1st Year Science

Homework Booklet

Kirkcaldy High School

Contents

Contents	1
Introduction to Science	3
Famous Scientist	3
Matter	4
Solids, Liquids and Gases in the world	4
Solids, Liquids and Gases - 1	5
Solids, Liquids and Gases - 2	7
Solids, Liquids and Gases - 3	9
Diffusion and The Water Cycle	.11
Summary	.13
Traffic Lights	.15
Living Things	. 16
Frog Habitats	.16
Classification	17
Habitats, Food Chains and Keys	.18
Summary	20
Traffic Lights	.23
Heat and Energy	. 24
Energy and Cooking	.24
Heat and Energy 1	.25
Heat and Energy 2	.27
Chemicals	. 29
The Alchemists	.29
Summary	.30
Traffic Lights	.32
The Periodic Table	.33
Summary	.35
Traffic Lights	.37
Electricity	. 39
Discovery of Electricity	.39
Electrical Components	.40
Homework – Series and Parallel	.42

Summary	44
Traffic Lights	47
Cells and Reproduction	49
Unusual Reproduction	49
Cells	50
Pregnancy	52
Cells and Reproduction	54
Traffic Lights	57

Introduction to Science

Date Due _____

Famous Scientist

- 1. Create a poster on a famous Scottish scientist
 - Who is your scientist?
 - What is their date of birth?
 - Where were/are they from?
 - What are they famous for?
 - Why is their discovery important?

Make it bright, bold and colourful with some pictures!

NB. You are not allowed to make a poster about Alexander Graham Bell or John Logie Baird!

Matter

Date Due

Solids, Liquids and Gases in the world

- 1. Create a poster about solids liquids and gases
 - What are the differences between them?
 - Name one substance that is solid, one that is liquid and one that is a gas
 - Chose one of the following items or activities and write a paragraph about how solids, liquids and gases are important to it
 - o **A car**
 - o A fridge freezer
 - Cooking
 - o Ice hockey
 - Hot air ballooning
 - A mobile phone

Make it bright, bold and colourful with some pictures!

Solids, Liquids and Gases - 1

1. On the table tick the boxes that best describe the properties of solids, liquids and gases.

	Solids	Liquids	Gases
changes shape			
Doesn't change shape			
changes volume			
Doesn't change volume			

2. The diagrams below show different arrangements of particles.

Write below each diagram if it represents a solid, a liquid or a gas.

3. Coal is carried in lorries. Oil and gas are often transported by pipeline. Why is coal not transported in a pipe and oil not transported in a lorry?

Coal is a	sunstance a	ind oil is a	
substance.			

5. In a solid, the particles are closely packed and stuck together.Write a similar sentence to describe the particles in:a. a liquid			
In a liquid, the are loosely packed and free to around.			
b. a gas.			
In a gas, the are completely free to around. They are not together.			

6. Solids can be heavy or light, weak or strong, hard or soft. For each of the following sentences, choose one of these words to complete the sentence
a. Diamond is used to make rock-cutting drills because diamond is h_____

b. Aluminium is used to make the body of an aeroplane because aluminium is I_____

c. Steel is used to make the bars of a prison window because steel is s_____

Solids, Liquids and Gases - 2

 Use the idea of particles to explain why: a. you can squash a gas, but not a liquid or a solid 	
In a gas, the are far apart so these is a lot of them. For this reason, it is easy to gas. The particles in a or solid are packed together.	of space a
b. you can pour a liquid, but not a solid.	
The in a liquid are free to particles in a are fixed in position.	but the
2. Underline the correct words to complete the sentences.	

a. Ice is rock/solid water. The gas that water forms when it evaporates is called water vapour/air.

b. A solid changes into a liquid at its melting point/boiling point.

c. A liquid changes into a gas at its melting point/boiling point.

3. Underline the correct word to show whether the following statements are true or false.

a. Pure water freezes at 0 °C.

true/false

b. All substances boil at 100 °C.

true/false

c. Mixtures melt and boil at one temperature. true/false

d. Evaporation and melting are reversible. true/false

e. When salt is added to water, it makes the freezing point lower.

true/false

Solids, Liquids and Gases - 3

1. Complete the following sentence.

When a stink bomb is let off, the smell gradually fills the room. This process is called d______.

