equation:

$$
\mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

3. Identifying Spectator Ions: Look for ions that appear unchanged on both sides of the ionic equation. These are the spectator ions.

$$
\mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

## Equations without spectator ions

Removing the spectator ions from an equation shows only the substances that do change. For neutralisation reactions these will always be as follows:

| Equation | Type of base |
| :---: | :---: |
| $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{O}^{2-}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$ | metal hydroxides |
| $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$ | metal oxides |
| $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})$ | aqueous metal carbonates |
| $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{-}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})$ | insoluble metal carbonates |

Identify the spectator ions in the following full ionic equations 1.

$$
\mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

Spectator ions: $\qquad$
2.

$$
\mathrm{K}^{+}+\mathrm{OH}^{-}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{K}^{+}+\mathrm{NO}_{3}^{-}
$$

Spectator ions: $\qquad$
3.

$$
\mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}
$$

Spectator ions: $\qquad$
4.

$$
\mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}-
$$

Spectator ions: $\qquad$

Now identify the spectator ions in the following given the chemical equations. You may use the space provided to write the full ionic equations.
5.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NaCl}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Spectator ions: $\qquad$
6.


Spectator ions: $\qquad$
7.
$\mathrm{CaCO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$

Spectator ions: $\qquad$
$\qquad$

## Standard Solutions and Titrations

## Learning Intentions

- To learn how to perform a titration.


## Success Criteria

I can state the definition of standard solution, concordant titre and an indicator in reference to titrationsI can state what a titration is used for.I can perform a titration experiment.I can perform a titration calculation.


A standard solution is a chemical solution with an accurately known concentration.
The accuracy of the standard solution's concentration is crucial, as it directly affects the reliability of the experimental results obtained through its use.

## Titrations

Titrations are a procedure used in chemistry to determine the concentration of unknown solutions.

This process involves gradually adding a solution of known concentration (from a standard solution) to a solution of unknown concentration until the reaction between the two solutions is complete at the end-point.

The volume of the solution of known concentration is measured and the experiment is repeated multiple times to achieve concordant volumes/titres.

Titre volumes within $0.2 \mathrm{~cm}^{3}$ are considered concordant and an average is taken for accuracy.

The end-point is determined by using an indicator where a sudden colour change is observed.

To attempt a virtual titration before your teacher shows you how to perform it in the lab, click here.

Before performing the titration your teacher will show you all of the apparatus involved in a titration and make a standard solution. Draw the apparatus, label it and describe what it is used for.


Reaction Title:
Aim: $\qquad$

## Method:



Results:


Conclusion: $\qquad$
$\qquad$
$\qquad$

Reaction Title:
Aim: $\qquad$

## Method:



Results:


Conclusion: $\qquad$
$\qquad$
$\qquad$

Reaction Title:
Aim: $\qquad$

## Method:



Results:


Conclusion: $\qquad$
$\qquad$
$\qquad$

## Titration calculations



Your teacher will demonstrate how to perform a titration calculation with the example below:


The average volume of $1 \mathrm{~mol} \mathrm{l}^{-1}$ hydrochloric acid needed to neutralise $20.0 \mathrm{~cm}^{3}$ sodium hydroxide (unknown concentration) solution was $18.0 \mathrm{~cm}^{3}$. Calculate the concentration of the sodium hydroxide solution.


## Questions

1. The average volume of $0.5 \mathrm{~mol} \mathrm{l}^{-1}$ sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ required to neutralise $25.0 \mathrm{~cm}^{3}$ of potassium hydroxide ( KOH ) solution was $30.0 \mathrm{~cm}^{3}$. Calculate the concentration of the potassium hydroxide solution.
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
2. To neutralise $15.0 \mathrm{~cm}^{3}$ of calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ solution, $20.0 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{l}^{-1}$ hydrochloric acid $(\mathrm{HCl})$ was used. Find the concentration of the calcium hydroxide solution.

$$
2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

3. The neutralisation of $10.0 \mathrm{~cm}^{3}$ of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution required $25.0 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{l}^{-1}$ nitric acid $\left(\mathrm{HNO}_{3}\right)$. Determine the concentration of the sodium carbonate solution.

$$
2 \mathrm{HNO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

4. To completely neutralize $40.0 \mathrm{~cm}^{3}$ of ammonia $\left(\mathrm{NH}_{3}\right)$ solution, $35.0 \mathrm{~cm}^{3}$ of 0.1 $\mathrm{mol} \mathrm{l}{ }^{-1}$ sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ was used. Calculate the concentration of the ammonia solution.

$$
2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
$$



Extension questions: Chemcord purple books (N5): page 59-61
$\qquad$

## Acids and Bases - Summary

Use the space below to summarise key points before doing past paper questions and extension work.

## Extension questions:

Chemcord purple books (N5): page 44-62
SCHOLAR

| Topic | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 8}$ | $\mathbf{2 0 1 9}$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| Acids and | $\mathrm{MC}-10,11$ | $\mathrm{MC}-8$ | $\mathrm{MC}-5$ | $\mathrm{MC}-8,9$ | $\mathrm{MC}-11,12$ |
| Bases | $\mathrm{S} 2-4 \mathrm{~b}-\mathrm{c}$, | $\mathrm{S} 2-3 \mathrm{ci}$ | $\mathrm{S} 2-11 \mathrm{a}$ | $\mathrm{S} 2-1 \mathrm{a}$ | $\mathrm{S} 2-3 \mathrm{~b}$, |
|  | 15 |  |  |  | $11 \mathrm{~b}-\mathrm{d}$ |

$\mathrm{MC}=$ multiple choice section, $\mathrm{S} 2=$ section 2 , the written section.

