# **Kirkcaldy High School**



Chemistry

# Higher

Unit 1 - Chemical Changes and

# Structure

**TUTORIAL ANSWERS** 

# (a) Periodicity 1. B 2. C 3. D 4. D 5. C 6. C 7. D 8. C 9. C 10. B 11. C 12. A 13. C 14. C 15. B 16. A 17. D 18. C 19. B 20. A 21. D 22. D 23. (a) Increased nuclear shielding (b) $Cl(g) + e^{-} \rightarrow Cl^{-}(g)$ 24. (a) Electronegativity (b) Decreases (c) K has more occupied energy levels so nuclear shielding is increased. 25. (a) Boron and Carbon (b) Increased nuclear charge

26.

#### (a)

- (i) Increased nuclear charge
- (ii)  $Cl(g) \rightarrow Cl^{+}(g) + e^{-1}$

(b) They do not form bonds - electronegativity is attraction to electrons in a bond

### 27.

- (a) Electronegativity increases
- (b) Silicon
- (c) The fourth electron is removed from a full shell

#### 28.

#### (a)

- (i)  $Na(g) \rightarrow Na^{+}(g) + e^{-}$
- (ii) 1<sup>st</sup> ionisation energy refers to removal of 1 electron, so Na goes from 2,8,1 to 2,8. Shielding from the inner electron shells reduces the attraction to the single outer electron. The electron removed from the 2<sup>nd</sup> shell is less shielded and requires breaking a full shell.

#### (b) 2.54 g

#### 29.

- (a) Aluminium metallic bonding
   Silicon network structure
   Phosphorus covalent bonding
   Sulfur molecular structure
- (b) Increased nuclear charge pulls electrons closer to the nucleus.

- (a)  $K(g) \rightarrow K^{+}(g) + e^{-}$
- (b) K has more shells than Cl so outer electron of K is more shielded. Removal of 1 electron from K leaves a full outer shell.

```
31.
```

```
(a) Fullerene - moleculecarbon, diamond graphite - networks
```

(b)

```
(i) 0.004 mol
```

(ii) 0.47 g

### 32.

```
(a) Na(g) \rightarrow Na^{+}(g) + e^{-g}
```

(b) 6888 kJmol<sup>-1</sup>

```
(c) Covalent (network)
```

### 33.

- (d) Increased nuclear charge in Cl pulls electrons closer to the nucleus
- (e) Si<sup>4+</sup> has 2 electron shells,  $P^{3-}$  has 3.
- 34. Potassium has 4 electron shells, chlorine has 3.
- 35. Lithium metallic bonding
  - Boron covalent bonding, network structure
  - Nitrogen molecular structure

## 36.

(a) Electronegativity

(b) Increases

(c) The electron being removed from Na<sup>+</sup> is in a full shell and is closer to the nucleus that the electron removed from Na.

- (a) Monoatomic gas: He/Ne/Ar/Kr/Xe/Rn
   Covalent network solid: C, Si, B
   Discrete covalent molecular gas: H, N, O, F, Cl
   Discrete covalent molecular solid: C<sub>60</sub>, P, S, I
- (b) They have delocalised electrons



(b) London dispersion forces between layers make the graphite soft

39. D

## (b) Structure and bonding 1. C 2. B 3. D 4. C 5. C 6. A 7. B 8. A 9. D 10. B 11. B 12. C 13. B 14. B 15. C 16. A 17. D 18. D 19. C 20. D 21. A 22. C 23. C 24. B 25. A 26. C 27. H electronegativity = 2.2, F electronegativity = 4.0 H-F has a polar covalent bond. The attraction between $\delta$ + H and $\delta$ - F leads to Permanent Dipole-Permanent Dipole attractions. F-F has no polarity in molecule so only forces are London Dispersion Forces (arising from temporary dipoles). These are weaker than Permanent Dipole-Permanent Dipole so boiling point is lower.