/	2. Complete the following sentences. Use the words below to fill the gaps.
	closely packed widely spaced stuck together move freely
	a. The particles in a solid are c p and st
	 b. The particles in a liquid are cp and can mf
	c. The particles in a gas are ws and can mf
	d. Draw a diagram to show the particles in a solid.
	. /

4. Complete the following sentences. Use the words below to fill the gaps.

faster state gain melts forces expands liquid larger

When a solid substance is heated, the particles g______ energy and they move f______. The spaces between the particles get I______ and the substance e______. If the solid is heated to a high enough temperature, the movement of the particles overcomes the f______ of attraction between them and the solid m______ to form a I______. This change is called a change of s______.

5. Some thermometers contain liquid mercury. Mercury freezes at -39 °C. Some thermometers conatain ethanol, which freezes at -80 °C. At the South Pole, the temperature is often below -50 °C. Which type of thermometer, mercury or ethanol, could be used at the South Pole? Explain your answer

A ______ thermometer would be used at the South ______ as the temperature there would ______ethanol

Diffusion and The Water Cycle

1. Sort these things into solid, liquid or gas: carbon dioxide, brick, water, oil, oxygen, methane, table, plasticine, hair gel, toast, butter.

Solid	Liquid	Gas	

2. Why is the total volume of 100 cm³ of sand and 100 cm³ of peas usually less that 200 cm³?

The _____ fills the gaps between the _____ so the total volume is _____ than we would expect.

3. Why can we smell perfume from the other side of the room? Be sure to use the word "diffuse in your answer!

The particles of the perfume ______ through the room to your nose

4. What is the story of a drop of water? Be sure to use the words "condensation", "evaporation" and "precipitation" in your answer!

Water evaporates from seas, rivers, ______ and oceans to from clouds. _____ water then condenses and falls ______ to the earth as rain, a ______ of precipitation. It then runs back ____ the seas, rivers, lakes and _____ so the process can start

Summary

Differences Between S	Solids	Liquids	and	Gases
-----------------------	--------	---------	-----	-------

	Change Volume?	Change shape?	Flow?
Solid	No	No	No
Liquid	No	Yes	Yes
Gas	Yes	Yes	Yes

Small Particles and Big Particles

When **small particles** and **big particles** are **mixed** together, the **small particles fill in the gaps between the big particles** to give a smaller volume. *e.g.* Peas and sand or sugar and water.

Diffusion

Particles can **move** through a **liquid or a gas** (and sometimes even a solid!) by themselves. This is called **diffusion** and is the reason you can smell perfume from the other side of the room!

Brownian Motion

Particles such as smoke will move around by themselves due to the movement of air particles around them.

Changes of State

You can make a solid into a liquid by **melting** it. You can make a liquid into a solid by **freezing** it. You can make a liquid into a gas by **evaporating** it If you want a liquid to become a gas quickly, you can **boil** it. You can make a gas into a liquid by **condensing** it.

The Water Cycle

Liquid water **evaporates** from lakes, rivers, seas and oceans to become **water vapour**. The water vapour then **condenses** back to **liquid water** and falls as rain and the whole process starts again!

Separating Two Solids Mixed Together

If you have a **mixture of two solids** and one is magnetic, you can **separate them** with a magnet.

Separating a Solid from a Liquid

You can separate a **solid** from a **liquid** by **filtration**.

Separating a Dissolved Solid from a Liquid

You can separate a **solid** which has been **dissolved in a liquid** by **evaporation**. The **solid/gas** dissolved is called the **solute**. The **liquid** is called the **solution**.

Traffic Lights

Can solids, liquids and gases change their shapes?	\bigcirc
Can solids, liquids and gases change their volumes?	\bigcirc
Can solids, liquids and gases flow?	\bigcirc
What happens when small particles and big particles mix together?	\bigcirc
What is the name given to the tiny particles that make everything?	\bigcirc
What is the name given to the process when particles move through a liquid or a gas?	\bigcirc
What is the name given to the process where a solid becomes a liquid?	\bigcirc
What is the name given to the process where a liquid becomes a gas?	\bigcirc
What is the name given to the process where a gas becomes a liquid?	\bigcirc
What is the name given to the process where a liquid becomes a solid?	\bigcirc
How can you separate a mixture of iron and sulphur?	\bigcirc
What is the story of a droplet of water?	\bigcirc
Why do smoke particles in a sealed box move around?	\bigcirc
How could you separate sand from seawater?	\bigcirc
How could you separate salt from water?	\bigcirc

Living Things

Date Due

Frog Habitats

1. Mummy and daddy frog have got some spare space. All their tadpoles have grown up and hopped off to find homes of their own. They want to rent out their space to frogs that are looking for a new home. Make an advert for them.

