Master
 Kirkcaldy High School

N4/5 Chemistry

Unit 1 - part 5

Reacting quantities

Name:

Class: \qquad
Teacher:

End of topic questions

Topic title	Date	Mark/Total Mark
		I

Homework

Homework title	Date	Mark/Total Mark
		/
		/
		/

Check tests

Test title	Date	Mark/Total Mark
		$/$

Teacher comments

\qquad

Mass, moles and gram formula mass calculations

Learning Intentions

- To learn about mass, moles and GFM.

Success Criteria

I can calculate GFM.I can use the n, m, GFM formulae to perform calculations.

A "mole" is a unit chemists use to count particles, like atoms or molecules. It's similar to how we might use "dozen" to mean 12 of something. However, instead of a specific number like 12, a mole represents a large collection of particles.

The "mole" is a tool chemists use to work with specific numbers of particles. Since we can't see individual particles with our eyes, we rely on measurements like weight or volume. By using moles, chemists ensure they have the right ratio of particles, allowing them to calculate the precise mass or volume needed for their experiments.

Moles and Mass

Every substance has a specific weight for one mole of its particles. This weight is known as the gram formula mass (GFM) and is measured in grams per mole (g/mol).

Examples:

1. Oxygen $\left(\mathrm{O}_{2}\right)$: One mole of oxygen molecules has a molar mass of about $32 \mathrm{~g} / \mathrm{mol}$. So, if we have a mole of oxygen, it will weigh 32 grams.
2. Water ($\mathrm{H}_{2} \mathrm{O}$): One mole of water molecules has a molar mass of about 18 $\mathrm{g} / \mathrm{mol}$. If we have a mole of water, it will weigh 18 grams.

Water

Oxygen

Table salt

Gold

Helium

Calculating GFM

To calculate GFM we need to use the relative atomic masses of the elements involved in the formula. These can be found on page 7 of your data booklet.

Element	Symbo	Relative atomic mass	Density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	Date of Discovery
Actinium	Ac	227	10.1	1899
Aluminium	Al	27	2.70	1825
Americium	Am	243	12.0	1944
Antimony	Sb	122	$\mathbf{5} .68$	Ancient
Argon	Ar	40	$\mathbf{0 . 0 0 1 8}$	1894
Arsenic	As	75	5.75	~ 1250

To calculate the gram formula mass (GFM) we add up all the relative atomic masses of each atom in the formula. If there is a bracket you multiply the number of atoms inside the brackets by that number.

Complete the following with your teacher.

$$
\mathrm{GFM}=\ldots \mathrm{g} / \mathrm{mol}
$$

NH_{3}

$$
\text { GFM }=\ldots \quad \mathrm{g} / \mathrm{mol}
$$

$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

GFM = \qquad $\mathrm{g} / \mathrm{mol}$
SO_{2}

GFM $=$ \qquad $\mathrm{g} / \mathrm{mol}$
PCl_{3}

GFM = \qquad $\mathrm{g} / \mathrm{mol}$
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

GFM = \qquad $\mathrm{g} / \mathrm{mol}$

Calculate the GFM of each of the following substances given the formula.
O_{2}
CH_{4}
NH_{3}
\mathbf{N}_{2}
HCl
$\mathrm{Ca}(\mathrm{OH})_{2}$
CO_{2}

$\mathbf{M g C l}_{2}$

$\mathrm{NH}_{4} \mathrm{NO}_{3}$

NaCl
$\mathrm{C}_{3} \mathrm{H}_{8}$
$\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Why Do We Use Mass, Moles, and GFM in Chemistry?

Mass:

- Mass is a measure of the amount of matter in an object or substance.
- In a laboratory setting, it is determined using an instrument called a balance.

Moles:

- Atoms and molecules are tiny, so we use moles to count them in a practical way.
- It standardises how chemists worldwide communicate substance amounts, like how we use "dozen" for eggs.

GFM (Gram Formula Mass):

- It's the bridge between the atomic (micro) and real-world (macro) levels.
- By knowing the GFM, we can work out how much of a substance we need to ensure the right number of particles are present for a reaction.

Questions

1. Define mass in the context of a lab measurement.
2. Identify the instrument used in a lab to measure the mass of a substance.
3. Explain the reason chemists use the term "moles" for atoms and molecules.
4. Describe the importance of GFM in assisting chemists in real-world scenarios.
5. Determine what information about a reaction can be inferred by a chemist if they know the GFM of a substance.

