3rd Year Chemistry

Homework Booklet

Kirkcaldy High School

Contents

Contents	1
Introduction	3
Discoveries in Chemistry	3
Dr. Murray's Boiled Eggs	4
Rates of Reaction	6
Concentration, Temperature and Calculating Rates	6
Catalysts and Particle Size	8
Atomic Structure and Bonding Related to Properties of Materials	10
Elements and compounds	10
Electrolysis, coloured ions and structures	13
Formulae and Reaction Quantities	15
Chemical Formulae	15
Chemical Formulae 2	17
Equations	19
Chemical Equations	21
Electron Arrangements and Relative Atomic Masses	23
Gram formula masses	25
Moles to Mass	27
Nuclide Notation, formulae and conduction	29
Ionic Formulae	31
Quantities from Equations	33
Acids and Bases	35
Acids and Bases	35
Reactions of Acids	37
Solution Calculations	39
Titrations	42
Titrations 2	44
Fuels	47
Fuels 1	47
Fuels 2	50
Fractions of Crude Oil – Pie Chart	52

Pollution and Acid Rain	53
Global Warming	55
Carbon Cycle	57
Alternative Fuels	59
Homologous Series	61
Alkanes and Alkenes 1	61
Alkanes and Alkenes 2	63
Alkanes and Alkenes 3	65
Alkenes and Bromine	68
Everyday Consumer Products	70
Energy from Fuels	71
Enthalpy of Combustion	71
Metals	74
Metals	74
Metals 2	76
Ores	78
Corrosion	80
Displacement and Equations	82
Properties of Plastics	84
Polymers	84
Fertilisers	86
Fertilisers	86

Introduction

Date Due _

Discoveries in Chemistry

1. Make a poster three important discoveries in Chemistry that have happened in the last 6 months...

- What was each discovery?
- Who made each discovery?
- Where were these discoveries made?
- Why is each discovery important?
- What effect might each discovery have on our lives?

Make it bright, bold and colourful!

Dr. Murray's Boiled Eggs

Over the last few weeks Dr. Murray has been trying to find the perfect boiling time for eggs. His data is in the table below.

Width of Egg	Perfect boiling time
/mm	/s
15	63
20	84
25	105
30	126
35	147
40	168
45	189

- Plot Dr. Murray's data as a graph. Graph paper is below.
- Dr. Murray has now bought a box of eggs that have a width of 17 mm. How long should he boil them for?

Unit 1

Chemical Changes and Structure

Rates of Reaction

Date Due _____

Concentration, Temperature and Calculating Rates

1. Why does increasing the concentration increase the rate of a chemical reaction?

2. Why does increasing the temperature increase the rate of a chemical reaction?

Catalysts and Particle Size

1. What is a catalyst? 2. Give three examples of catalysts used in everyday life (Maybe Google is your friend here!).

3. Why does decreasing particle size increase the rate of a chemical reaction?

4. What is an enzyme?

Atomic Structure and Bonding Related to Properties of Materials

Date Due

Elements and compounds

1. Write down the names of three elements which...

a) Have a different symbol to their name.

b) Are made by scientists.

c) Were discovered by French scientists.

d) Are named after a place.

2. What is the difference between atomic number and mass number (relative atomic mass) for an element?

3. What is the difference between an element and a compound?

4. What elements are contained in the following compounds? Sodium chloride:	g
Potassium nitride:	
Potassium nitrate:	
Magnesium sulphate:	

Electrolysis, coloured ions and structures.

Compound	Positive ion	Negative	Colour at	Colour at
	& colour	ion &	positive	negative
		colour	electrode	electrode
Cu(CrO ₄) ₂	Cu ²⁺	CrO ₄	Yellow	Blue
	blue	yellow		
KMnO ₄	K⁺	MnO ₄		
	colourless	purple		
NiCl ₂	Ni ²⁺	Cl		
	green	colourless		
$Co(MnO_4)_2$	Co ²⁺	MnO ₄		
	red	purple		
Na(Cr ₂ O ₇) ₂	Na [⁺]	Cr ₂ O ₇		
	colourless	orange		
Cu	Cu ²⁺	Br		
	blue	colourless		
Mn(CrO ₄) ₂	Mn ²⁺	CrO ₄		
	Pale pink	yellow		

2. What is the difference between a covalent network and a covalent molecule?

3. Complete these sentences.

I would expect Sodium _____ to dissolve in water because _____ chloride is ionic and most ionic dissolve in water.

