Kirkcaldy High School

BGE Science

Medical Science

The EM Spectrum and Light Name:

Class:
Teacher:

Expectations and Outcomes Learner Evaluation

Topic: EM Spectrum and Light

Outcomes	Date completed	Evaluation: How happy are you with this? (©) ? ©)
I can state that waves have a wavelength.		
I can state that light is a wave.		
I can state that light is part of the electromagnetic spectrum.		
I can state that shorter wavelengths of EM Waves have more energy.		
I can state a use for each part of the electromagnetic spectrum.		
I can state what a thermogram is.		
I can explain how infrared is used in medicine.		
I can state the uses of ultraviolet light.		
I can explain the term fluorescent.		
I can state that ultraviolet can be used to treat some skin conditions.		
I can state the dangers of overexposure to sunlight.		
I can explain how to protect yourself from the damage caused by ultraviolet.		
I can explain what the sun protection factor number on sunscreen means.		
I can explain how we can use X-rays.		
I can describe how an X-ray photograph works.		
I can identify bones in an X-ray photograph.		
To state that light travels in straight lines.		
To state that objects either give out light or reflect it.		
I can state the rule of reflection.		
I can describe some applications of reflection.		
To state that refraction is when light changes speed when travelling from one material to another.		
To state that refraction can cause light to change direction.		
To investigate the refraction of light through convex and concave lenses.		

To identify applications of refraction, such as lenses to correct long and short sight.		
I can state the names and functions for parts of the eye.		
I can explain what the 'blind spot' is.		
I can describe how the pupil reacts to light.		
I can state that a visible spectrum is formed when light travels through a prism.		
I can state the colours of the visible spectrum.		
To learn how mixing colours can produce white light and other colours		
To learn what colour blindness is.		
I can describe how coloured light affects the appearance of different coloured objects.		
I can explain that our brain can be tricked by optical illusions.		

\qquad

Waves

Starter

1. Sketch a wave you might see at the seaside.

2. What words can you use to describe it?

Learning Intentions

- To state that light is a wave that transfers energy.
- To learn that waves have a wavelength.
- To learn how wavelength is related to the energy they have.

Success Criteria

I can state that waves have a wavelength.I can state that light is a wave.
\square I can state that light is part of the electromagnetic spectrum.I can state that shorter wavelengths of EM Waves have more energy.

Light is an example of a \qquad . Just like waves in the sea they have two parts.

Wavelength

A wavelength is the \qquad of ONE wave, in metres.

Class questions

1. As you travel left to right what factor about the wave changes?
2. In what way does it change?
\qquad

Family of waves

Light is part of a \qquad of waves called the electromagnetic spectrum. This is shortened to the \qquad

The different types of electromagnetic waves have a lot in common. Each different type of electromagnetic wave has different \qquad because they have different
\qquad .

As you go from left to right, the \qquad of the waves gets greater. As you move from radio waves to gamma rays, the risk of \qquad to living things gets bigger.

Wavelength Scale

Use the diagram above to complete the following questions.
Which waves have wavelengths of this size...

1. between the size of a football field to the size of a person \qquad
2. about the size of atoms \qquad
3. between the size of butterfly and the size of a pin point? \qquad

Extension questions

4. Which wave is close in size to a grain in sand? \qquad
5. What wave is like the width of a hair? \qquad
6. Which waves are smaller than an ant? \qquad
7. Are radio waves bigger or smaller than a basketball? \qquad
\qquad

The EM Spectrum

Starter

1. The electromagnetic spectrum is a family of \qquad
2. Wavelength is the \qquad between two crests
3. Gamma rays have a shorter \qquad than radio waves

Learning intentions

- To state a use for each part of the electromagnetic spectrum.

Success criteria

- I can state a use for each part of the electromagnetic spectrum.

Uses for the EM Spectrum

Wave Name	Applications
radio	
microwave	
infrared	
visible light	
ultraviolet	
X-rays	
gamma ray	

\qquad

Using Infrared

Starter

Draw a line to match the part of the E.M spectrum with its application.