| 28. Water has very polar molecules resulting in Hydrogen Bonding.                                   |
|-----------------------------------------------------------------------------------------------------|
| This means that the water is a polar solvent and will dissolve other polar molecules readily.       |
| $CHCl_3$ is a polar molecule die to C-Cl polarity and lack of symmetry so has Permanent Dipole-     |
| Permanent Dipole interactions                                                                       |
| CCl₄ is symmetrical so only has London Dispersion Forces - therefore non-polar.                     |
|                                                                                                     |
| 29. Boiling point is determined by strength of intermolecular forces. Ethane-1,2-diol as 2 hydroxyl |
| groups so exhibits more hydrogen bonding forces that propan-1-ol.                                   |
| 30. C                                                                                               |
| 31. H electronegativity = 2.2, S electronegativity = 2.5                                            |
| Very small difference is electronegativity leads to very weak Permanent Dipole-Permanent Dipole     |
| attractions.                                                                                        |
| Small number of electrons means weak London Dispersion Forces.                                      |
| Stronger intermolecular forces would increase boiling and melting points.                           |
| 37                                                                                                  |
|                                                                                                     |
| (c) London Dispersion Forces                                                                        |
| (d) H-F contains Hydrogen Bonding so molecules are bound closely together.                          |
|                                                                                                     |
| 33.                                                                                                 |
| (a) E                                                                                               |
| (b) A, B                                                                                            |
|                                                                                                     |
| 34. Hexane is non-polar due to symmetry so only has weak London Dispersion Forces.                  |
| Vinyl Acetate has a polar C=O group so has Permanent Dipole-Permanent Dipole attractions (stronger) |
| 35                                                                                                  |
|                                                                                                     |
| (a) Hydrogen Bonding                                                                                |
| (b)                                                                                                 |
| _H                                                                                                  |
| H0                                                                                                  |
|                                                                                                     |
| Ĭ                                                                                                   |
|                                                                                                     |
| ОН                                                                                                  |
| H                                                                                                   |
| (c) Hydrocarbon GFM close to 34. Ethane C₂H6.                                                       |

- 36.
- (a) Group 8/0/18 OR Noble Gases
- (b) C electronegativity = 2.5, S electronegativity = 2.5.Same electronegativity pure covalent
- (c) Increased shielding down the group so weaker attraction between nucleus and outer electron. Therefore the electronegativity decreases down the group.
- 37. C electronegativity = 2.5, H electronegativity = 2.2, N electronegativity = 3.0. Difference in electronegativity means that electrons are pulled more closely to N than C in bond. This causes  $\delta^{-}$  N and  $\delta^{+}$  C permanent dipole so there are Permanent Dipole-Permanent Dipole attractions between the molecules.

#### 38.

(a) Bigger molecules, more electrons, stronger London Dispersion Forces between molecules

(b) Hydrogen Bonding

- (a) δ<sup>+</sup> H-Br δ<sup>-</sup>
- (b) Permanent Dipole-Permanent Dipole attractions
- (c) H electronegativity = 2.2, I electronegativity = 2.6, Br electronegativity = 2.8.
  - There is less of an electronegativity difference between H and I than between H and Br so the dipole on the H-I molecule is smaller than the dipole on H-Br. This leads to weaker Permanent Dipole-Permanent Dipole attractions between the H-I molecules than between the H-Br molecules.

# (c) Oxidising and Reducing Agents 1. D 2. D 3. A 4. C 5. A 6. D 7. A 8. D 9. D 10. B 11. C 12. C 13. A 14. D 15. A 16. C 17. A 18. D 19. (a) (i) $C_6H_8O + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2e^-$ (ii) Pipette - rinse with fruit drink Burette - rinse with iodine Conical flask - rinse with water (iii)Allow several repeats on same carton - calculate average. (iv)0.2794 g (b) 80 %

```
20.
     (a) I_2 + 2e^- \rightarrow 2I^-
     (b)
          (i) Sample 1 is rough titre OR
               Sample 1 is not concordant with others
          (ii) 0.1815 mol l<sup>-1</sup>
21. PbO_2(s) + SO_4^{2-} + 2H^+ \rightarrow PbSO_4(s) + 2H_2O
22. NO_3^{-}(aq) + 4H^+ + 3e^- \rightarrow NO(g) + 2H_2O
23. C_6H_8O_6(aq) \rightarrow C_6H_6O_6 + 2H^+ + 2e^-
24.
     (a) H_2O_2(aq) + 2H^+ + 2I^- \rightarrow 2H_2O + I_2
     (b) 0.038 g
25.
     (a) 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^{-1}
     (b) Starch
     (c) 0.0126 moles
```

- (a)  $(COOH)_2 \rightarrow 2CO_2 + 2H^+ + 2e^-$
- (b) Permanganate changes colour/decolourises OR It is self indicating
  - (i) Rough titre OR Not concordant
- (c) 0.054 mol

```
27. 3.3 x 10<sup>-3</sup> mol l<sup>-1</sup>
```

```
    (a) Use of pipette/burette
    Meniscus - bottom of graduations
    Pre-rise glassware
    Slow addition (dropwise) near end point
```

(b)

28.

(i) 0.0324 mol l<sup>-1</sup> (ii) 2e<sup>-</sup> + 2H<sup>+</sup> + NO<sub>2</sub><sup>-</sup>  $\rightarrow$  NO<sub>3</sub><sup>-</sup> + H<sub>2</sub>O

```
29. CH_3CH_2OH + O_2 \rightarrow H_2O + CH_3COOH
30. 1.47 x 10<sup>-3</sup> mol l<sup>-1</sup>
31. 2Cl^- + 2H_2O \rightarrow H_2 + 2OH^- + Cl_2
32. A
33.
```

(a) 3.65 x 10<sup>-3</sup> mol l<sup>-1</sup>

(b) Purple to colourless