Master Kirkcaldy High School

N4/5 Chemistry

$$
\text { Unit } 1 \text { - part } 2
$$

Atomic Structure
Name:
Class:

Teacher:

End of topic questions

Assessment Page

Topic title	Date	Mark/Total Mark
		I

Homework

Homework title	Date	Mark/Total Mark
		$/$
		$/$
		$/$
		$/$
		$/$

Check tests

Test title	Date	Mark/Total Mark
		/
		/
		/

Teacher comments

Using Command Words

Command words in questions are crucial as they guide us on the specific type of response required. Let's delve into some examples within the context of simple chemistry concepts, focusing on the states of matter. These are arranged into the level of detail that must be given and therefore their difficulty, from least to most.

In chemistry, often a drawn diagram will give you a mark instead of a written answer as long as it is labelled.
Identify:
This command word requires you to establish and name a particular item or concept.

For instance, "Identify the three states of matter."
In response, you would say, "The three states of matter are solid, liquid, and gas."
State: This command word requires you to express the main points concisely.
For instance, "State the process of changing from a solid to a gas."
Your answer would be, "The process of changing from a solid to a gas is called sublimation."

Indicate: This command word requires you to point out or show something.
For instance, "Indicate whether the volume of a gas is fixed or variable."
Your answer would be, "The volume of a gas is variable."
Provide/Give: These command words mean you need to present a specific item or concept, often an example.

For instance, "Provide an example of a liquid."
You could answer, "An example of a liquid is water."
Describe: Here, you are expected to provide a detailed account of a particular topic.
For example, "Describe the properties of a solid state of matter."
You would respond by saying, "Solids have a definite shape and volume. The particles in solids are closely packed together and vibrate in fixed positions."

Outline: This command word asks you to give a brief summary or overview of a topic.

For example, "Outline the process of evaporation."
You might respond, "Evaporation is the process by which liquid turns into gas upon heating. It occurs when the particles of a liquid gain enough energy to leave the liquid and become gas."

Explain: This command word asks you to make something clear or easy to understand by describing it in more detail.

For example, "Explain why gases easily fill their containers."
An appropriate answer might be, "Gases easily fill their containers because their particles are free to move in all directions and will spread out until they occupy the entire container."

Discuss: This command word is asking you to present a detailed and balanced argument about a specific topic.

For example, "Discuss the importance of understanding the states of matter."
Your response would involve discussing various aspects like the role of states of matter in natural phenomena, their significance in various scientific and industrial processes, etc.
$\cdots-\infty-\infty-\infty-\infty=-\infty$
Create: This command word often represents one of the highest levels of difficulty in command words. It requires not just recall or understanding of existing knowledge, but the ability to generate new ideas or products based on that knowledge. It involves synthesis, imagination, and critical thinking, and it's often used in tasks such as designing an experiment, writing an original essay, or proposing a solution to a problem.
\qquad

Elements and the Periodic Table

Learning Intentions

- To learn about elements and the periodic table.

Success CriteriaI can find and write the symbol of elements using the data booklet.I can identify metals and non-metals in the periodic table.I can determine the state of an element at room temperature using its melting/boiling point.I can identify selected groups from the periodic table and their properties.

The Periodic Table is like a big directory or a catalogue of all the elements, the basic ingredients that make up everything around us. Each element has its own spot on the table, represented by a unique symbol.

1 Hydrogen H	
3 Lithium Li	4 Beryllium Be
11 Sodium Na	$\begin{array}{\|c} 12 \\ \text { Magnesium } \\ \mathrm{Mg} \end{array}$

For example, there's "H" for Hydrogen (which is in water), "O" for Oxygen (what we breathe), "Au" for Gold (the shiny metal in jewellery), and "Fe" for Iron (used in structures and vehicles).

- The first letter in the symbol must be CAPITAL.
- If a second letter in the symbol this must be lower case.
- e.g. Co is the symbol for Cobalt however CO is the formula for carbon monoxide

You can use page 4 of your data booklet to find the name and formula for each element.

Use the data booklet to find the elements symbol for the following elements:

Use the data booklet to find the element name from the elements symbol for the following elements:

1. Hg
2. Si
3. Kr
4. Pb
5. S
6. Ar
7. Co
8. Ni
9. Se
10. Rb

11. Sr
12. Y
13. Zr
14. Mo
15. Cd
16. Xe
17. Ba
18. Pt
19. Ti
20. Al

Metals and non-metals in the periodic table

With 2 coloured pens/pencils, label the metals and non-metals on the periodic table below.