Wave Type	$\underline{\text { Application }}$
Microwaves	medical tracers
Infrared	mobile phones
gamma rays	thermograms

Learning intentions

- To state what a thermogram is.
- To explain how infrared is used in medicine.

Success criteria

I can describe how infrared is used in medicine.

Infrared Camera

The image made when a thermal camera is used is called a \qquad .

With an infrared camera or thermograms given to you, complete the following tables.
Thermogram of a face:

Area of Face	Colour in Thermogram	Hot, Warm or Cold
Nose		
Cheek (front)		
Cheek (back)		
Side of mouth		

Thermogram of a house:

Place	Colour	How much heat is escaping?
roof		
windows		
doors		
walls		

Thermograms show how the \qquad can change across different parts of an object.

Different \qquad represent different temperatures.

The intruder looks brighter in a thermogram because

Using Infrared

Infra-red can be used to help speed up the healing of \qquad . The warmth encourages \qquad to flow freely.

Extension: colour in the thermogram using the key

number	colour	appropriate temperature ${ }^{\circ}{ }^{\circ} \mathbf{C}$)
1	blue	$23-26$
2	green	$27-29$
3	red	$30-32$
4	orange	$33-35$
5	yellow	$35-37$

\qquad

Ultraviolet

Starter

1. What do thermograms show?
\qquad
2. Give a use for infrared radiation.
3. \qquad

Learning intentions

- To state the uses of ultraviolet light.
- To explain the term fluorescent.
- To state that ultraviolet can be used to treat some skin conditions.

Success criteria

I can state the uses of ultraviolet light.I can explain the term fluorescent.I can state that ultraviolet can be used to treat some skin conditions.

Ultraviolet Light

UV light is invisible to the eye, but \qquad materials can absorb the energy in UV light and re-emit it as \qquad light.

Other Uses of UV Light

Aim: \qquad
\qquad

Method:

- Collect a variety of objects.
- Turn the classroom lights off
- Turn the UV lamp on and shine it on the object.
- Record what objects fluoresce or 'glow'

Results:

\qquad

Conclusion: \qquad
\qquad

Ultraviolet light can be harmful to human skin, however, in the right dose it can help heal some \qquad such as psoriasis and eczema.
psoriasis
eczema

\qquad

Ultraviolet

Starter

List three uses of UV radiation:

1. \qquad
2. \qquad
3. \qquad

Learning intentions

- To state the dangers of overexposure to sunlight.
- To explain how to protect yourself from the damage caused by ultraviolet.
- To explain what the sun protection factor number on sunscreen means.

Success criteria

\square I can state the dangers of overexposure to sunlight.I can explain how to protect yourself from the damage caused by ultraviolet.
\square I can explain what the sun protection factor number on sunscreen means.

Ultraviolet Light

Three facts from the video - Dear 16 year old me.

1. \qquad
2. \qquad
3. \qquad
Sunlight contains \qquad .
Ultraviolet causes human \qquad to darken or tan.

Too much exposure to the ultraviolet in \qquad can cause
\qquad or even \qquad .

[^0]
Protection from UV Light

What can be done to protect your skin from exposure to UV light?
\qquad
\qquad
\qquad

Sunscreen SPF

1. SPF stands for \qquad
\qquad
2. As the SPF number gets bigger the amount of UV that is blocked \qquad
3. Two other things that can affect how long you can stay out in the sun
\qquad
\qquad

Extension Task:

The UV Index measures the strength of sunburn-producing ultraviolet radiation at a particular place and time. Research and note down today's UV Index for your location and two other cities/countries from different continents. Then, categorize each UV Index value: Low, Moderate, High, Very High, or Extreme.