Mass, moles, GFM calculation Triangle

Using mass, moles and GFM we can calculate the appropriate mass needed to be weighed to perform chemical reactions. The relationship between these is shown below.

$$
m=n \times G F M
$$

Where:

- m is the mass of the substance in grams.
- n is the number of moles.
- GFM is the gram formula mass in grams per mole ($\mathrm{g} / \mathrm{mol}$).

This relationship can be put into a calculation triangle:

Using this calculation triangle we can find all of the relationships:

$$
m=n \times G F M
$$

This calculates the mass given the moles and GFM.

$$
n=\frac{m}{G F M} \quad(n=m \div G F M)
$$

This calculates the moles given the mass and GFM.

$$
G F M=\frac{m}{n} \quad(G F M=m \div n)
$$

This calculates the GFM given the mass and moles.

Calculating Moles from Mass: To find out how many moles of a substance you have based on its mass:

$$
n=\frac{m}{G F M} \quad(n=m \div G F M)
$$

Example

If you have 29 grams of NaCl (sodium chloride) and its GFM is $58 \mathrm{~g} / \mathrm{mol}$, then:

$$
\begin{aligned}
& n=\frac{m}{G F M} \\
& n=\frac{29}{58} \\
& n=0.5 \mathrm{~mol}
\end{aligned}
$$

Questions

Calculate the number of moles of the following substances given the mass and GFM. SHOW ALL OF YOUR WORKING.

1. Given that the GFM of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is $18 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 36 g sample.

2. Given that the GFM of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is $44 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 44 g sample.

3. Given that the GFM of oxygen gas $\left(\mathrm{O}_{2}\right)$ is $32 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 64 g sample.

4. Given that the GFM of nitrogen gas $\left(\mathrm{N}_{2}\right)$ is $28 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 28 g sample.

5. Given that the GFM of methane $\left(\mathrm{CH}_{4}\right)$ is $16 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 32 g sample.

6. Given that the GFM of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is $46 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 46 g sample.

7. Given that the GFM of sodium chloride (NaCl) is $58 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 58 g sample.

8. Given that the GFM of ammonia $\left(\mathrm{NH}_{3}\right)$ is $17 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 34 g sample.

9. Given that the GFM of hydrogen gas $\left(\mathrm{H}_{2}\right)$ is $2 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 16 g sample.

10. Given that the GFM of calcium oxide (CaO) is $56 \mathrm{~g} / \mathrm{mol}$, calculate how many moles are present in a 40 g sample.

You will need to calculate the GFM yourself in the following questions.

1. Calculate the moles of a 36 g sample of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Note: You'll need to determine the GFM first.

2. Calculate the moles of a 22 g sample of carbon dioxide $\left(\mathrm{CO}_{2}\right)$. Note: You'll need to determine the GFM first.
3. Calculate the moles of a 128 g sample of oxygen gas $\left(\mathrm{O}_{2}\right)$. Note: You'll need to determine the GFM first.

4. Calculate the moles of a 42 g sample of nitrogen gas $\left(\mathrm{N}_{2}\right)$. Note: You'll need to determine the GFM first.
5. Calculate the moles of a 4 g sample of methane $\left(\mathrm{CH}_{4}\right)$. Note: You'll need to determine the GFM first.

6. Calculate the moles of a 2 g sample of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$. Note: You'll need to determine the GFM first.

7. Calculate the moles of a 2.9 g sample of sodium chloride (NaCl). Note: You'll need to determine the GFM first.

8. Calculate the moles of a 238 g sample of ammonia $\left(\mathrm{NH}_{3}\right)$. Note: You'll need to determine the GFM first.

Calculating mass from moles: To find out the mass a substance you have based on its moles:

$$
m=n \times G F M
$$

Example

If you have 1.5 moles of NaCl (sodium chloride) and its GFM is $58 \mathrm{~g} / \mathrm{mol}$, then:

$$
\begin{aligned}
& m=n \times G F M \\
& n=1.5 \times 58 \\
& n=87 \mathrm{~g}
\end{aligned}
$$

Questions

1. Calculate the mass of a 2 mole sample of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Note: You'll need to determine the GFM first.

2. Calculate the mass of a 1 mole sample of carbon dioxide $\left(\mathrm{CO}_{2}\right)$. Note: You'll need to determine the GFM first.

3. Calculate the mass of a 1.5 mole sample of oxygen gas $\left(\mathrm{O}_{2}\right)$. Note: You'll need to determine the GFM first.

4. Calculate the mass of a 1 mole sample of nitrogen gas $\left(N_{2}\right)$. Note: You'll need to determine the GFM first.

5. Calculate the mass of a 2 mole sample of methane $\left(\mathrm{CH}_{4}\right)$. Note: You'll need to determine the GFM first.