$\underset{1}{\text { Column }}$	$\underset{2}{\text { Column }}$												$\begin{gathered} \text { Column } \\ 3 \end{gathered}$	$\underset{4}{\text { Column }}$	$\underset{5}{\text { Column }}$	$\underset{6}{\text { Column }}$	$\begin{gathered} \text { Column } \\ 7 \end{gathered}$	$\underset{0}{\text { Cotumn }}$
1 Hydrogen H																		2 Helium He
3 Lithium Li	4 Beryllium Be												$\begin{gathered} 5 \\ \text { Boron } \\ \text { B } \end{gathered}$	$\begin{gathered} 6 \\ \text { Carbon } \\ \text { C } \end{gathered}$	7 Nitrogen N	$\begin{gathered} 8 \\ \text { Oxygen } \\ 0 \end{gathered}$	9 Fluorine F	$\begin{gathered} 10 \\ \text { Heon } \\ \mathrm{Ne} \end{gathered}$
	12 Magnesium Mg						TRANS	ITION M	ETALS				13 Aluminium Al	14 Silicon Si	15 Phosphorus P	$\begin{gathered} 16 \\ \text { Sulfur } \\ \mathrm{S} \end{gathered}$	17 Chlorine Cl	$\begin{gathered} 18 \\ \text { Argon } \\ \text { Ar } \end{gathered}$
19 Potassium K	$\begin{gathered} 20 \\ \text { Calcium } \\ \mathrm{Ca} \end{gathered}$	21 Scandium Sc		$\begin{gathered} 22 \\ \text { Titanium } \\ \mathrm{Ti} \end{gathered}$	23 Vanadium V	24 Chromium Cr	$\begin{array}{\|c\|} \hline \mathbf{2 5} \\ \text { Manganese } \\ \mathbf{M n} \\ \hline \end{array}$	$\begin{gathered} 26 \\ \text { Iron } \\ \mathrm{Fe} \end{gathered}$	$\begin{gathered} 27 \\ \text { Cobalt } \\ \text { Co } \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { Nickel } \\ \mathrm{Ni} \end{gathered}$	$\begin{gathered} 29 \\ \text { Copper } \\ \mathrm{Cu} \end{gathered}$	$\begin{gathered} 30 \\ \text { Zinc } \\ \text { Zn } \end{gathered}$	31 Galtium Ga	$\begin{array}{\|c\|} \hline 32 \\ \text { Germanium } \\ G e \end{array}$	$\begin{gathered} 33 \\ \text { Arsenic } \\ \text { As } \end{gathered}$	34 Selenium Se	35 Bromine Br	$\begin{gathered} 36 \\ \text { Krypton } \\ \mathbf{K r} \end{gathered}$
37 Rubidium Rb	38 Strontium Sr	$\begin{gathered} 39 \\ \text { Yttrium } \\ Y \end{gathered}$		$\begin{array}{\|c\|} \hline 40 \\ \text { Zirconium } \\ \mathbf{Z r} \end{array}$	41 Fiobium Nb	42 Molybdenum Mo	43 Technetium Tc	44 Ruthenium Ru	$\begin{gathered} 45 \\ \text { Rhodium } \\ \text { Rh } \end{gathered}$	$\begin{gathered} 46 \\ \text { Palladium } \\ \text { Pd } \end{gathered}$	47 Silver Ag	48 Cadmium Cd	$\begin{gathered} 49 \\ \text { Indium } \\ \text { In } \end{gathered}$	$\begin{aligned} & 50 \\ & \text { Tin } \\ & \mathrm{Sn} \end{aligned}$	51 Antimony Sb	52 Tellurium Te	$\begin{gathered} 53 \\ \text { lodine } \\ \text { I } \end{gathered}$	54 Xenon Xe
$\begin{gathered} 55 \\ \text { Caesium } \\ \text { Cs } \end{gathered}$	$\begin{gathered} 56 \\ \text { Barium } \\ \text { Ba } \end{gathered}$	57 Lanthanum La	$58-71$	72 Hafnium Hf	73 Tantalum Ta	74 Tungsten W	75 Rhenium Re	76 Osmium Os	77 Iridium Ir	78 Platinum Pt	79 Gold Au	80 Mercury Hg	$\begin{gathered} 81 \\ \text { Thallium } \\ \text { Tl } \end{gathered}$	$\begin{gathered} 82 \\ \text { Lead } \\ \mathrm{Pb} \end{gathered}$	$\begin{gathered} 83 \\ \text { Bismuth } \\ \mathrm{Bi} \end{gathered}$	84 Polonium Po	85 Astatine At	86 Radon Rn
87 Francium Fr	$\begin{gathered} 88 \\ \text { Radium } \\ \text { Ra } \end{gathered}$	89 Actinium Ac	$90-103$	104 Rutherfordium Rf	$\begin{gathered} 105 \\ \text { Dubnium } \\ \text { Db } \end{gathered}$	$\begin{array}{\|c\|} \hline 106 \\ \text { Seaborgium } \\ \mathrm{Sg} \\ \hline \end{array}$	$\begin{gathered} 107 \\ \text { Bohrium } \\ \text { Bh } \end{gathered}$	$\begin{gathered} 108 \\ \text { Hassium } \\ \mathrm{Hs} \end{gathered}$	109 Meitnerium Mt	$\begin{array}{\|c\|} \hline 110 \\ \text { Darmstadtium } \\ \text { Ds } \\ \hline \end{array}$	111 Roentgenium Rg	$\begin{array}{\|c\|} \hline 112 \\ \text { Copernicium } \\ \mathrm{Cn} \\ \hline \end{array}$		114 Flerovium FI		$\begin{array}{\|c\|} \hline 116 \\ \text { Livermorium } \\ \text { Lv } \\ \hline \end{array}$		