I would ______ carbon dioxide not to dissolve ____ water because carbon dioxide is ______ and most covalent compounds ______ in water.

4. What do you think are the three most important things that you've learnt in Chemistry so far? Why?

Formulae and Reaction Quantities

Date Due ____

Chemical Formulae

lame	Formula
Sulphur tetrafluoride	SF₄
Dihydrogen oxide	
Platinum dichloride	
Tungsten hexachloride	
Dinitrogen pentoxide	
Boron trihydride	
Diboron hexahydride	
	FeCl ₆
	AgCl ₂
	P ₂ S ₃
	NI ₃
	CCl ₄
	NO
	B ₁₀ H ₁₄ ☺

lame	Formula
ulphur hydride	SH ₂
otassium chloride	
Aagnesum sulphide	
Carbon chloride	
latinum(II) chloride	
ron (II) oxide	
litrogen oxide	
otassium nitrate	
Aagnesium sulphate	
Calcium iodide	
odium carbonate	
Rubidium hydroxide	
Ruthenium(III) nitrate	
Ammonium chloride	

Chemical Formulae 2

you'll need the valency-corss-ove	r method!
Name	Formula
Phosphorus pentafluoride	PF₅
Calcium hydride	CaH ₂
Sodium Bromide	
Magnesium Bromide	
Silicon Oxide	
Silicon fluoride	
Barium nitride	
Gallium Arsenide	
Strontium Selenide	
Dinitrogen tetroxide	

valency of the element before it.	
Name	Formula
Iron(III) Oxide	Fe ₂ O ₃
Copper(II) Chloride	CuCl ₂
Manganese(II) Fluoride	
Palladium(II) phosphide	
Nitrogen triiodide	
Xenon hexafluoride	
Manganese(VII) Oxide	
Osmium tetroxide	
Cobalt(II) Chloride	
Hydrogen Oxide	
Carbon hydride	
Zinc(II) Bromide	
Silver(I) Oxide	

Equations.

1. Write and symbol word equation for each of these. Use a separate sheet if you need more space! "Cars are fitted with catalytic convertors that convert harmful gases to carbon dioxide and nitrogen. Carbon monoxide reacts with nitrogen dioxide on the catalyst surface. " Word:

Symbol

Plants are able to make glucose $(C_6H_{12}O_6)$ from carbon dioxide gas in a reaction called photosynthesis. The other reactant is water, taken in through the roots. Oxygen gas is also formed in the process. Energy from the Sun is required for the reaction. Word:

Symbol

2. Write and symbol word equation for each of these. Use a separate sheet if you need more space! "Magnesium burns in carbon dioxide gas. A black solid (carbon) and a white powder (magnesium oxide) are formed. "

Symbol

"In a car engine, petrol (C_8H_{18}) reacts with the oxygen of the air. Carbon dioxide and water are released into the air from the car exhaust system." Word:

Symbol

Chemical Equations

rbon ·	to produce Carbon dioxide	iron _ + _	and Iron
_ →	Carbon dioxide	_ + _	Iron
_ →	Carbon dioxide	- +	Iron
_	dioxide		
•			
\rightarrow	CO ₂	+	Fe
rine t	o produce r	nagn _	eisum
		_	
	rine t _ →	rine to produce r _ →	rine to produce magn _ →

Word:	+	→			
	_ ·	`		_	
Formula:					
	_ +	→		_	
Nitrogen hy iodide.	dride react	s with iod	ine to produ	uce nitro	gen
Word:					
	_ +	→		_	
Formula	_			_	
	_ +	→		_	
Caesium rea	acts with w	ater to pro	oduce caesi	um hydr	oxide and
hydrogen. Word:					
	_ +	→		_ +	
				_	
Formula:	+	→		+	
	·	`		_ ·	

Electron Arrangements and Relative Atomic Masses

2. How many protons, neutrons and electrons are in $\frac{12}{6}$ C

3. Why is the relative atomic mass of chlorine 35.5 amu and not 35 amu or 37 amu?

4. Calculate the gram formula mass. Magnesium Chloride (MgCl₂)

Iron(III) Chloride (FeCl₃)

Magnesium phosphide (Mg₃P₂)