- What is the location?
- How will they get their food?
- How will they be protected?
- Where will the tadpoles grow up?
- What does it cost?

Make it bright, bold and colourful with some pictures!

Classification

Classify the following into "plants" and "animals"

If they're "animals" classify them as "vertebrates" (have a spine) or "invertebrates" (don't have a spine).

Lion, Cabbage, Ant, Bee, Sunflower, Eagle, Cow, Sheep, Oak tree, Lobster, Rose, Goldfish, Cat, Apple, Sea cucumber, Dog, Mouse, Tiger, Beetroot, Monkey, Mushroom, Woodlouse, Sea anemone, Spider, Jellyfish, Shark, Human, Chicken, Koala

Animals		Plants
Vertebrates	Invertebrates	

Habitats, Food Chains and Keys

1. Write down the k find	ind of habita	at where you would	
A fox		-	
A polar bear		-	
A sheep			
A camel			
A lion			
2. Use these living the pondweed, snake, ear	nings to mak agle	e a food chain: frog,	
		_	
	\checkmark		
	\checkmark		
	\downarrow	_	
		_	

Summary

Classification

Biologists have **classified** living things into **groups**. Living organisms which share similarities are put into the same group.

Mammal Fish Reptiles Birds Amphibia

Plants make their own food using the sun's energy. **Vertebrates** all have a **backbone** (spine). The **5 vertebrate groups** can be split up according to their body coverings:

- Mammals have hair
- Reptiles have dry skins
- Amphibians have soft moist skin
- Birds have feathers
- Fish have wet scales

Habitats

The **places that animals and plants live** in are called their **habitats**. For example the habitat of lions, giraffes and zebra would be the African grassland.

Food Chains

We can link the organisms in a habitat using a food chain.

The **arrows** between the organisms in the food chain shows the **direction of the energy flow**. The energy comes from the sun and is converted into chemical energy by green plants by photosynthesis. Lots of food chains can be **joined together** to make a **food web**.

Measuring Abundance

We can investigate the kinds of living things in habitats around the school grounds. **Quadrats** can be used to **sample the plant life** in a habitat. A quadrat is a square put on the ground. The **number of squares** with a particular plant in are counted. The result is the **abundance** of that plant

Variation

Although humans are members of the same species they are all different – they show **variation**. Some ways in which humans differ from one another are height, weight, eye colour and hair colour. Variation can be caused by two factors:

- Environmental variation differences caused by our environment *e.g.* scars, hair dye, diet etc.
- Inherited variation— differences passed on from our parents in our DNA *e.g.* eye colour, skin colour etc.

There are two different types of variation:

- Continuous variation measured on a scale e.g. height, weight
- Discontinuous variation separated into groups e.g. eye colour, tongue rolling.

DNA

DNA is the molecule that makes us unique. It determines our eye colour, hair colour etc.

Adaptions

All living things are **adapted** to live in their habitats. Polar bears live on the polar ice. They have thick, white fur to keep them warm and to camouflage them. They have sharp teeth for tearing the meat of their prey. Flowering plants are scented and brightly coloured to attract insects to help their reproduction.

Evolution

The **adaptions** living things make help them survive. If a living thing has an adaption which helps it survive better than others, then the adaption is **more likely to be passed** on to the next generation. This is called "natural selection" or "survival of the fittest".