- Your Location:
- Today's UV Index: \qquad
- Category: \qquad
- City/Country 1 :
- Today's UV Index: \qquad
- Category: \qquad
- City/Country 2 :
- Today's UV Index: \qquad
- Category: \qquad
Considering the differences in UV Index between these locations, discuss the importance of being aware of daily UV Index values, especially when traveling.
\qquad
\qquad
\qquad
\qquad

X-rays

Starter

1. What is the danger of overexposure to ultraviolet?
2. What should you use to block ultraviolet?
\qquad
3. What does sunscreen "SPF" stand for?

Learning intentions

- To explain how we can use X -rays
- To describe how an X-ray photograph works
- To identify bones in an X-ray photograph.

Success criteria

I can explain how we can use X -rays.
I can describe how an X-ray photograph works.I can identify bones in an X-ray photograph.

Paper Man Experiment

1. Were you able to see the "bones" when it was sitting on the table?
2. What had to happen to the light waves for you to see the bones?
3. Looking through the paper man how did the bones appear?
4. What must have happened to the light waves when they tried to pass through the bones? \qquad

X-ray Photographs

1. Bones look \qquad
2. Organs look \qquad
3. X ray photographs can tell us
4. \qquad
5. \qquad

How X-Ray pictures work

X rays can pass through soft tissue, like organs. These areas appear
\qquad .

X rays can't pass through \qquad so they appear white or clear. X rays have a shorter wavelength, so we get more \qquad .

Tick the picture that shows the correct order.

\qquad

Visible Light

Starter

1. The white coloured objects are \qquad
2. The part of the body is \qquad
3. The injury is \qquad

Learning Intentions

- To learn how we are able to see objects
- To learn the rule of reflection

Success criteria

I can state that light travels in straight lines
\square I can state that objects either give out light or reflect itI can state the rule of reflectionI can describe some applications of reflection

How do we see objects?

Light is often seen as narrow beams or rays and can only travel in \qquad
\qquad .

We see objects because they \qquad (emit) or they
\qquad light.

Task

Emit Light	Reflect light

Shadow Puppets

Aim: \qquad

Method:

- Make a shadow puppet and leave it in a fixed position.
- Shine a light source onto your puppet.

Results: \qquad
\qquad
\qquad
\qquad

Conclusion:
Light travels in \qquad called rays.

Shadows form when light is \qquad by an object.
\qquad

Reflection

Starter
Objects which give out light
objects which reflect light

Learning Intentions

- To state the rule of reflection.
- To describe some applications of reflection.
 end if you can

Success Criteria

- I can state the rule of reflection.
\square I can describe some applications of reflection.

Aim: To investigate the relationship between the angle of \qquad and angle of \qquad using a plane mirror.

Method:

- Collect a mirror and a ray box.
- Shine a single ray of light against the mirror.
- Set the ray box to shine a single ray of light at an angle of incidence of 20° from the normal.
- Record the angle of reflection.
- Repeat with other angles.

Results:

Angle of Incidence	Angle of Reflection		
1		\quad	r
:---:			

Conclusion:

The angle of incidence is \qquad to the angle of reflection.

Rule of Reflection Diagram

When light is reflected, the angle is always measured between the \qquad and the \qquad .

The normal is a reference line which is at \qquad to the surface of the block.

Extension task: Questions to challenge your thinking:

1. Why do you think mirrors are often used in telescopes?
2. If you were to design a room that uses the least amount of electric lighting during the day, how would you use the concept of reflection to your advantage?
3. Can you think of any animals or creatures that use reflection or light emission in nature? (Hint: Think about deep-sea creatures or insects that glow in the dark.)
\qquad

Refraction

Starter

1. State the rule of reflection.
2. What are the expected values for the matching angles of reflection?

Green $=$ \qquad
\qquad Red = \qquad

Learning intentions

- To state that refraction is when light changes speed when travelling from one material to another.
- To state that refraction can cause light to change direction.

Success criteria

To state that refraction is when light changes speed when travelling from one material to another.

To state that refraction can cause light to change direction.

Refraction

Refraction is where light changes \qquad when it moves from one
\qquad to another.

This often causes the light to \qquad and change \qquad .