6. Calculate the mass of a 2.5 mole sample of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$. Note: You'll need to determine the GFM first.

7. Calculate the mass of a 1 mole sample of sodium chloride (NaCl). Note: You'll need to determine the GFM first.

8. Calculate the mass of a 3 mole sample of ammonia $\left(\mathrm{NH}_{3}\right)$. Note: You'll need to determine the GFM first.

9. Calculate the mass of a 4 mole sample of hydrogen gas $\left(\mathrm{H}_{2}\right)$. Note: You'll need to determine the GFM first.

10. Calculate the mass of a 1.5 mole sample of calcium oxide (CaO). Note: You'll need to determine the GFM first.

\qquad

Calculations involving balanced chemical equations - mass

Learning Intentions

- To learn how to perform calculations from balanced chemical equations.

Success Criteria

\square I can determine the molar ratio of two given substances in a chemical equation.I can perform a molar ratio calculation.
\square I can perform a calculation from a balanced chemical equation.
Introduction to calculations involving balanced chemical equations
When you have a chemical reaction, it's useful to know how much of each substance you need and how much you'll end up with at the end. A balanced chemical equation helps with this.

The numbers we have been placing at the beginning of a formulae when balancing chemical equations are the molar ratio coefficients. These tell us the "recipe" for the reaction. It tells you how many moles of one substance you need (or get) compared to another.

If we look at the balanced chemical equation below we can see that we need 1 mole of $\mathbf{C H}_{4}$ for every $\mathbf{2}$ moles of \mathbf{O}_{2}. This gives us a molar ratio of 1:2.

We can also see for every 1 mole of CH_{4} we will produce 1 mole of CO_{2}. This gives us a ratio of $1: 1$.

$1 \mathrm{~mol}: 2 \mathrm{~mol}$
 $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$1 \mathrm{~mol}: 1 \mathrm{~mol}$

Calculating the moles of substances using the molar ratio

We can use the molar ratio to calculate the number of moles of other substances in the chemical equation.

Molar ratios tell us if we must multiply or divide our number of moles.
Fill in the table with the molar ratio and what must be done to the number of moles.

Molar Ratio	Stays the same/multiply by $\mathbf{x} /$ divide by \mathbf{x}
$1: 1$	Stays the same
$1: 2$	Multiply by 2
$1: 3$	Multiply by 3
$2: 1$	Divide by 2
$3: 1$	Divide by 3
$2: 2$	Stays the same
$2: 3$	Divide by 2 multiply by 3
$3: 2$	Divide by 3 multiply by 2

Let's take our example from the previous page. If we know we fully reacted 5 moles of CH_{4} with oxygen, we can use the molar ratio to find the moles of the other substances in the equation.

So, now we know the number of moles of $\mathbf{O}_{\mathbf{2}}$ and $\mathbf{C O}_{\mathbf{2}}$ involved in the reaction. As long as you know the number of moles of one substance you can find out the rest.

Questions

1. Carbon and Oxygen Reaction

Given the reaction:

$$
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
$$

With 3 moles of C , how many moles of CO_{2} are formed?

Molar Ratio

same, multiply by x , or divide by x \qquad
Calculated Moles of CO_{2} : \qquad
2. Combustion of Hydrogen

Given the reaction:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

If you have 4 moles of H_{2}, how many moles of O_{2} are required?

Molar Ratio

same, multiply by x , or divide by x
\qquad
\qquad
Calculated Moles of O_{2} : \qquad
3. Ammonia Formation

Given the reaction:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

With 2 moles of N_{2}, how many moles of NH_{3} are produced?

Molar Ratio

same, multiply by x , or divide by x
Calculated Moles of NH_{3} :

4. Combustion of Methane

Given the reaction:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

With 5 moles of CH_{4}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ are formed?

> Molar Ratio
same, multiply by x , or divide by x :
\qquad
\qquad
Calculated Moles of $\mathrm{H}_{2} \mathrm{O}$: \qquad

5. Decomposition of Water

Given the reaction:

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

With 6 moles of $\mathrm{H}_{2} \mathrm{O}$, how many moles of H_{2} are formed?

Molar Ratio

same, multiply by x , or divide by x \qquad
Calculated Moles of H_{2} :
6. Formation of Sulfur Dioxide

Given the reaction:

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}
$$

With 7 moles of S , how many moles of SO_{2} are produced?
Molar Ratio \qquad
same, multiply by x , or divide by x \qquad
Calculated Moles of SO_{2} :
7. Decomposition of Calcium Carbonate

Given the reaction:

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

With 8 moles of CaCO_{3}, how many moles of CO_{2} are formed?

