Master

 Kirkcaldy High School

 Kirkcaldy High School}

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
N4/5 Chemistry

$$
\text { Unit } 1 \text { - part } 4
$$

Formulae and Chemical Equations
Name: \qquad
Class: \qquad
Teacher:

End of topic questions

Topic title	Date	Mark/Total Mark
		I

Homework

Homework title	Date	Mark/Total Mark
		/
		/
		I

Check tests

Test title	Date	Mark/Total Mark
		/

Teacher comments

\qquad

Chemical Formulae

Learning Intentions

- To learn about chemical formula and how it relates to valency.

Success Criteria

\square I can describe the link between formulae and valency.

Introduction to Chemical Formulae*

Chemical formulae* are a way to describe what elements make up a compounds. They tell us which elements are involved and in what amounts.

For instance, the formula for water, $\mathrm{H}_{2} \mathrm{O}$, shows that each water molecule has two hydrogen atoms and one oxygen atom. This is a key part of chemistry because it helps us understand the composition (parts/makeup/ingredients).

In chemical formulae, the subscript number (smaller number at the bottom) next to an element's symbol indicates the number of atoms of that element present in the compound. For example, in $\mathrm{H}_{2} \mathrm{O}$, the subscript '2' next to hydrogen (H) tells us that there are two hydrogen atoms in each molecule of water.

If no subscript is present, as with the oxygen (O) in $\mathrm{H}_{2} \mathrm{O}$, it is understood to be $\mathbf{1}$.

The formula of a compound is directly related to the valency of each element involved.

State the definition of valency below.
*Formulae is the plural of formula.
Formula $=1$ formula
Formulae $=$ multiple formula

Fill out the following table. For each compound, write the symbol of each element involved, the number of atoms (from the subscript - number below) and the valency.

Compound	Element 1 (Symbol)	Number of Atoms	Valency	Element 2 (Symbol)	Number of Atoms	Valency
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$						
Methane $\left(\mathrm{CH}_{4}\right)$						
Sodium Chloride (NaCl)						
Calcium Oxide (CaO)						
Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$						
Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$						
Magnesium Chloride $\left(\mathrm{MgCl}_{2}\right)$						
Aluminium Oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$						

Do you notice a pattern with the number of atoms of each element in a compound and the valency? Use examples from the table to illustrate your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Writing Formula - prefixes

Learning Intentions

- To learn how to write formula given prefixes

Success Criteria

\square I can write the formula given the prefixes of each element
Writing the formula given prefixes
A prefix is a short word or letter set that is added at the beginning of another word to change its meaning.

In the context of chemistry, prefixes are used to indicate the number of atoms of each element in a compound.

- Common prefixes include "mono-" for one, "di-" for two, "tri-" for three, "tetra-" for four, "penta-" for five, and so on.

Complete the table below for the prefixes up to 6.

Prefix	Number of atoms

For example, if you have a compound named "dihydrogen monoxide," the prefix "di-" before hydrogen tells you that there are two hydrogen atoms, and "mono-" before oxide indicates one oxygen atom. Therefore, the chemical formula would be $\mathrm{H}_{2} \mathrm{O}$.

$$
\text { Dihydrogen monoxide }=\mathrm{H}_{2} \mathrm{O}
$$

Another example is "carbon tetrachloride." The prefix "tetra-" before chloride tells you that there are four chlorine atoms. Since there's no prefix before carbon, it's understood to be one carbon atom. The chemical formula would then be CCl_{4}.

To write the formula:

1. Identify the element for each prefix.
2. Use the prefix to determine the number of atoms of that element.
3. Write the element symbol followed by the number of atoms as a subscript.

By following these steps, you can translate the name of a covalent compound into its corresponding chemical formula.

Complete the following table to find the formula of each compound. You will need to use your data booklet to find the symbols of each element.

Compound Name	Element $\mathbf{1}$	Number of Atoms	Element $\mathbf{2}$	Number of Atoms	Chemical Formula
Carbon dioxide					
Dihydrogen monoxide					
Sulfur hexafluoride					
Nitrogen triiodide					
Phosphorus pentachloride					
Carbon tetrachloride					
Dinitrogen tetroxide					
Silicon dioxide					
Dihydrogen sulfide					
Boron trifluoride					
Oxygen difluoride					
Phosphorus trichloride					

Complete the following table to write the name of each compound given the formula. You will need to use your data booklet to find the name of each element.