Refraction Experiment

Aim: To investigate how light changes direction in two different shaped plastic blocks; a rectangular block and a triangular block.

Method: Use a ruler when you draw rays of light.

1. Draw around the block.
2. Draw a line to represent the incoming ray. This is called the incident ray.
3. Shine the laser through the glass block and mark where the beam of light exits the block.
4. Draw the ray of light as it leaves the glass block. This is the refractive ray.
5. Connect the rays together.

Results: rectangular block

Results: triangular block

Conclusion:
\qquad
\qquad

Lenses

Starter

1. State what is meant by "refraction of a wave"? (What is the "definition of refraction"?) \qquad
\qquad
2. A pupil states that the direction of a wave always changes when it refracts. State whether or not this pupil is correct. Give a reason for your answer.
\qquad
\qquad

Learning intentions

- To investigate the refraction of light through convex and concave lenses.
- To identify applications of refraction, such as lenses to correct long and short sight.
Success criteria
To investigate the refraction of light through convex and concave lenses.To identify applications of refraction, such as lenses to correct long and short sight.

The Eye

Lenses bend light. They come in two basic shapes -

(thicker in the middle than at the edges...)
 or diverging lens
(thinner in the middle than at the edges...)

Aim:

Method:

1. Using the ray box shine three rays of parallel light into each lens.
2. Draw around the lens and mark the path of the rays of light on both sides of the lens.
3. Repeat for each lens.

Results:

Thin convex lens

Thick convex lens

Thin concave lens

Thick concave lens

Conclusion:
\qquad

Summary Note

\qquad lenses bring the rays together to a focal point.
\qquad lenses make the light spread out.

The more curved a lens is the \qquad the effect on the light rays.

The thicker convex lens brings the rays to a focus \qquad to the lens.
\qquad

The Eye

Starter

1. The property of light is \qquad
2. The two lens shapes are

Learning intentions

- To state the names and functions for parts of the eye.

Success criteria

I can state the names and functions for parts of the eye.

- - - - - - - - - - - - - - - - - - The Eye

Fill in the parts of the eye from the board:

Put these words in the parts column under 'My Try'. Match them to the correct function.

Parts		
My Try	Correct	Function
		A hole which lets light through.
		Coloured part of the eye and controls the size of the pupil.
		Shape can be changed to focus the light.
		Receptor cells which convert light into electrical impulses.
		Transparent layer at the front of the eye which helps focus the light.
		A place on the retina where there are no receptor cells.
		Sends electrical impulses to the brain.
		Changes the lens shape to focus the light on the retina.
		A gel like substance which helps maintain the round shape of the eye.

Summary: How do we see?
Light from an object will enter the eye. This light is focused by the and \qquad . An image is produced on the
\qquad at the back of the eye. Special cells detect the light and send a signal to the \qquad .
light from a distant object \dagger

\qquad

The Blind Spot

Starter

1. State one part of the eye and explain its function.

Learning Intentions

- To explain what the 'blind spot' is.
- To describe how the pupil reacts to light.

Success Criteria

I can explain what the 'blind spot' is.
\square I can describe how the pupil reacts to light.

The Blind Spot

Aim: \qquad

Method:

Mark a dot and a cross on a card as shown.

Results:

\qquad

Conclusion:

There is an area of the retina where there are no light sensitive \qquad . This is where the optic nerve leaves the eye for the brain. Any image that falls on this spot
\qquad . This is known as the \qquad .

How the Pupil Reacts to Light

The pupil gets \qquad in dim light as the iris gets smaller.

The pupil gets \qquad in bright light as the iris gets bigger.

Eye Dissection

What did you learn from the eye dissection?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Colour

Starter

1. The \qquad turns light into electrical impulses
2. The \qquad controls the size of the pupil
3. The \qquad is the name given to the area of the retina where the optic nerve leaves for the brain.

Learning intentions

- To learn that a visible spectrum is formed when light travels through a prism.
- To learn the colours of the visible spectrum.