Molar Ratio

same, multiply by x , or divide by x \qquad Calculated Moles of CO_{2} :

8. Reaction of Iron with Oxygen

Given the reaction:

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

With 11 moles of Fe , how many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced?

> Molar Ratio
same, multiply by x , or divide by x Calculated Moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$:
\qquad
\qquad
\qquad

Calculations involving balanced chemical equations - complete

Before you continue can you:

Calculate the GFM of a substance given the formula?
Calculate the moles of a substance given the mass?Perform a molar ratio calculation?
Calculate the mass of a substance given the moles?
Now that we've mastered the necessary skills, let's delve into calculations where we're given the mass of one substance and need to determine the mass of another substance within the same chemical equation.

Your teacher will now demonstrate how to perform these calculations below:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Using the equation above, suppose we're given 4 grams of H_{2} and asked to find the mass of $\mathrm{H}_{2} \mathrm{O}$ produced.

Questions

1. For the reaction:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Given 14 g of N_{2}, determine the mass of NH_{3} produced.

2. For the reaction:

$$
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
$$

Given 12 g of C , determine the mass of CO_{2} produced.

3. For the reaction:

$$
\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

Given 36 g of $\mathrm{H}_{2} \mathrm{O}$, determine the mass of H_{2} produced.

4. For the reaction:

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

Given 100 g of CaCO_{3}, determine the mass of CO_{2} produced.

5. For the reaction:

$$
\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}
$$

Given 46 g of Na , determine the mass of NaCl produced.

6. For the reaction:

$$
\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}
$$

Given 124 g of P_{4}, determine the mass of $\mathrm{P}_{4} \mathrm{O}_{10}$ produced.

7. For the reaction:

$$
\mathrm{K}+\mathrm{F}_{2} \rightarrow 2 \mathrm{KF}
$$

Given 78 g of K , determine the mass of KF produced.

8. For the reaction:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

Given 2 g of H_{2}, determine the mass of HCl produced.

9. For the reaction:

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Given 224 g of Fe , determine the mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ produced.

\qquad

Percentage by mass

Learning Intentions

- To learn how to calculate the percentage by mass of an element in a compound.

Success Criteria

\square I can calculate the percentage by mass of an element in a given compound.

Introduction to percentage by mass calculations

To find the percentage by mass of a given element in a formula, we must first calculate the GFM of the substance and use the following equation:

$$
\text { percentage by mass }=\frac{m}{G F M} \times 100
$$

Where $m=$ the total mass of the given element in the formula.

Example

Calculate the percentage by mass of nitrogen (N) in ammonia $\left(\mathrm{NH}_{3}\right)$.

Step 1: calculate the GFM

Mass of
3×1
1×14
$G F M=17 \mathrm{~g} / \mathrm{mol}$

Step 2: Use the percentage by mass formula

$$
\begin{aligned}
& \text { percentage by mass }=\frac{m}{G F M} \times 100 \\
& \text { percentage by mass }=\frac{14}{17} \times 100 \\
& \text { percentage by mass }=82.4 \%
\end{aligned}
$$

Questions

1. What is the percentage by mass of calcium in calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$?

2. Calculate the percentage by mass of hydrogen in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

3. Find the percentage by mass of oxygen in glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$.

4. Determine the percentage by mass of nitrogen in ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.
5. What is the percentage by mass of chlorine in sodium chloride (NaCl) ?
6. Calculate the percentage by mass of carbon in ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$.

7. Find the percentage by mass of sulfur in sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.
8. Determine the percentage by mass of magnesium in magnesium oxide (MgO).
9. What is the percentage by mass of iron in hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$?

10. Calculate the percentage by mass of silicon in silicon dioxide $\left(\mathrm{SiO}_{2}\right)$.

\qquad

Moles, concentration, and volume

Learning Intentions

- To learn how to calculate the moles of solutions.

Success Criteria

I can calculate the moles of a solution given the concentration and volume.\square I can calculate the concentration of a solution given the moles and volume.

A solution is a mixture where one substance is dissolved into another. The result is a single-phase system, typically liquid, where you cannot distinguish the components with the naked eye. e.g. salt water, tea, coffee, etc.

Components of a Solution:

1. Solute: The solute is the substance that is dissolved in the solvent. It can be a solid, liquid, or gas. For instance, in a saltwater solution, the salt is the solute.
2. Solvent: The solvent is the substance that dissolves the solute. It is typically present in a greater amount than the solute. Using the previous example, water is the solvent in a saltwater solution.
3. Solution: The solution is the final homogenous mixture of solute and solvent. It has the same properties throughout, and you cannot see the separate components.