58 Cerium Ce	59 Praseodymium Pr	$\begin{array}{\|c\|} \hline 60 \\ \text { Neodymium } \\ \text { Nd } \end{array}$	61 Promethium Pm	$\begin{array}{\|c\|} \hline 62 \\ \text { Samarium } \\ \text { Sm } \end{array}$	63 Europium Eu	$\begin{gathered} 64 \\ \text { Gadolinium } \\ \text { Gd } \end{gathered}$	65 Terbium Tb	$\begin{array}{\|c\|} \hline 66 \\ \text { Dysprosium } \\ \text { Dy } \\ \hline \end{array}$	67 Holmium Ho	$\begin{gathered} 68 \\ \text { Erbium } \\ \text { Er } \end{gathered}$	69 Thulium Tm	$\begin{gathered} 70 \\ \text { Ytterbium } \\ \mathrm{Yb} \end{gathered}$	71 Lutetium Lu
$\begin{gathered} 90 \\ \text { Thorium } \\ \text { Th } \end{gathered}$	91 Protactinium Pa	$\begin{gathered} 92 \\ \text { Uranium } \\ \mathrm{U} \end{gathered}$	$\begin{array}{\|c} 93 \\ \text { Heptunium } \\ \mathbf{N}_{P} \end{array}$	94 Plutonium Pu	$\begin{array}{\|c\|} \hline 95 \\ \text { Americium } \\ \text { Am } \end{array}$	$\begin{gathered} 96 \\ \text { Curium } \\ \text { Cm } \end{gathered}$	$\begin{array}{\|c\|} \hline 97 \\ \text { Berkelium } \\ \text { Bk } \end{array}$	$\begin{gathered} 98 \\ \text { Califomium } \\ \text { Cf } \end{gathered}$	99 Einsteinium Es	$\begin{gathered} 100 \\ \text { Fermium } \\ \text { Fm } \end{gathered}$	$\begin{array}{\|c\|} \hline 101 \\ \hline \text { Wendelevium } \\ \text { Md } \\ \hline \end{array}$	$\begin{gathered} 102 \\ \text { Nobelium } \\ \text { No } \end{gathered}$	$\begin{array}{\|c\|} \hline 103 \\ \text { Lawrencium } \\ \mathbf{L r} \end{array}$

Key:

Metals

Non-metals

Questions

For the following questions, state whether the element is a metal or non-metal.

1. Iron
2. Oxygen
3. Helium
4. hydrogen \square 5. Zinc
5. Mercury
6. Neon
7. Calcium \square

Solids, liquids and gases in the periodic table

Temperature is a measure of heat energy, it is measured in degrees Celsius, the units for this is ${ }^{\circ} \mathbf{C}$. Temperature is measured with a thermometer.

The melting point of an element is the temperature at which the element turns from a solid to a liquid.

The boiling point of an element is the temperature at which the element turns from a liquid to a gas.

Colour in the elements by their state (solid, liquid or gas) at room temperature $\left(25^{\circ} \mathrm{C}\right)$. KEEP SOLID AS WHITE and use 2 different colours for liquid and gas.

Key: $\quad \square$ Solid \square Liquid \square Gas

Questions

For each of the following elements or compounds, identify whether they are typically a solid, liquid, or gas at room temperature.

1. Oxygen
2. Iron
3. Mercury
4. Chlorine

5. Gold
6. Nitrogen
7. Bromine
8. Neon

Finding the state are room temperature (optional challenge)

Using the data booklet, we can find what the state of the element will be at room temperature $\left(25^{\circ} \mathrm{C}\right)$. This is important because we will most of the time observe and use elements at room temperature.

Using phosphorus (P) as an example:

The melting point of phosphorus is: $44^{\circ} \mathrm{C}$.

The boiling point of phosphorus is: $\mathbf{2 8 0}^{\circ} \mathrm{C}$.

At room temperature phosphorous will be a solid because room temperature is below the melting point.

Questions (optional challenge)

For the following questions, using just the melting point and boiling point, state whether the element is a solid, liquid or gas at room temperature.

You may use your data booklet and a whiteboard/blank paper to work them out.

1. Oxygen
2. Hydrogen
3. Iron
4. Boron

5. Tin
6. Iodine
7. Bromine
8. Mercury

Groups and periods

The table organizes these elements in rows and columns, and here's the neat trick: elements in the same column have similar behaviours.

Rows in the periodic table are known as periods.

Columns in the periodic table are known as groups.
So, by looking at where an element sits on the table, we can get clues about how it might act. Think of it as our ultimate guide to the building blocks of our world.

When we number and name the groups of elements, we do not include the transition metals.