Chemical Formula	Compound Name
CO_{2}	
$\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{N}_{2} \mathrm{O}_{3}$	
CCl_{4}	
PCl_{3}	
SO_{3}	
$\mathrm{~N}_{2} \mathrm{O}$	
$\mathrm{P}_{4} \mathrm{O}_{2}$	
$\mathrm{C}_{2} \mathrm{H}_{2}$	
$\mathrm{C}_{3} \mathrm{H}_{8}$	
SiO_{2}	
$\mathrm{H}_{2} \mathrm{~S}$	
BF_{3}	
SF_{6}	

Extension (more practice)

Complete the following table given either the formula or compound name.

Chemical Formula	Compound Name
CO	Dihydrogen monoxide
$\mathrm{N}_{2} \mathrm{O}_{4}$	Carbon tetrachloride
PCl_{5}	Dinitrogen monoxide
SO_{2}	
$\mathrm{P}_{2} \mathrm{O}_{5}$	Tricarbon octahydride
$\mathrm{C}_{2} \mathrm{H}_{4}$	
SiO_{2}	Dihydrogen sulfide
BCl_{3}	
NH_{3}	Carbon tetrahydride
SF_{4}	

\qquad

Chemical Formulae - swap and drop method

Learning Intentions

- To learn how to use the swap and drop method for writing formula.

Success Criteria

I can use the swap and drop method to write chemical formulae.I can use the swap and drop method to write ionic formulae.The swap and drop method
In chemistry, it's important to note that prefixes like "mono-", "di-", "tri-", etc., are not always provided in the names of compounds.

In such cases, understanding the valency of elements becomes crucial for determining the formula of the compound.

Define valency:

For example, sodium (Na) has a valency of 1 and chlorine (Cl) has a valency of 1 ; when they combine, they form sodium chloride (NaCl).

As a reminder, complete the table below for the valency of each group on the periodic table.

Group	Valency
1	
2	
3	
4	
5	
6	
7	
$8 / 0$	

The "swap and drop" method is a straightforward way to write the formula of a compound when you know the valency of each element.

This method involves swapping the valencies of the two atoms/ions and then dropping them to become the subscripts in the formula.

Here's how it works:

Step 1. Symbol: Write down the symbols of the ions involved. For example, for calcium (Ca) and chlorine (CI).

$\mathbf{S ~ C a C l}$
 V
 S
 D
 S

Step 2. Valency: Next to each symbol, write down its valency. Calcium has a valency of 2 , and chlorine has a valency of 1 .
 S Ca Cl
 V 21
 S
 D
 S

Step 3. Swap: Swap the valencies of the ions. The valency of calcium becomes the subscript for chlorine, and the valency of chlorine becomes the subscript for calcium.

\mathbf{S}	Ca	Cl
\mathbf{V}	2	1
\mathbf{S}	1	2
\mathbf{D}	CaCl_{2}	
\mathbf{S}		

Step 4. Drop: Drop the numbers to become subscripts. In our example, calcium with a valency of 2 will pair with two chlorines, each with a valency of 1.

S Ca Cl
V 21
S $1 \quad 2$
D CaCl_{2}
S
Step 5. Simplify: If the subscripts can be simplified, do
so. For instance, if you end up with $\mathrm{Ca}_{2} \mathrm{O}_{2}$, it can be simplified to CaO .

S Ca Cl
V 21
S $1 \quad 2$
D CaCl_{2}
S CaCl_{2}

Your teacher will guide you with some examples on the next page.

Demonstrated Examples by your teacher.

Compound Name	Swap and drop method:	Compound Name	Swap and drop method:
Sodium Chloride			
		Potassium Oxide	

Formula		Formula	

Compound Name	Swap and drop method:	Compound Name	Swap and drop method:
Magnesium Sulfide			
		Aluminium Oxide	

Formula		Formula	

Questions

Using the swap and drop method, write the formula for the following compounds. Use a show-me-board/jotter to do your swap and drop methods before filling in the formula.