Concentration can be measured in moles per litre ($\mathrm{mol} \mathrm{l}^{-1}$ or $\left.\mathrm{mol} / \mathrm{I}\right)$. This is also known as molarity (M).

If there is a greater volume of solvent and less moles of solute the solution will be less concentrated. This is referred to as a dilute solution.

If there is a lower volume of solvent and more moles of solute the solution will be more concentrated. This is referred to as a concentrated solution.

Calculations involving solutions

The relationship between moles, concentration and volume is shown in the calculation triangle below:

Using this calculation triangle, we can find all the relationships:

$$
n=c \times v
$$

This calculates the moles given the concentration and volume.

$$
c=\frac{n}{v} \quad(c=n \div v)
$$

This calculates the concentration given the moles and volume.

$$
v=\frac{n}{c} \quad(v=n \div c)
$$

This calculates the volume given the moles and concentration.

Converting cm^{3} to litres

Notice the calculation uses litres as the volume. If you are given $\mathbf{c m}^{3}$ you must convert this to litres.

To convert cm_{3} into litres you must divide by 1000.
e.g. $20 \mathrm{~cm}^{3}=0.02$ litres

You must ensure you have converted to litres in every question.

Questions - calculating moles from concentration and volume

1. If you have $250 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{HCl}$ solution, how many moles of HCl are present?

2. Calculate the number of moles in $500 \mathrm{~cm}^{3}$ of a $2 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{NaOH}$ solution.
3. What is the number of moles in $150 \mathrm{~cm}^{3}$ of a $1.5 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{KNO}_{3}$ solution?
4. Find the moles of solute in $75 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{CuSO}_{4}$ solution.

5. How many moles are there in $300 \mathrm{~cm}^{3}$ of a $0.25 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{CaCl}_{2}$ solution?

6. Determine the number of moles in $1000 \mathrm{~cm}^{3}$ of a $0.2 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ solution.
7. What are the moles of NaCl in $200 \mathrm{~cm}^{3}$ of a $1 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{NaCl}$ solution?
8. Calculate the moles of NH_{3} in $400 \mathrm{~cm}^{3}$ of a $0.75 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{NH}_{3}$ solution.
9. How many moles of $\mathrm{CH}_{3} \mathrm{COOH}$ are in $600 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{CH}_{3} \mathrm{COOH}$ solution?

10. Find the number of moles in $450 \mathrm{~cm}^{3}$ of a $0.33 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

Questions - calculating concentration from moles and volume

1. Calculate the concentration when 0.5 moles of NaCl is dissolved in $250 \mathrm{~cm}^{3}$ of water.

2. What is the concentration of a solution with 1 mole of KCl in $500 \mathrm{~cm}^{3}$ of water?

3. Find the concentration if 0.25 moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is dissolved in $750 \mathrm{~cm}^{3}$ of water.

4. Determine the concentration when 2 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dissolved in $1000 \mathrm{~cm}^{3}$ of water.

5. What is the molarity of a solution containing 0.75 moles of CuSO_{4} in $300 \mathrm{~cm}^{3}$ of water?

6. Calculate the concentration when 1.5 moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 2000 cm^{3} of water.

7. Find the molarity of a solution with 0.2 moles of NH_{3} in $100 \mathrm{~cm}^{3}$ of water.
8. What is the concentration of a solution with 3 moles of $\mathrm{CH}_{3} \mathrm{COOH}$ in $1500 \mathrm{~cm}^{3}$ of water?

9. Determine the molarity when 0.05 moles of MgCl_{2} is dissolved in $500 \mathrm{~cm}^{3}$ of water.

10. Calculate the concentration of a solution that has 0.1 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in $400 \mathrm{~cm}^{3}$ of water.

Extension questions:

Chemcord purple books (N5): page 41-43

SCHOLAR

Topic	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
Reacting	$\mathrm{MC}-9$	$\mathrm{MC}-$	$\mathrm{MC}-8,9$	$\mathrm{MC}-$	$\mathrm{MC}-10$
Quantities	$\mathrm{S} 2-7 \mathrm{~b}$	$\mathrm{~S} 2-3 \mathrm{c}, 4 \mathrm{~b}$,	$\mathrm{S} 2-10 \mathrm{~b}, 12 \mathrm{c}$	$\mathrm{S} 2-3 \mathrm{~b}$,	$\mathrm{S} 2-1 \mathrm{c}, 5 \mathrm{c}$
		12d		13a(ii)	

MC = multiple choice section, S2 = section 2, the written section.