Colour in the alkali metals, alkali earth metals, halogens and noble gases:

Group 1	$\begin{gathered} \text { Group } \\ 2 \end{gathered}$	$\begin{gathered} \text { Group } \\ 3 \end{gathered}$	$\begin{gathered} \text { Group } \\ 4 \end{gathered}$	$\begin{gathered} \text { Group } \\ 5 \end{gathered}$	$\begin{gathered} \text { Group } \\ 6 \end{gathered}$	$\begin{gathered} \text { Group } \\ 7 \end{gathered}$	$\begin{gathered} \text { Group } \\ 0 \end{gathered}$
Hydrogen H							$\begin{gathered} 2 \\ \text { Helium } \\ \text { He } \end{gathered}$
	4 Beryllium Be	$\begin{gathered} 5 \\ \text { Boron } \\ \text { B } \end{gathered}$	$\begin{gathered} 6 \\ \text { Carbon } \\ \text { C } \end{gathered}$		$\begin{gathered} 8 \\ \text { Oxygen } \\ 0 \end{gathered}$		$\begin{gathered} 10 \\ \mathrm{Neon} \\ \mathrm{Ne} \end{gathered}$
11 Sodium Na	$\begin{gathered} 12 \\ \text { Magnesium } \\ \text { Mg } \end{gathered}$		$\begin{gathered} 14 \\ \text { Silicon } \\ \mathrm{Si} \end{gathered}$	15 Phosphorus P	$\begin{gathered} 16 \\ \text { sulfur } \\ S \end{gathered}$		18 Argon Ar
19 Potassium K	$\begin{gathered} 20 \\ \text { Calcium } \\ \mathrm{Ca} \end{gathered}$	31 Gallium Ga	32 Germanium Ge	33 Arsenic As			$\begin{gathered} 36 \\ \text { Krypton } \\ \mathrm{Kr} \end{gathered}$
37 Rubidium Rb		49 Indium In	$\begin{aligned} & 50 \\ & \text { Tin } \\ & \mathrm{Sn} \end{aligned}$	51 Antimony Sb		53 lodine I	$\begin{gathered} 54 \\ \text { Xenon } \\ \text { Xe } \end{gathered}$
$\begin{gathered} 55 \\ \text { Caosium } \\ \text { Cs } \end{gathered}$	56 Barium Ba	81 Thallium Tl	$\begin{gathered} 82 \\ \text { Load } \\ \mathrm{Pb} \end{gathered}$			$\begin{gathered} 85 \\ \text { Astatine } \\ \text { At } \end{gathered}$	$\begin{gathered} 86 \\ \text { Radon } \\ \text { Rn } \end{gathered}$
87 Francium Fr	$\begin{gathered} 88 \\ \text { Radium } \\ \text { Ra } \end{gathered}$						

Key: \square alkali metals \square alkali earth metals \square halogens \square noble gases

Questions

For each element below, state the number and name of the group they belong to:

	Element	Group Number	Group Name
1.	Lithium		
2.	Magnesium		
3.	Chlorine		
4.	Argon		
5.	Helium		
6.	Strontium		
7.	Sodium		
8.	lodine		
9.	Hydrogen		
10.	Xenon		

Properties of groups 1, 2, 7 and 0/8

Group 1 elements are known as the alkali metals.
Properties: soft, highly reactive, especially with water, with low melting points
Group 2 elements are known as the alkali earth metals.

Properties: harder than alkali metals, less reactive than alkali metals but still reactive, higher melting points than alkali metals.

Group 7 elements are known as the halogens.

Properties: highly reactive non-metals with low melting points.
Group 0/8 elements are known as the noble gases.
Properties: colourless, odourless, extremely low reactivity.
\qquad

Atomic Structure

Learning Intentions

- To learn about the structure of the atom.

Success CriteriaI can state where the sub-atomic particles of an atom are located within the atom.I can state the names, charges and masses of each sub-atomic particle.

Introduction to the Atom

Atoms are the tiny building blocks of everything around us. Imagine a LEGO set; just as you can build vast and varied structures using different combinations of small LEGO pieces, everything in our universe is made up of different combinations of atoms.

The word "atom" comes from the ancient Greek word "atomos," which means "indivisible" or "uncuttable." The ancient Greeks believed that if you kept cutting matter into smaller and smaller pieces, you'd eventually reach a point where you couldn't cut it any further. They called this smallest piece "atomos."

Today, we know atoms can be split into even tinier particles, but the name has stuck.

Structure of the Atom

An atom itself is made up of a nucleus, which contains protons and neutrons, and electrons that orbit around this nucleus. Each smaller component of the atom is called a sub-atomic particle.

Each sub-atomic particle has a particular charge, mass and position in the atom.

Think of the nucleus as the sun in a solar system, and the electrons as the planets revolving around it.

Fill in the table below about the charge, mass and position of each sub-atomic particle.

Particle name	Mass (a.m. \mathbf{u}^{*})	Charge	Where sub-particle is found in atom
Proton	1	+1	Inside the nucleus
Electron	0	-1	Outside the nucleus
Neutron	1	0 (neutral)	Inside the nucleus

a.m.u. ${ }^{*}=$ atomic mass units
\qquad

Atomic Number

Learning Intentions

- To learn how the atomic structure relates to which element it is.

Success CriteriaI can state which sub-atomic particle relates to atomic number.
\square Given the atom is neutral I can identify the number of electrons in an atom. Introduction to atomic number

Every atom is unique and can be identified by its atomic number (which can be found on pages $4-6$ of the data booklet). The atomic number tells us the number of protons in the nucleus of an atom.

For example, hydrogen has an atomic number of 1 because it has one proton, while helium has an atomic number of $\mathbf{2}$ because it has two protons.

When an atom is neutral, where it has equal numbers of positive protons and negative electrons, the atomic number is also the number of electrons.