Traffic Lights

What groups do we put living things into?	\bigcirc
What groups do we put animals into?	\bigcirc
What groups do we put vertebrates into?	\bigcirc
How would you describe the place a living thing lives?	\bigcirc
How do we measure the abundance of a plant?	\bigcirc
How can we identify a living thing?	\bigcirc
What is a food chain?	\bigcirc
What is DNA?	\bigcirc
What adaptions have animals made to survive in their habitats?	\bigcirc
What is "variation"?	\bigcirc
What types of "variations" are there?	\bigcirc
Why do adaptions help living things survive?	\bigcirc
Why do some adaptions get passed on to the next generation and some don't?	\bigcirc

Heat and Energy

Date Due ____

Energy and Cooking

1. Create a poster about how heat energy is important in cooking

- Why do we need heat energy to cook?
- Include three sources of heat energy.
- Why do we need to cook certain foods?
- What would your life be different if there was no heat energy?

Make it bright, bold and colourful with some pictures!

Heat and Energy 1

/	1. Give an example of each type of energy.	
	Electrical Energy:	
	Potential Energy:	
	Kinetic Energy:	
	Sound Energy:	
	Light Energy:	
	Heat Energy:	

2. What is happening to the heat energy in a cup of tea when it gets cold?

How could this be avoided?.

3. Write down the energy changes happening in each device.

A battery powered torch

A hand bell

An iPod

A computer

A wind-up torch

4. During a power cut, Dr. Murray's parents once put a rug over the fridge. Why did they do this?

Heat and Energy 2

1. Complete the table using the types of energy: "heat", "light", "sound", "potential", "kinetic" and "chemical".

Energy change
Electrical to Light
Eto
S
Eto
S
Cto
к
Kto
P
Kto
S
Cto
К

2. Why does it take a long time to heat Kirkcaldy High School Hall but quite a short time to heat Dr. Murray's classroom?

The school hall has a _____ ceiling so it takes a long

_____ for the convection currents to ______ the heat energy around the ______. Dr. Murray's classroom has a lower ceiling.

3. Write down three household objects where heat has to travel through a solid substance. 4. What happens to the particles as heat travels through a solid substance? As heat ______ through a solid substance the vibrate. The heat moves through _____ solid substance as the atoms _____ into each other.

Chemicals

Date Due ____

The Alchemists

- 1. Create a poster about the Alchemists
 - Who were the alchemists?
 - What were they trying to do?
 - What were the "four elements"?
 - Who are today's alchemists?

Make it bright, bold and colourful with some pictures!

Summary

Types of Energy and energy changes

- Heat energy (*e.g.* from a radiator)
- Potential energy (e.g. an elastic band or someone on a mountain)
- Kinetic energy (*e.g.* a moving car)
- Sound energy (e.g. the school bell)
- Light energy (*e.g.* a torch)
- Chemical energy (e.g. petrol or diesel fuel)

The objects we use every convert between the different types of energy *e.g.* a car changes chemical energy into kinetic energy *e.g.* a torch changes electrical energy into light energy

Conduction and Convection

When atoms and molecules get hotter, they vibrate Heat energy travels through a solid when vibrating atoms and molecules bump into each other. This is called "conduction". Heat energy travels through a liquid or gas when hot particles move towards cold particles. This is called "convection".

Heat loss

We try to **stop heat energy moving** around by using **insulation** such as gloves, hats and coats. Houses tend to **lose** most energy from **doors and windows** as it is **difficult to insulate** these.

Colour and heat

White and silver objects tend to reflect (bounce off) heat energy. Black or dark object tend to absorb ("soak up") heat energy.

Saving Energy

We can **save energy** by doing things like turning electrical items off when we're not using them, walking instead of taking the car and not boiling a full kettle for a cup of tea. There are lots of other examples!

Renewable and non-renewable energy generation

If an energy generation method is **renewable**, that means it will **not run out**.

If an energy generation method is non-**renewable**, that means it will **run out**.

Renewable energy generation Methods

- Wind power (Using a wind turbine to change kinetic energy into electrical energy)
- Solar power (using a solar panel to change light energy into electrical energy)
- Biomass (using fuel made from plants to change chemical energy into electrical energy)
- Wave power (using a wave power generators to change kinetic energy into electrical energy)
- Hydro-electric power (using a dam to change potential energy into electrical energy)

Non-Renewable energy generation Methods

- Burning coal, oil and gas (using fossil fuels to change chemical energy into electrical energy)
- Nuclear power (using uranium mined from the ground to change nuclear energy into electrical energy)

Disadvantages of renewable and non-renewable energies

- Wind and solar power are dependant on the weather
- Coal oil and gas will eventually run out
- People worry about the safety of nuclear power
- Wind and solar power can be expensive