Magnesium phosphate (Mg₃(PO₄)₂)

Gram formula masses

lame	Formula	GEM
Phosphorus	PF	31 x 1+
entafluoride		19 x 5
		=126 g
Calcium hydride	CaH ₂	
odium Bromide	NaBr	
Magnesium Bromide	MgBr ₂	
ilicon Oxide	Na ₂ O	
ilicon fluoride	NaF	

2. Work out the Gramn Formula Mass You will want to use p7 of the data booklet! http://www.sqa.org.uk/files_ccc/ChemistryDataBookle tSQPN5.pdf

Name	Formula	GFM
Iron(III) Oxide	Fe ₂ O ₃	56 x 2
		16 X 3
Copper(II) Chloride	CuCl ₂	=100 g
Manganese(II) Fluoride	MgF ₂	
Palladium(II) phosphide	Pd ₃ P ₂	
Nitrogen triiodide	NI ₃	
Xenon hexafluoride	XeF ₆	
Manganese(VII) Oxide	Mn ₂ O ₇	
Osmium tetroxide	OsO ₄	

Moles to Mass

Nuclide Notation, formulae and conduction.

1. Compl	ete the ta	ble.			
Element	Atomic number	Mass number	Number of protons	Number of neutrons	Numb of electro
11 5 ^{B³⁻}			•		8
26 12 Mg ²⁺					
28 14 Si ⁴⁻					
	34	74			36
	17			18	18
	84	209			86
	38	87			37

2. How do we know that $\frac{54}{25}$ Mn⁷⁺ has 25 protons, 29 neutrons and 18 electrons?

3. Carbon dioxide (CO₂) is a covalent molecular compound. Lithium chloride (LiCl) is an ionic network. What do the formulae of carbon dioxide and Lithium Chloride mean?

3. Why do ionic compounds only conduct electricity as liquids and solutions and covalent compound don't conduct electricity at all?

Ionic Formulae

_

Magnesium Chloride	2+ -		
	Mg Cl ₂		
odium Chloride			
Calcium bromide			
3arium sulphide			
Aluminium chloride			
otassium carbide			
in nitride			
.ead oxide			
Bismuth selenide			
ron(II) sulphide			

lame	Ionic Formula
Magnesium sulphate	Mg ²⁺ SO ₄ ²⁻
odium nitrate	
Calcium carbonate	
Barium sulphate	
Aluminium Nitrate	
Potassium carbonate	
lin nitrate	
ead hydroxide	
Bismuth sulphate	
ron(II) sulphate	

Quantities from Equations

Acids and Bases

Date Due _____

Acids and Bases

1. What is a base?

2. How can we tell the difference between acids and alkalis?

3. What happens to the pH of an acidic or alkaline solution as it is diluted?
4. How do we know that a solution of CO_2 will be acidic and a solution of MgO will be alkaline?

5. Name the salts of... Sodium hydroxide and hydrochloric acid

Magnesium hydroxide and nitric acid

Lithium hydroxide and sulphuric acid

Reactions of Acids

2. Write balanced word and formula equations to describe the following reactions Magnesium reacting with hydrochloric acid Word: Magnesium + Hydrochloric \rightarrow Magnesium + Hydr Chloride Acid Formula: Mg 2HCI MgCl₂ + \rightarrow + H₂ Sodium reacting with hydrochloric acid Word: Formula: Sodium oxide reacting with sulphuric acid Word: Formula: Iron(II) hydroxide reacting with Sulphuric acid Word: Formula:

Solution Calculations

1. Calculate the number of moles for a solution of concentration 0.1 mol l^{-1} and volume 30 cm³. 2. 3 moles of a substance is dissolved in 50 cm^3 of water. What is the concentration of the solution? 4. A solution of concentration 5 mol l⁻¹ has 0.2 moles of a substance dissolved in it. What is the volume of the solution?

5. Calculate the concentration of a solution which has a volume of 2000 cm³ where 3.2 moles of a substance has been dissolved in water.

2. 60 cm³ of 0.5 mol l⁻¹ magnesium hydroxide (Mg(OH)₂) neutralises 0.3 mol l⁻¹ hydrochloric acid. What volume of hydrochloric acid is neutralised?