Atomic Number: Number of protons in the nucleus.
When neutral, atomic number = number of electrons also

Questions

For the following elements with neutral atoms, find the atomic number, number of protons and number of electrons.

Element	Symbol	Atomic Number	Number of protons	Number of electrons
Hydrogen				
Helium				
Carbon				
Fluorine				
Neon				
Calcium				
Iron				
Gold				

\qquad

Mass number, isotopes and relative atomic mass

Learning Intentions

- To learn how the atomic structure relates to mass number.
- To learn about isotopes and relative atomic mass.

Success Criteria

\square I can state which sub-atomic particles relate to mass number.
\square I can use nuclide notation to identify the numbers of each sub-atomic particle. Introduction to mass number

The mass number is the total number of protons and neutrons in an atom's nucleus. Electrons are much lighter and don't significantly contribute to an atom's mass. So, if an atom has 2 protons and 2 neutrons, its mass number is 4 .

If you are given the mass number and atomic number (number of protons) you can calculate the number of neutrons. To do this, you can subtract the mass number from the atomic number.

Mass Number: Total number of protons and neutrons in the nucleus.
Mass number = protons + neutrons

To find the number of neutrons given mass number and atomic number:
Number of Neutrons = mass number - atomic number

Nuclide notation
Nuclide notation is a shorthand way to represent different atoms (or nuclides) and provide information about their atomic number and mass number.

The elements symbol is in the centre, the atomic number is on the bottom left and the mass number is on the top left.

Example:

Sub-atomic particles from Nuclide notation

Nuclide notation can be used to find the number of protons, neutrons, and electrons. Again, we will assume that the atom is neutral (protons $=$ electrons).

Questions

Complete the table below, filling out the atomic number, mass number, number of protons, neutrons, and electrons from the nuclide notation.

Nuclide Notation	Atomic Number	Number of protons	Mass Number	Number of neutrons	Number of electrons
${ }_{1}^{1} H$	1	1	1	0	1
${ }_{1}^{2} \mathrm{H}$					
${ }_{2}^{4} \mathrm{He}$					
${ }_{3}^{7} L i$					
${ }_{6}^{12} C$					
${ }_{7}^{14} \mathrm{~N}$					
${ }_{8}^{16} 0$					
${ }_{9}^{19}$ F					
${ }_{11}{ }^{\text {Na }}$					
${ }_{12}^{24} M g$					

Questions (extension)

Complete the table below, filling out the atomic number, mass number, number of protons, neutrons, and electrons from the nuclide notation like before. However, this time you must use your data booklet to complete the nuclide notation.

Nuclide Notation	Atomic Number	Number of protons	Mass Number	Number of neutrons	Number of electrons
${ }^{1} \mathrm{H}$					
$\begin{aligned} & \overline{2} \\ & 1 \end{aligned}$					
$\begin{aligned} & 4 \\ & 2 \end{aligned}$					
${ }^{10} \mathrm{Ne}$					
12					
${ }^{14} N$					
$\begin{array}{r} 16 \\ 8 \end{array}$					
${ }^{19} F$					
${ }^{20} N e$					
$\begin{aligned} & 23 \\ & 11 \end{aligned}$					
${ }_{-}^{40} C a$					
$\begin{aligned} & 45 \\ & 21 \end{aligned}$					
${ }^{50} \mathrm{Cr}$					
$\begin{aligned} & 52 \\ & 24 \end{aligned}$					
${ }^{55} M n$					
${ }^{58} N i$					
$\begin{aligned} & 75 \\ & 33 \end{aligned}$					

\qquad

Isotopes and relative atomic mass

Learning Intentions

- To learn how to identify isotopes.
- To learn about relative atomic mass and use it to identify the most common isotope.
Success CriteriaI can state the definition of isotopes.
I can identify isotopes using nuclide notations.I can explain what the relative atomic mass is.
I can identify the most common isotope using relative atomic mass.
\square I can calculate the relative atomic mass. Introduction to Isotopes

An element is defined by its atomic number (the number of protons), but the number of neutrons in its atoms can vary.

Isotopes: Atoms of the same element that have the same number of protons but different numbers of neutrons.*
*This means that while they have the same atomic number (which determines the element), but they have different mass numbers.

For example, there are 3 isotopes of carbon:

Number of

Protons:

Neutrons:
Electrons:

Match the Isotope

Using a ruler, match the isotopes by drawing a line between them. There may be more than one line.

Match the Isotope (challenge)

Using a ruler, match the isotopes by drawing a line between them. There may be more than one line. You will need to complete the nuclide notation before you begin matching them.
7 373-17-
${ }^{31} P$ 26
12-
2412-
${ }^{6} L i$
${ }^{35} C l$ 3215-
${ }^{28} S i$ ${ }^{26} K$ 26
18- 13-
${ }^{27}$ Al 22 11-
${ }^{23} \mathrm{Na}$ 38 ${ }_{A r}$
39
19
${ }^{25} M g$
${ }_{-}^{30} \boldsymbol{M g}$ 29 14-

Relative atomic mass (R.A.M.)

Relative atomic mass represents the average mass of the atoms of an element, considering all its different isotopes.

It's measured against the mass of the carbon-12 atom, which is set as a standard.
This average is crucial because elements can exist in various isotopes, each with a different mass.