Traffic Lights

What are the different types of energy?	\bigcirc
What are the energy changes happening in the objects we use?	\bigcirc
How does heat travel through a solid?	
How does heat travel through a liquid or gas?	
How do we try to stop heat moving around?	
Where does a house lose the most heat?	
What difference does colour make to the way that heat travels around?	\bigcirc
How can we save energy?	
What are the disadvantages of wind a solar energy?	
What is the difference between renewable and non- renewable energy?	\bigcirc
What are the types of renewable energies?	
What are the types of non-renewable energies?	\bigcirc
What are the advantages and disadvantages of renewable and non-renewable energies?	\bigcirc

Atomic no.

Symbol Name Electron Arr.							
1 H Hydrogen						-	2 He Helium
3	4	5	6	7	8	9	10
Li	Be	B	C	N	O	F	Ne
Lithium	Beryllium	Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
Sodium	Magnesium	Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	31	32	33	34	35	36
K	Ca	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	49	50	51	52	53	54
Rb	Sr	In	Sn	Sb	Te	I	Xe
Rubidium	Strontium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
55	56	81	82	83	84	85	86
Cs	Ba	Ti	Pb	Bi	Po	At	Rn
Caesium	Barium	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87	88	113	114	115	116	117	118
Fr	Ra	Uut	Fl	Uup	Lv	Uus	Uuo
Francium	Radium	Ununtrium	Flerovium	Ununpentium	Livermorium	Ununseptium	Ununoctium

The Periodic Table

1. Complete the Periodic Table above with the group (column) numbers (1-8/0) and group (column) names ("alkali metals", "halogens" and "noble gases".

2. Write down the names of three metal elements (from the left hand side of the "staircase" line).

3. Write down the symbols of three non-metal elements (from the right hand side of the "staircase" line).

4. Write down the numbers of a halogen, alkali metal and a noble gas. Halogen –

Alkali metal –

Noble gas -

5. Write down the names of the alkali metals in order from most to least reactive.

6. Write down the name of a metal used in electrical wires.

Summary

Signs of a Chemical Reaction

The three **main signs** that a chemical reaction has happened are a **colour change**, **solid produced** (goes cloudy) or a **gas is given off** (fizzing/bubbles).

Chemical Reactions and Energy

A chemical reaction often turns **chemical energy** into **light**, **sound** and **heat** energy.

Elements

The **elements** are the **simplest "building blocks"** that make up us, the earth and the universe. They are listed in the **Periodic Table**.

Metals and Non-Metals

You can mark the **metals** and the **non metals** by drawing a **staircase** down the periodic table (see over). **Metals conduct** electricity. Most **non-metals do not conduct** electricity **apart from carbon** which does.

Groups (columns) of elements

The elements are arranged in "families" or "groups" which are the columns in the Periodic Table. The have numbers from 1-8/0. Some of the families also have names.

Alkali Metals

The **alkali metals** are **group 1** in the Periodic Table. The **react violently with water** producing **hydrogen gas** and the **hydroxide** of the alkali metal. *e.g.* lithium + water \rightarrow lithium hydroxide

Noble Gases

The **noble gases** are group **8/0** of the Periodic Table. Most of the time, they **do not react with anything** which is why they are called "noble". They are often used in lights

Halogens

The **halogens** are **group 7** of the Periodic Table. They are quite reactive.

Compounds and Mixtures

A compound is more than one element joined together. In a mixture, the elements are not joined together. Compounds with only two elements in them get their names from the name of the two elements with "ide" at the end. If there is a metal, it is written first. If a compound name ends in "ate", then it contains oxygen. e.g. iron + oxygen \rightarrow iron oxide e.g. sulphur + chlorine \rightarrow sulphur chloride e.g. iron + carbon + oxygen \rightarrow iron carbonate

Writing down Chemical Reactions

A chemical reaction can be **written** with the **reactants** (things you start with) on the **left** and the **products** (things you end up with) on the **right** with an **arrow** pointing between them.