Compound Name	Chemical Formula
Sodium chloride	
Calcium oxide	
Magnesium bromide	
Potassium iodide	
Barium chloride	
Strontium oxide	
Sodium fluoride	
Aluminium chloride	
Lithium oxide	
Calcium nitride	
Magnesium sulfide	
Potassium bromide	
Sodium phosphide	
Calcium hydride	
Magnesium iodide	

Ionic formulae - National 5 only

Simply put, the ionic formula of an ionic compound is just the formula found by doing the swap and drop method, and, the charges are included in the formula as a superscript (small number and charge above) for each ion.

For example, sodium (Na) has a charge of $1+$ and chlorine (Cl) has a charge of $1-$. When these ions combine to form sodium chloride, the charges are balanced, resulting in the formula $\mathrm{Na}^{+} \mathrm{Cl}^{-}$.

Just do the swap and drop method exactly as before, then, in the final step add the charges to make the ionic formula.

The formula without charges is called the chemical formula.
Demonstrated examples by your teacher.

Compound Name	Swap and drop method:	Compound Name	Swap and drop method:
Sodium Chloride		Magnesium Chloride	

Chemical Formula		Chemical Formula	
lonic Formula		lonic Formula	

Questions

Using the swap and drop method, write the chemical and ionic formula for the following compounds. Use a show-me-board/jotter to do your swap and drop methods before filling in the formula.

Compound Name	Chemical Formula	Ionic Formula
Sodium chloride		
Calcium oxide		
Magnesium bromide		
Potassium iodide		
Barium chloride		
Strontium oxide		
Sodium fluoride		
Aluminium chloride		
Lithium oxide		
Calcium nitride		
Magnesium sulfide		
Potassium bromide		
Sodium phosphide		
Calcium hydride		
Magnesium iodide		

\qquad

Chemical Formulae - Roman Numerals

Learning Intentions

- To learn how write formulae given roman numerals for transition metals.

Success Criteria
\square I can write the formula for ionic compounds containing transition metals given roman numerals.

Formula with roman numerals
Roman numerals are used in the names of certain ionic compounds to indicate the charge on the metal ion, particularly for transition metals that can have multiple possible charges.

For example, iron can form ions with charges of 2+ or 3+, leading to compounds named iron(II) chloride and iron(III) chloride, respectively. The Roman numeral indicates the charge on the iron ion in each compound.

Fill in the table for the first 6 roman numerals.

Number	Roman Numeral
1	I
2	II
	V

The roman numerals are therefore just the valency of the metal, with this information we can use the swap and drop method.

Demonstrated examples by your teacher.

Compound Name	Swap and drop method:	Compound Name	Swap and drop method:
Iron(II) Oxide			
		Iron(III) Oxide	

Chemical Formula		Chemical Formula	
Ionic		Ionic	
Formula	Formula		

Compound Name	Swap and drop method:	Compound Name	Swap and drop method:
Zinc(II) Chloride		Vanadium(II) Oxide	

Chemical Formula		Chemical Formula	
lonic		lonic	
Formula	Formula		

Questions

Using the swap and drop method, write the formula for the following compounds with roman numerals. Use a show-me-board/jotter to do your swap and drop methods before filling in the formula.

Compound Name	Chemical Formula	Ionic Formula
Iron(III) chloride		
Copper(II) oxide		
Tin(IV) sulfide		
Lead(II) iodide		
Iron(II) oxide		
Manganese(IV) fluoride		
Cobalt(III) nitride		
Nickel(II) bromide		
Chromium(III) phosphide		
Vanadium(V) oxide		
Copper(I) sulfide		
Zinc(II) fluoride		
Tin(II) oxide		
Iron(III) nitride		
Cobalt(II) chloride		
Manganese(II) iodide		
Chromium(VI) sulfide		
Nickel(III) oxide		

\qquad

Chemical Formulae - Group ions

Learning Intentions

- To learn how to write formulae with group ions.

Success Criteria

\square I can write the formula of a compound that contains group ions.
Formula Group ions
A group ion, also known as a polyatomic ion, is an ion that consists of two or more atoms where one of them is oxygen, carrying a net charge.

- This is the origin of the -ate/-ite naming distinction we made at the beginning of this topic.

Unlike single-element ions, which consist of just one type of atom (e.g. Cl^{-}), group ions are made up of multiple types of atoms.

- For example, the sulfate ion $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ is a group ion consisting of one sulfur atom and four oxygen atoms, carrying a net charge of 2 -.

These group ions are found on page 8 of the data booklet.
Whenever you see a name end in -ate/-ite you will need to find the formula of the group ion on page 8. There are a few exceptions, e.g. ammonium, hydroxide, etc.