Using carbon as an example:

Isotope:

Natural
Abundance
(\%)

${ }_{6}^{13} C$

 ${ }_{6}^{14} C$
1.1

0.0000000001

If we were to average the mass of these isotopes, the relative atomic mass would be 12.01.

Since we mostly have carbon-12, the average is closest to it. This tells us that carbon-12 is the most common isotope, even if we did not have the percentages.

The natural abundance is always referring to a sample. For example, the carbon atoms in a lump of coal.

To illustrate what this means, lets imagine we had 1,000,000 (a million) carbon atoms. Using the percentages in this sample of coal we would have:

Isotope	Mass (a.m.u)	Number of atoms
Carbon-12	12	989,000
Carbon-13	13	11,000
Carbon-14	14	0.001 (essentially 0 in practical terms)

Samples contain far too many atoms to think about them atom-by-atom. So instead of thinking about the mass of each atom and adding them up, we just find the average of these numbers, which is 12.01 .

By using the relative atomic mass chemists can make accurate calculations in experiments and reactions. We will come back to these calculations later.

Isotope questions (identifying the most common isotope)

Identify the most common isotope based on the given nuclide notation and relative atomic mass:

1. Oxygen

Isotopes : ${ }_{8}^{15} O,{ }_{8}^{16} O,{ }_{8}^{17} O,{ }_{8}^{18} O$
R.A.M: 15.999

Which isotope is most common: \qquad
2. Carbon

Isotopes : ${ }_{6}^{12} C,{ }_{6}^{13} C$
R.A.M: 12.011

Which isotope is most common: \qquad
3. Hydrogen

Isotopes : ${ }_{\mathbf{1}}^{\mathbf{1}} \boldsymbol{H},{ }_{\mathbf{1}}^{\mathbf{2}} \boldsymbol{H},{ }_{\mathbf{1}}^{\mathbf{3}} \boldsymbol{H}$
R.A.M: 1.008

Which isotope is most common: \qquad
4. Nitrogen

Isotopes : ${ }_{7}^{14} N,{ }_{7}^{15} N$
R.A.M: 14.007

Which isotope is most common: \qquad

5. Chlorine

Isotopes: ${ }_{\mathbf{1 7}}^{\mathbf{3 7}} \boldsymbol{C l},{ }_{\mathbf{1 7}}^{\mathbf{3 7}} \boldsymbol{C l}$
R.A.M: 35.453

Which isotope is most common: \qquad

6. Boron

Isotopes : ${ }_{\mathbf{5}}^{\mathbf{1 0}} \boldsymbol{B},{ }_{\mathbf{5}}^{\mathbf{1 1}} \boldsymbol{B}$
R.A.M: 10.811

Which isotope is most common: \qquad
7. Lithium

Isotopes : ${ }_{3}^{6} \boldsymbol{L i},{ }_{3}^{7} \boldsymbol{L i}$
R.A.M: 6.94

Which isotope is most common: \qquad
8. Neon

Isotopes : ${ }_{10}^{20} \mathrm{Ne},{ }_{10}^{21} \mathrm{Ne},{ }_{10}^{22} \mathrm{Ne}$
R.A.M: 20.180

Which isotope is most common: \qquad

9. Potassium

Isotopes : ${ }_{19}^{\mathbf{3 9}} K,{ }_{19}^{40} K,{ }_{19}^{41} K$
R.A.M: 39.098

Which isotope is most common: \qquad

10. Magnesium

Isotopes : ${ }_{\mathbf{1 2}}^{\mathbf{2 4}} \boldsymbol{M g} \boldsymbol{g},{ }_{12}^{\mathbf{2 6}} \boldsymbol{M g}$
R.A.M: 25.000

Given the provided isotopes and the relative atomic mass, what does this suggest about the proportion of each isotope in the sample?

Optional challenge - Isotope questions (calculating relative atomic mass)

The relative atomic mass (r.a.m.) of a sample can be calculated given the following equation:
r.a.m. $=\frac{(\text { mass of isotope } X \times \% \text { of } X)+(\text { mass of isotope } Y \times \% \text { of } Y)}{100}$

Calculate the relative atomic mass of each of the following samples using the equation above.

1) Element: Chlorine (CI)

- Isotope $\mathrm{X}:{ }^{35} \mathrm{Cl}$
- Mass of X: 35.0 amu
- \% of X: 75.8\%
- Isotope $\mathrm{Y}:{ }^{37} \mathrm{Cl}$
- Mass of isotope Y: 37 amu
- \% of Y: 24.2\%

2) Element: Carbon (C)

- Isotope $\mathrm{X}:{ }^{12} \mathrm{C}$
- Mass of X : 12.0 amu
- \% of X: 98.9\%
- Isotope $\mathrm{Y}:{ }^{13} \mathrm{C}$
- Mass of isotope $\mathrm{Y}: 12.0 \mathrm{amu}$
- \% of Y: 1.1\%

3) Element: Boron (B)

- Isotope $\mathrm{X}:{ }^{10} \mathrm{~B}$
- Mass of X: 10.0 amu
- \% of X: 19.9%
- Isotope $\mathrm{Y}:{ }^{11} \mathrm{~B}$
- Mass of isotope $\mathrm{Y}: 11.0 \mathrm{amu}$
- \% of Y: 80.1\%