e.g. hydrogen + oxygen \rightarrow hydrogen oxide

Traffic Lights

What are the three signs that a chemical reaction hashappened?	\bigcirc
What types of energy can chemical energy be converted into?	\bigcirc
What is an element?	\bigcirc
How do elements get their names?	\bigcirc
Which elements are liquids and gases at room temperature?	\bigcirc
Which elements are metals and which are non-metals?	\bigcirc
How can we tell the difference between metals and non- metals?	\bigcirc
What is the number of each group (column) of elements?	\bigcirc
Which groups are the alkali metals, halogens and noble gases?	\bigcirc
What happens when alkali metals are added to water?	\bigcirc
What is the order of reactivity of the alkali metals (most to least reactive)?	\bigcirc
Why are the noble gases called "noble"?	\bigcirc
What is the difference between a compound and a mixture?	\bigcirc
How can we write down what has happened during a chemical reaction?	\bigcirc

20	٩	terbium	102	٩	bellium
6	E	·lium Yt	01	1d	slevium Nc
9	F	Thu	1(2	m Mende
68	Ъ	Erbium	100	Ē	Fermiur
67	우	Holmium	66	Es	Einsteinium
99	5	Dysprosium	86	უ	Californium
65	4 P	Terbium	26	Bk	Berkelium
64	Вd	Gadolinium	96	۳ C	Curium
63	Eu	Europium	56	Am	Americium
62	Sm	Samarium	94	Pu	Plutonium
61	Pm	Promethium	86	dN	Neptunium
60	PN	Neodymium	92	∍	Uranium
65 6	7	Praseodymiu m	91	Ра	Protactinium
58	ő	Cerium	06	f	Thorium
57	La	Lanthanum	89	Ac	Actinium

Electricity

Date Due

Discovery of Electricity

- 1. Create a poster about the Discovery of Electricity
 - How did the ancient peoples know about electricity?
 - Which scientists discovered electricity?
 - How did they discover it?
 - What were the first uses of electricity?
 - What do we use electricity for now?

Make it bright, bold and colourful with some pictures!

Electrical Components

1. Write down the name of an electrical device you could not live without. Why could you not live without this device? I could not live without my	
because	_
	_
2. Electricity likes to flow to the ground. What is static electricity?	
Static is electricity that flow to the	

3. Complete these circuits showing the currents. Remember that the currents in the bulbs should add up to the current in the cell.

Summary

Electrical Component Symbols

A "battery" is more than one cell joined together.

Series and Parallel

In **series** circuit, the components are joined in a **circle**. In a **parallel** circuit, the components are joined in a **chain/ladder**.

Switch

A switch is the opposite of a door. When it is **closed**, electricity will **flow through it**. When it is **open**, electricity will **not flow through it**.

Current and voltage

Electricity is carried by **electrons**. Electrons are **in the wire** even if there is no electricity flowing. The **cell is like a "pump"** that make the electrons flow.

Current is a bit like **how fast** the electrons flow. Current has the **symbol** "I" and is measured **in amps** which have the **symbol** "A". Current is measured "through" components.

Voltage is a bit like **how hard the cell "pumps"** the electrons. Voltage has the **symbol "ς"** and is measured **in volts** which also have the **symbol "V"**. **Voltage** is measured "across" components"

In a series circuit, the current is the same all round the circuit. In a **parallel** circuit, the current **splits along each branch**. The current at the cell is the total current.

In a **parallel** circuit, the **voltage is the same** across every component. In a **series** circuit, the voltage **splits across each component**. The voltage across the cell is the total voltage.

Resistance

A **resistor slows down the electrons** in the same way that a narrow corridor slows down Kirkcaldy High School students! Resistance has the symbol "R" and is measured in ohms which have the symbol " Ω ".

Traffic Lights

What is the difference between a cell and a battery?	\bigcirc
What is the electrical symbol for a cell?	\bigcirc
What is the electrical symbol for a bulb?	\bigcirc
What is the electrical symbol for a buzzer?	\bigcirc
What is the electrical symbol for a switch?	\bigcirc
What is the electrical symbol for an ameter?	\bigcirc
What is the electrical symbol for a voltmeter?	\bigcirc
What is the electrical symbol for a wire?	\bigcirc
What is the electrical symbol for a motor?	\bigcirc
What is the difference between a series and a parallel circuit?	\bigcirc
When does a switch let electricity through?	\bigcirc
How does electricity travel through a wire?	\bigcirc
What is current?	\bigcirc
What is the symbol for current?	\bigcirc
What unit is current measured in?	\bigcirc
What is voltage?	\bigcirc
What is the symbol for voltage?	\bigcirc
What unit is voltage measure in?	\bigcirc
How does current change in different parts of a series circuit?	\bigcirc
How does current change in different parts of a parallel	\bigcirc

circuit?	
How does voltage change in different parts of a series circuit?	\bigcirc
How does voltage change in different parts of a parallel circuit?	\bigcirc
What is resistance?	\bigcirc