Using page 8 of the data booklet, find the formula of each of these group ions. (remember - the charge is the same number as the valency)

Group lon Name	Ionic Formula (from Data Booklet)	Charge (from Data Booklet)
Sulfate		
Sulfite		
Nitrate		
Phosphate		
Carbonate		
Hydroxide		
Dichromate		
Ammonium		

Finding the formula of compounds with group ions

Once we find the formula of the group ion, we just treat it like any other symbol when applying the swap and drop method. However, since there are multiple symbols we must put the group ions in brackets if there are more than one.

For example, the completed formula for aluminium sulfate is:
$\mathrm{Al}_{2}\left(\mathbf{S O}_{4}\right)_{3}$
Show this through the swap and drop method:

\mathbf{S}	Al	SO_{4}
\mathbf{V}	3	2
\mathbf{S}	2	3
\mathbf{D}	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	
\mathbf{S}	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	

The ionic formula can also be written:
$\mathrm{Al}^{3+}{ }_{3}\left(\mathrm{SO}_{4}{ }^{2-}\right)_{3}$
Notice that the charge of the group ion stays inside the bracket.

Your teacher will now demonstrate some more examples below.

Questions

Using the swap and drop method, write the formula for the following compounds with group ions. Use a show-me-board/jotter to do your swap and drop methods before filling in the formula.

Compound Name	Chemical Formula	Ionic Formula
Sodium sulfate		
Calcium nitrate		
Magnesium carbonate		
Potassium phosphate		
Aluminium hydroxide		
Sodium bicarbonate		
Calcium carbonate		
Ammonium chloride		
Lithium sulfate		
Barium nitrate		
Zinc Sulfate		
Magnesium Nitrate		
Potassium Sulfite		
Iron(III) phosphate		
Copper(II) hydroxide		
Iron(II) nitrate		

Challenge (Optional) - National 5 only

To find the charge of metal ions in a compound when the formula is given, especially for transition metals, you can reverse-engineer the formula. This is particularly useful when the periodic table alone doesn't provide the charge, and when Roman numerals are not included in the compound's name.

To find the charge of a metal ion in a compound when only the formula is given, you can follow these steps:

Step 1. Identify the lons: Look at the formula and find the metal and non-metal. For example, in FeCl_{3}, iron is the metal and chlorine is the non-metal.

Step 2. Determine the Number of Each Ion: Check how many of each ion are in the formula. In FeCl_{3}, there's one iron and three chlorines.

Step 3. Find the Charge of the Known lon: Use the periodic table to find the charge of the non-metal. Chlorine usually has a charge of 1-.

Step 4. Calculate the Charge of the Metal Ion: To find the charge of the metal, multiply the charge of the non-metal by how many of them are in the formula (there would be a total of 3 - charge from the Cl's).

Then divide by the number of metal ions (1 in this case).
In FeCl_{3}, you'd divide 3 by 1, this number is the charge of the positive metal ion, this would be a charge of $3+$.

So 3 total positives and 3 total negatives $=$ neutral.
Step 5. Confirm Electrical Neutrality: Double-check that the charges balance out to make sure the compound is neutral. In FeCl_{3}, one iron with a 3+ charge balances with three chlorines each with a 1 - charge.

We can then write the ionic formula: $\mathrm{Fe}^{3+} \mathrm{Cl}_{3}^{-}$.
And the compound name with roman numerals, Iron(III) chloride.

Complete the following table to find the charge of the metal ions.

Formula	Metal Ion	Non- Metal/ Group Ion	Charge on NonMetal/ Group Ion	Total Negative Charge	Charge on Metal Ion	Ionic Formula
NaCl	Na	Cl	-	-	+	$\mathrm{Na}^{+} \mathrm{Cl}^{-}$
MgO	Mg	0	2-	2-	2+	$\mathrm{Mg}^{2+} \mathrm{O}^{2-}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$						
FeCl_{3}						
CuO						
ZnS						
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$						
$\mathrm{K}_{2} \mathrm{SO}_{4}$						
$\mathrm{Al}(\mathrm{OH})_{3}$						
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$						
Pbl_{2}						
MnO_{2}						
NiCl_{2}						
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$						
$\mathrm{Li}_{2} \mathrm{CO}_{3}$						
$\mathrm{Ag}_{2} \mathrm{~S}$						

\qquad

Writing Word Equations

Learning Intentions

- To learn how to write word equations of a described chemical reaction.