4) Element: Lithium (Li)

- Isotope $\mathrm{X}:{ }^{6} \mathrm{Li}$
- Mass of X: 6.0 amu
- \% of X: 7.6\%
- Isotope Y: ${ }^{7} \mathrm{Li}$
- Mass of isotope $\mathrm{Y}: 7.0 \mathrm{amu}$
- \% of Y: 92.4\%
\qquad

Electron Arrangements

Learning Intentions

- To learn about electron arrangements and how they relate to each element. Success CriteriaI can use the data booklet to find the electron arrangements.I can draw electron energy level diagrams.I can state the 2,8,8 rule.
- - - - - - - - - - - - - - Introduction to electron arrangements

Atoms consist of a nucleus (containing protons and neutrons) and electrons that move around the nucleus in specific regions called energy levels or shells. The arrangement of electrons in these shells is known as the electron arrangement.

Shells/Energy Levels: Electrons occupy spaces called shells around the nucleus. These shells can hold a specific number of electrons:

- The first shell (closest to the nucleus) can hold up to 2 electrons.
- The second and third shells can each hold up to 8 electrons.

Electron arrangement: This refers to the distribution of electrons in the shells. This can be found on page 6 of your data booklet.

For example, oxygen has 8 electrons. Its electron configuration is 2,6 , meaning 2 electrons in the first shell and 6 in the second. A diagram for this is shown below

Electron configuration: 2,8
The electrons are filled from the inside out. Each shell must have the correct maximum number of electrons $(2,8,8)$.

Your teacher will show you the correct order for filling the shells with 8 electrons.

Fill out the following electron shell diagrams with your teacher.

Carbon
Electron arrangement

Fluorine
Electron arrangement

Neon
Electron arrangement
\qquad
\qquad
\qquad

Electron Arrangement Questions

Fill out the following the diagrams and complete the information below it.

Hydrogen
Electron arrangement
\qquad

Boron
Electron arrangement
\qquad

Aluminium
Electron arrangement
\qquad

Helium
Electron arrangement
\qquad

Nitrogen
Electron arrangement
\qquad

Phosphorus
Electron arrangement

Beryllium
Electron arrangement
\qquad

Sodium
Electron arrangement
\qquad

Chlorine
Electron arrangement
\qquad

Electron Arrangements and Ions

Learning Intentions

- To learn about ions and their electron arrangements.

Success Criteria
\square I can state the definition of an ion.
I can identify if an ion will become positive or negative.I can use the $2,8,8$ rule to find the charge of an ion.
I can write the electron arrangement for an ion given its charge.I can identify isoelectronic ions.

An ion is an atom or group of atoms that has gained or lost one or more electrons, resulting in a net positive or negative charge.

Ions are formed when atoms seek to achieve a full outer shell, making them more stable.

- If an atom's outer shell is not full, it might either borrow or give away electrons to achieve a full shell, turning the atom into an ion in the process.

Atoms are neutral, they have the same number of protons and electrons. lons are charged because they have a different number of protons and electrons.

There are two main types of ions:

- Positive ions are formed when an atom loses electrons. For instance, sodium (Na) has a single electron in its third shell. By giving away this electron, sodium achieves a full second shell and becomes a positively charged ion, represented as Na^{+}.

Sodium atom (Na)
Electron arrangement

Sodium ion (Na^{+})
Electron arrangement

- Negative ions are formed when an atom gains electrons. Chlorine (CI), for example, has seven electrons in its third shell. To complete this shell, chlorine can borrow an electron, turning it into a negatively charged ion, represented as Cl^{-}.

Chlorine atom (CI)
Electron arrangement

Chlorine ion (Cl^{-})
Electron arrangement
\qquad
\qquad

With a full shell, ions will have the same electron arrangement as the nearest noble gas on the periodic table to that element. Remember, the noble gases are very unreactive and stable.

Using the 2,8,8 rule to find the charge

The $2,8,8$ rule is particularly useful as it provides insights into the behaviour of atoms.

- Atoms with 1,2 , or 3 electrons in their outer shell might find it more favourable to lose these electrons, becoming positive ions.
- Atoms losing $2 / 3$ electrons become $2+/ 3+$ charge, e.g. $\mathrm{Mg}^{2+}, \mathrm{Al}^{3+}$
- Conversely, atoms with 5,6 , or 7 electrons in their outer shell often tend to gain additional electrons to achieve a full shell, thus becoming negative ions.
- Atoms gaining $2 / 3$ electrons become 2-/3- charge, e.g. $\mathrm{O}^{2-}, \mathrm{N}^{3-}$
- Atoms that already have a full outer shell, like the noble gases, are inherently stable and typically don't form ions.