3. 80 cm³ of calcium hydroxde (Ca(OH)₂) is neutralised by 40 cm³ of 0.4 mol l-1 nitric acid (HNO₃). What is the concentration of the calcium hydroxide

Titrations

For any titration experiment, you can use the formula:

$$\frac{C_1V_1}{n_1} = \frac{C_2V_2}{n_2}$$

- Where "1" and "2" refer to the acid and alkali
- C is concentration (in moles per litre, mol l⁻¹)
- V is volume (in litres, l)
- N is the number of H (acid) or OH (alkali) in the formula
- Remember to convert cm³ to litres....

1. 50 cm³ of 0.1 mol l⁻¹ sodium hydroxide (NaOH) neutralises 100 cm³ of hydrochloric acid. What is the concentration of the hydrochloric acid?

2. 60 cm³ of 0.5 mol l⁻¹ magnesium hydroxide (Mg(OH)₂) neutralises 0.3 mol l⁻¹ hydrochloric acid. What volume of hydrochloric acid is neutralised?

3. 80 cm³ of calcium hydroxde (Ca(OH)₂) is neutralised by 40 cm³ of 0.4 mol l-1 nitric acid (HNO₃). What is the concentration of the calcium hydroxide

1. 23 cm³ of potassium hydroxide (0.1 mol l⁻¹) is neutralised by 30 cm³ sulphuric acid. What is the concentration of the sulphuric acid?

2. Magnesium hydroxide (50 cm³) is neutralised by hydrochloric acid (45 cm³, 4 mol l⁻¹). What is the concentration of the hydrochloric acid?

3. A neutralisation reaction takes place between 8 mol l⁻¹ nitric acid and 6 l of 0.1 mol l⁻¹ sodium hydroxide. What volume of nitric acid was used?

4. Hydrochloric acid (7.3 mol l⁻¹) was neutralised by
30 cm³ lithium hydroxide until universal indicator turned green. The concentration of the lithium hydroxide was
0.2 mol l⁻¹. What volume of hydrochloric acid was used?

Unit 2

Nature's Chemistry

Fuels

Date Due _____

Fuels 1

A burner full of fuel was used to heat up a beaker of water. The temperature was measure every 10 seconds. The results are shown in the table below.

Time (s)	Temperature (°C)
0	28
10	35
20	41
30	48
40	57
50	64
60	73
70	78
80	82
90	85
100	87
110	95
120	100
130	99
140	100

Use the graph paper on the next page to draw a line graph of these results.

NB: Check your graph has axes, axis labels, units, scales, points and a "best fit" line!

Four fuels were used to heat up 4 beakers of water. They were allowed to heat for 2 minutes before a final temperature was measured in each beaker. The results are shown in the table below.

Fuel	Final Temperature	
	(°C)	
Ethanol	76	
Methanol	45	
Petrol	90	
Diesel	50	
Octane	85	
Methane	70	

Use the graph paper below to draw a bar graph of these results.

NB: Check your graph has axes, axis labels, units, a scale and bars.

Fuels 2

1. What is a fuel?

2. What are the three main uses for fuels?

3. What is a fossil fuel?

4. What are the three fossil fuels?

5.	How	can	we	use	fuels	to	make	electricity	?
----	-----	-----	----	-----	-------	----	------	-------------	---

6. What are the four things that are needed for fossil fuels to form?

Fractions of Crude Oil – Pie Chart

Use the data in the table to complete the pie chart for the uses of the fractions of crude oil

Use	% Required	No. of degrees of "segment" in pie chart
Tar	25	90
Aeroplane Fuel	20	72
Diesel	30	108
Petrol	20	72
Household Gas	5	18

Pollution and Acid Rain

1. Write down three sources of air pollution.

2. What are the three gases that make up most air pollution?

3. What effect does acid rain have on seas, oceans, rivers and lakes?

4.	Which gas is thought to be responsible for Global
W	arming?

5. Write down two effects of Global Warming.

6. Do you agree or disagree that Global Warming is happening? Why?

1

1. Which of the above statements (1 or 2) do you agree with most and why?

Carbon Cycle

and extra paper if you want!

Alternative Fuels

uel	Where it comes from/how it's made
thanol (alcohol)	
Methanol	
Biodiesel	
Hydrogen	

2. Complete the table showing the advantages/disadvantages of these alternative power sources. Use Google to look them up if you don't know about them!