Success Criteria

\square I can write word equations given the description of a chemical reaction.

Word equations are a way to represent chemical reactions using the names of the substances involved, rather than their chemical symbols or formulas.

They provide a straightforward way to describe what happens in a chemical reaction, showing the reactants that are used up and the products that are formed.

In a word equation, the reactants are usually written on the left-hand side, the products on the right-hand side, and the two are separated by an arrow that signifies the direction of the reaction.

General Format:

Reactant \longrightarrow Product

For example:

When calcium carbonate is heated, it decomposes to form calcium oxide and carbon dioxide gas.

The word equation would be:

Calcium Carbonate \longrightarrow Calcium Oxide + Carbon Dioxide

Questions

Given the following description of a chemical reaction, write a word equation for each of the following:

1. Write a Word Equation: When hydrogen gas reacts with oxygen gas, water is formed.
2. Write a Word Equation: Sodium hydroxide solution is mixed with hydrochloric acid, resulting in the formation of sodium chloride and water.

\rightarrow

3. Write a Word Equation: Magnesium metal reacts with hydrochloric acid to produce magnesium chloride and hydrogen gas.

$$
\rightarrow
$$

4. Write a Word Equation: When carbon is burned in an excess of oxygen, carbon dioxide is produced.
5. Write a Word Equation: Zinc metal is added to a solution of copper sulfate, resulting in the formation of zinc sulfate and copper metal.

$$
\rightarrow
$$

\qquad

Writing Chemical Equations

Learning Intentions

- To learn how write chemical equations.

Success Criteria

\square I can write chemical equations given the word equation.I can write word equations given the chemical formula.

Chemical Equations

Unlike word equations, which use the names of the substances involved, chemical equations use the chemical symbols and formulas. This makes them much more informative and easier to work with for calculations.

If you are given the word equation, you can write the chemical equation by working out the formula for each compound involved.

You must remember which elements are diatomic to do this.

Step 1: Write the Word Equation

First, write down the word equation to describe the reaction:

$$
\text { Hydrogen }+ \text { oxygen } \rightarrow \text { water }
$$

Step 2: Replace each word with the formula

Next, replace the names of the reactants and products with their respective chemical symbols or formulas. (hydrogen and oxygen are diatomic)

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Step 3: Add State Symbols (Optional)

You can add state symbols to indicate the physical state of each substance.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Questions

For each of the following word equations, convert them into chemical equations. Remember to check if the element is diatomic, some compounds you may need to search for their formulae. There is no need to write the state symbols

1. Sodium + Chlorine \rightarrow Sodium Chloride

$$
\rightarrow
$$

2. Hydrogen + Nitrogen \rightarrow Ammonia

$$
\rightarrow
$$

3. Carbon + Oxygen \rightarrow Carbon Dioxide

$$
\rightarrow
$$

4. Methane + Oxygen \rightarrow Carbon Dioxide + Water

$$
\rightarrow
$$

5. Calcium Oxide + Water \rightarrow Calcium Hydroxide

$$
\rightarrow
$$

6. Iron + Oxygen \rightarrow Iron(III) Oxide
7. Sulfur Dioxide + Oxygen \rightarrow Sulfur Trioxide

$$
\rightarrow
$$

8. Magnesium + Oxygen \rightarrow Magnesium Oxide

$$
\rightarrow
$$

9. Potassium + Water \rightarrow Potassium Hydroxide + Hydrogen Gas

									\rightarrow						

10. Copper + Silver Nitrate \rightarrow Copper Nitrate + Silver

$$
\rightarrow
$$

11. Calcium Carbonate \rightarrow Calcium Oxide + Carbon Dioxide

									\rightarrow										

Extension

Now make the word equation from the chemical equation.

1. $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$

$$
\rightarrow
$$

2. $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$

$$
\rightarrow
$$

4. $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

								\rightarrow									

5. $\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{Mg}$

$$
\rightarrow
$$

\qquad

Writing Chemical Equations - with state symbols

Learning Intentions

- To learn how to write chemical equations with state symbols.