Questions

Fill out the following electron shell diagrams for the following atoms and ions of each element. Fill out the symbol for the ion and

Lithium atom (Li)
Electron arrangement

Lithium ion (___)
Electron arrangement

Beryllium atom (Be)
Electron arrangement
\qquad

Boron atom (B)
Electron arrangement

Nitrogen atom (N)
Electron arrangement

Beryllium ion (___)
Electron arrangement
\qquad

Boron ion (\qquad
Electron arrangement

Nitrogen ion (
Electron arrangement

Oxygen atom (O)

Electron arrangement

Fluorine atom (F)
Electron arrangement
\qquad

Fluorine atom (S)
Electron arrangement

Oxygen ion (
Electron arrangement

Fluorine ion (
Electron arrangement

Fluorine ion (\qquad)
Electron arrangement
\qquad

Questions (electron arrangements of ions)

Complete the following table

Nuclide Notation	Number of protons	Mass Number	Number of neutrons	Number of electrons	Electron arrangement
${ }_{1}^{1} H^{+}$	1	1	0		
${ }_{2}^{4} \mathrm{He}$					
${ }_{3}^{7} L^{+}{ }^{+}$					
${ }_{7}^{14} N^{3-}$					
${ }_{8}^{16} O^{2-}$					
${ }_{9}^{19} F^{-}$					
${ }_{11}^{23} \mathrm{Na}^{+}$					
${ }_{12}^{24} \mathrm{Mg}^{2+}$					
${ }_{16}^{32} S^{2-}$					
${ }_{17}{ }^{\text {Cl }}{ }^{-}$					
${ }_{20}^{41} C^{2+}$					
${ }_{35}^{80} \mathrm{Br}^{-}$					

Do you notice pattern with the electron arrangement of ions?

Which group in the periodic table do ions have the same electron arrangements?
Explain why this is significant.
\qquad
\qquad

PHET Atom builder (laptop required - (google: PHET atom builder)

Follow the tasks below and tick the box once you have completed each task.

Part 1: Basic Atomic Structure

\ulcorner Task 1.1: Open the "Build an Atom" simulation.
Task 1.2: Drag 1 proton onto the nucleus. Note the element's name.
Task 1.3: Add 1 electron. Observe the atom's charge.
Task 1.4: Keep add protons up to 5 , noting the element's name after each addition.

Part 2: Neutrons and Isotopes

\ulcorner Task 2.1: Start with an atom having 3 protons and 3 electrons.
\square Task 2.2: Add 1 neutron. Note any changes in the atom's name or symbol.
\ulcorner Task 2.3: Continue adding neutrons up to 5 . Observe the atom's mass number.

Part 3: Ions

Task 3.1: Begin with a neutral helium atom (2 protons, 2 electrons).
Task 3.2: Remove 1 electron to form a cation. Note the charge.
\ulcorner Task 3.3: Add back 3 electrons to form an anion. Observe the charge.

Part 4: Challenge Tasks

Task 4.1: Create an atom with a mass number of 7 and $a+1$ charge. Identify the element.
Task 4.2: Construct a neutral carbon isotope. Determine its mass number.
\ulcorner Task 4.3: Build a negative ion of oxygen. Note its electron configuration.

Part 5: Periodic Table Exploration

\ulcorner Task 5.1: Navigate to the "Periodic Table" tab.
\square Task 5.2: Hover over elements to see their atomic details.
\ulcorner Task 5.3: Pick an element and replicate it in the "Build an Atom" section.

Part 6: Test Your Knowledge

Task 6.1: Click on the "Game" tab.
\ulcorner Task 6.2: Complete at least 5 challenges, building or identifying atoms as instructed.
Questions (challenge)

Isoelectronic refers to different atomic or ionic species that have the same number of electrons and hence the same electronic arrangement.

1. Which of the following pairs of ions are isoelectronic, meaning they have the same number of electrons?
a. Na^{+}and Mg^{2+}
b. O^{2-} and F^{-}
c. N^{3-} and O^{2-}
d. Ca^{2+} and Ar
2. Which of the following pairs of ions are isoelectronic?
a. K^{+}and Cl^{-}
b. S^{2-} and Cl^{-}
c. Mg^{2+} and Ne
d. Li^{+}and H^{-}
3. Which ion is not isoelectronic with Ne ?
a. Li^{+}
b. O^{2-}
c. F^{-}
d. Mg^{2+}
4. Which pair of ions do not have the same electron arrangement?
a. P^{3-} and S^{2-}
b. Al^{3+} and Ne
c. K^{+}and Ar
d. Ca^{2+} and Ne
5. Which ion is not isoelectronic with Ar ?
a. K^{+}
b. Cl^{-}
c. Ca^{2+}
d. O^{2-}

Date: \qquad

Atomic Structure - Summary

Summarise the atomic structure topic. You may make a flow chart, mind-map, bullet-points, outlines, or brief statements.

Extension questions:

Chemcord purple books (N5): page 18-20
Hodder and Gibson (N5): page 11 - 16
SCHOLAR

Topic	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
Rate of	$\mathrm{MC}-$	$\mathrm{MC}-3$	$\mathrm{MC}-2$	$\mathrm{MC}-2,5$	$\mathrm{MC}-3,4,5,7$
reaction	$1,2,3,7$	$\mathrm{~S} 2-1(\mathrm{a})$,	$\mathrm{S} 2-1$	$\mathrm{~S} 2-6$	$\mathrm{~S} 2-1(\mathrm{~b})$
	$\mathrm{S} 2-$	$1(\mathrm{~b})$			

MC = multiple choice section, S2 = section 2, the written section.