Success criteria
I can state that a visible spectrum is formed when light travels through a prism.I can state the colours of the visible spectrum.

Triangular Prism Experiment
Aim: \qquad

Method and Results:

Conclusions:

1. What happens to the direction of the beam of light?
2. What name is given to this change of direction?
3. What happens to the colour of the beam of white light?
4. Is white light only one colour, or many?

White light contains all the \qquad of the \qquad spectrum.
\qquad refracts/bends least and \qquad refracts/bends the most.
\qquad

Mixing Coloured Light

Starter

1. What happens to white light when it passes through a prism?
2. List the colours of the visible spectrum in order starting with the longest wavelength - red.

Learning Intentions

- To learn how mixing colours can produce white light and other colours.
- To learn what colour blindness is.

Success Criteria

To learn how mixing colours can produce white light and other colours.To learn what colour blindness is.

Aim:

Mixing Coloured Light

Results:

COLOUR ADDITION

COLOUR SUBTRACTION

Conclusion:

The primary colours of light are \qquad , \qquad and \qquad
The secondary colours of light are \qquad , \qquad and \qquad
\qquad light can be made by adding together equal parts of red, green and blue light.

Colour Blindness

Colour blindness is when someone finds it difficult to \qquad and
\qquad between certain colours.

It is caused by faults in the colour receptive \qquad in the \qquad of the eye.

Extension activity 1:

Write down 3 pieces of information from the video - How do light waves make colour?
\square

Extension activity 2:

Make a Newton's Colour Wheel
\qquad

The Stroop Test (Extension)

Starter

1. Name the three primary colours of light?
2. How is white light produced?

Learning Intentions

- To learn how coloured light affects the appearance of different coloured objects.
Success Criteria
\square I can describe how coloured light affects the appearance of different coloured objects.

The Stroop Test
Aim: To name the colour of the ink the words are printed in, while ignoring the actual word meaning.

Results (group):

Name	Task A time (seconds):	Task B time (seconds):

Results (class):

Average time for task A: \qquad
Average time for task B: \qquad
Conclusion: What task was easier / quicker to complete? Why?

Evaluation: Think about: Are there any groups of people it would not work with? What could we investigate further?
\qquad
\qquad
\qquad

Optical Illusions (Extension)

Starter

1. How many animals do you see in the image?

Learning Intentions

- To explain that our brain can be tricked by optical illusions.

Success Criteria

I can explain that our brain can be tricked by optical illusions.

- - - - - - Optical Illusions -$\left.]_{-}-\right]_{-}$

Your teacher will show you some optical illusions where the eyes are deceived by something that is not what it seems.

Make a video of your dragon optical illusion!

Extension Tasks
Word Search
Light and Electromagnetic Spectrum

A	M	M	T	H	G	I	L	I	G	V	E	U	A	wavelencth
R	P	U	L	T	R	A	V	I	0	L	E	T	C	RUPIIN
A	E	A	I	H	T	G	N	E	L	E	V	A	W	WAVES ULTRAVIOLET
D	A	N	N	0	I	T	C	E	L	F	E	R	N	PRISMS
I	M	I	C	R	0	W	A	V	E	I	E	L	0	CAMMA
0	V	T	A	C	A	M	M	A	G	T	I	S	E	REFLECTION IRIS
I	R	E	F	R	A	C	T	I	0	N	T	L	0	MICROWAVE
D	E	R	A	R	F	N	I	E	E	0	W	H	T	LICHT
R	L	U	N	L	W	N	A	V	X	R	A	Y	A	XRAN
I	T	F	R	A	N	A	P	U	S	L	R	I	C	
R	R	A	L	S	N	R	V	U	R	R	E	P	L	
I	N	C	E	E	A	E	H	E	P	X	R	N	R	
S	P	C	T	R	U	I	G	U	S	I	L	N	S	
A	P	R	I	S	M	S	L	R	R	V	L	T	I	

Colouring Page

[^0]: types of human skin can get sunburn or skin cancer.