Success Criteria

I can write the chemical equation with state symbols.I can identify effervescence and precipitation reactions given state symbols.
State Symbols

State symbols are used in chemical equations to indicate the physical state of each substance involved in the reaction. These symbols are usually written as subscripts next to the chemical formula of the substance. Here are the most commonly used state symbols:

State Symbol	Meaning	Example Usage in a Chemical Equation
(s)	Solid	$\mathrm{NaCl}(s)$
(l)	Liquid	$\mathrm{H}_{2} \mathrm{O}(l)$
(g)	Gas	$\mathrm{O}_{2}(g)$
$(a q)$	Aqueous (dissolved in water)	$\mathrm{NaCl}(a q)$

*If a substance is dissolved in water it is known as a solution.
Complete the table given the description and chemical name.

Description of Substance	Chemical Formula with State Symbol
Solid Sodium Chloride	
Sodium Chloride Solution	
Gaseous Water	
Liquid mercury	
Solid Iron(III) Oxide	
Aqueous hydrogen chloride	
Gaseous Oxygen	
Solid Zinc Sulfate	

Questions

Write the chemical equation for the following and include the state symbols.

1. Solid Sodium + Chlorine Gas \rightarrow Solid Sodium Chloride

$$
\rightarrow
$$

2. Liquid Water \rightarrow Hydrogen Gas + Oxygen Gas

$$
\rightarrow
$$

3. Solid Iron + Oxygen Gas \rightarrow Solid Iron(III) Oxide

$$
\rightarrow
$$

4. Solid Calcium Carbonate \rightarrow Solid Calcium Oxide + Carbon Dioxide Gas

$$
\rightarrow
$$

5. Solid Magnesium + Oxygen Gas \rightarrow Solid Magnesium Oxide

$$
\rightarrow
$$

6. Solid Sodium Carbonate + Liquid Water \rightarrow Aqueous Sodium Hydroxide + Carbon Dioxide Gas

$$
\rightarrow
$$

7. Solid Aluminium + Chlorine Gas \rightarrow Solid Aluminium Chloride

$$
\rightarrow
$$

8. Solid Potassium + Liquid Water \rightarrow Aqueous Potassium Hydroxide + Hydrogen Gas

$$
\rightarrow
$$

Remember back to the rates of reaction topic, we learned about effervescence and precipitation, now we can identify them using chemical equations with state symbols.

- Effervescence: The production of gas bubbles during a reaction, often observed as fizzing or bubbling in a liquid. This is a result of the formation of a product that is gaseous (g)

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

- Precipitation: The formation of a precipitate from a solution during a reaction. This occurs when two soluble reactants, they will we aqueous (aq), combine to form an insoluble product, this will be solid (s), that settles out of the solution.

$$
\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow \mathbf{A g C l}(\boldsymbol{s})+\mathrm{NaNO}_{3}(a q)
$$

Identify the effervescence and precipitation reactions using the state symbols and list them below.
a. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
b. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
c. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
d. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
e. $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
f. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
g. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
h. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{Pbl} 2(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$

Effervescence reactions: \qquad
Precipitation reactions: \qquad

Using state symbols to visualise reactions

Using states symbols helps us visualise how the reaction occurs. Using the reaction below:

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

In this equation, hydrochloric acid (HCl) is aqueous, sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ is solid, sodium chloride (NaCl) is aqueous, carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is gaseous, and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is liquid.

This means a solution of HCl (hydrochloric acid) was reacted with NaHCO_{3} (sodium hydrogencarbonate. The products were an NaCl (sodium chloride) solution and CO_{2} (carbon dioxide) gas and liquid water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

- To visualize the reaction, imagine adding a solid lump or powder of sodium hydrogencarbonate to the acid. The mixture would effervesce, producing bubbles of carbon dioxide gas. Instead of an acid solution it is now a sodium chloride (salt) solution.

Sketch an image of this reaction below.
\qquad

Writing Balanced Chemical Equations

Learning Intentions

- To learn how to balance chemical equations.

Success Criteria

I can balance chemical equations with simple compounds.\square I can balance chemical equations with compounds containing group ions.

Balanced Chemical Equations

When you write a chemical equation to use in calculations for the quantities of chemicals needed, you need to make sure you have the same number of each type of atom before and after the reaction happens. This is because atoms don't just disappear or get created from nowhere; they rearrange to form new substances.

Getting this right helps you understand how different chemicals react together. It's a fundamental skill you will need to practice.