Cells and Reproduction

Date Due

Unusual Reproduction

1. Create a poster about unusual methods of reproduction

- Chose three plants or animals (or a mixture!) that reproduce in unusual ways
- How does this plant or animal reproduce?
- In what way is this unusual?
- Why does the plant or animal use this method and not a "normal" method? ⁽¹⁾

Interesting examples might be: bedbugs, trout, barnacles, duck-billed platypus, venus fly trap.

Make it bright, bold and colourful with some pictures!

Cells

3. Complete the table

What is it for

Pregnancy

Just after fertilisati	l the baby on?
Z	
Between 5 days an	d 8 weeks after fertilisation?
E	
8-40 weeks after fe	ertilisation?
2. Why are there o can get pregnant?	nly three days a month in which a woman

/	3. Write down two ways in which humans reduce the chances of pregnancy (contraception). How do they work?	
	Method 1:	
	works by	
	Method 2:	
	works by	
、 、		

Part	What it is for
Vas deferens	Place where baby develops
Fallopian tube	Produces sperm
Cervix	Opening between vagina and uterus
Vagina	Produces fluid for the sperm to swim.
Testicles	Produces eggs
Ovaries	Produces fluid for the sperm to swim
Penis	Inserts into female
Prostate gland	Transports sperm
Uterus/womb	Receives sperm
Prostate Gland	Transports eggs

Cells and Reproduction

Microscopes

We can view small things using a **microscope**. The microscope has two **lenses** of different **magnifications**. The **overall magnification** is the two magnifications multiplied together. We often use a **dye** to help us see cells better.

Cells

Cells are the **building blocks** of all life. They can have different jobs such as muscles, neurons (brain cells) or sex cells for reproduction. Plant and animal cells are different.

Name	What is it for
Cell wall	Holds the cell together
Cell membrane	Controls what enters and leaves the
	cell.
Vacuole	Contains cell sap
Cytoplasm	Where chemical reactions occur.
Chloroplasts	Contains chlorophyll (green)
Nucleus	Stores DNA. Controls the cell

Parts of a flower

Name	What is it for
Anther	Produces pollen (male sex cell)
Petal	Attracts insects and other pollinators
Stamen	Provides support for the anther
Stigma	Traps pollen
Sepal	Protects the flower as a bud
Pistil/Style	Tube for pollen to travel through
Ovary	Produces eggs (female sex cell)

Pollen is **carried by wind or by insects** from the anther of one flower to the stigma of another. The pollen then forms a tube going down the pistil/style to reach an egg in the ovary. Once the egg has been **fertilised** (when the sex cells meet and combine), the ovary often becomes a fruit which we can eat!

Human Male and Female Reproductive System

Traffic Lights

-	_
How can we look at small things?	\bigcirc
How can we make cells easier to see under a microscope?	\bigcirc
How can we work out the total magnification of a microscope?	\bigcirc
What is a cell?	\bigcirc
What jobs can cells do?	\bigcirc
What are the parts of a plant cell?	\bigcirc
What are the parts of an animal cell?	\bigcirc
What are the parts of a cell for?	\bigcirc
What are the parts of a flower?	\bigcirc
What are the parts of a flower for?	\bigcirc
What is fertilisation?	\bigcirc
How does fertilisation happen in flowers?	\bigcirc
What is puberty?	\bigcirc
What are the parts of the human male and female reproductive systems?	\bigcirc
What is each part of the human reproductive system for?	\bigcirc
How does fertilisation happen in humans?	\bigcirc
Where does fertilisation happen in humans?	\bigcirc
What do we call the baby during pregnancy?	\bigcirc
How should a baby be born?	\bigcirc
How can we prevent pregnancy?	\bigcirc