Your teacher will show you how to balance chemical equations and a detailed step-by-step guide is shown on the following page.

Example Equation: $\quad \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$

Step 1: Write Down the Unbalanced Equation

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Step 2: List and Count the Atoms

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Element
H
O

Left Side
2
2

Right Side
2
1

Step 3: Balance the Atoms
Start with the element that is unbalanced and appears the least number of times in the equation. In this case, it's oxygen (O).

To balance the oxygen atoms, place a coefficient in front of $\mathrm{H}_{2} \mathrm{O}$:

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}
$$

Now update the table:

Element	Left Side	Right Side
H	2	24
O	2	$1-2$

Step 4: Continue Balancing
Next, balance the hydrogen atoms by placing a coefficient in front of H_{2} :

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Update the table again:

Element
H
O

Left Side
z 4
z 2

Right Side
4
2

Step 5: Check Your Work
Ensure that the number of atoms for each element is the same on both sides of the equation. If they are, your equation is balanced.

The balanced equation is:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Questions

Balance the following equations.

1. $\square \mathrm{H}_{2}+\square \mathrm{O}_{2} \rightarrow \square \mathrm{H}_{2} \mathrm{O}$
2. $\square \mathrm{N}_{2}+\square \mathrm{H}_{2} \rightarrow \square \mathrm{NH}_{3}$
3. $\square \mathrm{Fe}+\square \mathrm{O}_{2} \rightarrow \square \mathrm{Fe}_{2} \mathrm{O}_{3}$
4. $\square \mathrm{Na}+\square \mathrm{Cl}_{2} \rightarrow \square \mathrm{NaCl}$
5. $\square \mathrm{Mg}+\square \mathrm{H}_{2} \mathrm{O} \rightarrow \square \mathrm{Mg}(\mathrm{OH})_{2}+\square \mathrm{H}_{2}$

6. $\square \mathrm{Ca}+\square \mathrm{O}_{2} \rightarrow \square \mathrm{CaO}$

$$
\text { 7. } \square \mathrm{P}_{4}+\square \mathrm{o}_{2} \rightarrow \square \mathrm{P}_{4} \mathrm{O}_{10}
$$

$$
\text { 8. } \square \mathrm{Zn}+\square \mathrm{HCl} \rightarrow \square \mathrm{ZnCl}_{2}+\square \mathrm{H}_{2}
$$

When group ions are involved, just treat the group ion as a whole - do not separate it into individual elements. e.g. count how many " SO_{4} "s there are in the following, do not count S and O separately.
9. $\square \mathrm{Al}+\square \mathrm{CuSO}_{4} \rightarrow \square \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\square \mathrm{Cu}$
10. $\square \mathrm{AgNO}_{3}+\square \mathrm{KCl} \rightarrow \square \mathrm{AgCl}+\square \mathrm{KNO}_{3}$
11. $\square \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\square \mathrm{NaOH} \rightarrow \square \mathrm{Fe}(\mathrm{OH})_{3}+\square \mathrm{NaNO}_{3}$
12. $\square \mathrm{CuSO}_{4}+\square \mathrm{BaCl}_{2} \rightarrow \square \mathrm{CuCl}_{2}+\square \mathrm{BaSO}_{4}$
13. $\square \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\square \mathrm{NaOH} \rightarrow \square \mathrm{Al}(\mathrm{OH})_{3}+\square \mathrm{Na}_{2} \mathrm{SO}_{4}$
14. $\square \mathrm{Na}_{2} \mathrm{CO}_{3}+\square \mathrm{HCl} \rightarrow \square \mathrm{NaCl}+\square \mathrm{H}_{2} \mathrm{O}+\square \mathrm{CO}_{2}$

Extension questions:

Chemcord purple books (N5): page 38-40
SCHOLAR

Topic	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
Formulae	$\mathrm{MC}-6,8$	$\mathrm{MC}-1$	$\mathrm{MC}-3,7$	$\mathrm{MC}-$	$\mathrm{MC}-$
	$\mathrm{S} 2-6 \mathrm{~b}$	$\mathrm{~S} 2-6 \mathrm{~b}$	$\mathrm{~S} 2-$	$\mathrm{S} 2-$	$\mathrm{S} 2-11 \mathrm{a}$,

$M C=$ multiple choice section, $S 2=$ section 2 , the written section.