Power source	Advantages	Disadvantages
Solar Power		Expensive
Wind Power	Good for windy places	
Wave Power		Not good for inland locations
Geothermal Power		Not available everywhere
Hydro- electric Power	Good for rural areas with lost of water	

Homologous Series

Date Due _____

Alkanes and Alkenes 1

Name	Number of
	carbons in
	the longest
	chain
Methane	1
Ethane	2
Propane	3
Butane	4
Pentane	5
Hexane	6
Heptane	7
Octane	8

1. Draw the structures of hexane and pentane. Remember that each carbon must have 4 bonds and that a double bond counts as 2!

Name	Number of	
	carbons in	
	the longest	
	chain	
Methene	1	
Ethene	2	
Propene	3	
Butene	4	
Pentene	5	
Hexene	6	
Heptene	7	
Octene	8	

2. Draw the structures of pent-1-ene and hept-2-ene. Remember that each carbon must have 4 bonds and that a double bond counts as 2!

Alkanes and Alkenes 2

1. What is a hydrocarbon?

2. Complete the tak	ple	
Formula	Hydrocarbon?	
C ₂ H ₆	Yes	
C ₆₀		
C ₆ H ₁₂ O ₆		
CH₅N		
H ₂		
CH ₄		

3. What information does a "full structural formula" tell us?

4. Complete the table (use a separate sheet if you need to!

Name	Full structural formula	Shortened Structural formula
Propane	H H H H I I H C C C - C - H I I I H H H	CH ₃ CH ₂ CH ₃
Ethane		
		CH ₄
	H H H H 	
Pentane		

Alkanes and Alkenes 3

1. What is the difference between an alkane and an alkene?

Hydrocarbon	Saturated or Unsaturated	General Formula
Alkane		
Alkene		
Cycloalkane		

3. How can we tell the difference between alkanes and alkenes?

4. Complete the table (use a separate sheet if you need to!

Name	Full structural formula	Shortened Structural formula
Propene	н н н с=с-с-н н н	CH ₂ CHCH ₃
Ethene	H C=C H H	
But-1-ene	H H H H C=C-C-C-H H H H	
But-2-ene		CH ₃ CHCHCH ₃
Pent-2-ene	н н н н н - С=С-СН н н н	

Alkenes and Bromine

Name	Number of carbons in	
	the longest	
	chain	
Methane	1	
Ethane	2	
Propane	3	
Butane	4	
Pentane	5	
Hexane	6	
Heptane	7	
Octane	8	

1. Draw the products of the reaction of bromine with the two alkanes above. Remember that each carbon must have 4 bonds! What colour change would you expect to see during the reaction?

2. Which of the following is an equation for a possible cracking reaction (there's more than one!)?

	· ·	
Reaction	ОК	Not OK
Octane → Butane + Butene		
Heptane → Hexene + Methane		
Propane → Ethane + Ethene		
Pentane → Propane + Ethene		
Octane → Heptane + Methane		
Propane → Methane + Ethene		
Pentane → Butene + Methane		

Everyday Consumer Products

Energy from Fuels

Date Due

Enthalpy of Combustion

1. Methanol, is burned and the heat energy given out increased the temperature of 100g of water from 22 °C to 32 °C. Calculate the heat energy released in the experiment.

2. Methane was burned and the energy given out raised the temperature of 200 cm³ of water from 18 °C to 28.6 °C. Calculate the heat energy released in the experiment.
3 Ethanol, was burned and the heat given out raised the temperature of 500 cm³ of water by 3.5°C. Calculate the heat energy released in the experiment.

4. Ethane was burned and the heat given out used to raise the temperature of 100 cm3 of water by 21 °C. Calculate the heat energy released in the experiment.

Unit 3

Chemistry in Society

Metals

Date Due _____

Metals

1. Give a use for each of these metal elements

2. Why do we use gold for jewellery because and titanium for artificial legs instead of using gold for artificial legs and titanium for jewellery?

Metals 2

Aetal Use	Important Property
Bridges	Strong
Cooking pans	
lectrical wires	
Bikes	
Planes	
Radiation Shielding	

2. What is the chemical formula for sodium oxide (hint – valency, cross over!)?

3. What is the word equation for the reaction of sodium with oxygen?

4. What is the word equation for the reaction of sodium with water?

5. What is the word equation for the reaction of sodium with hydrochloric acid?

Ores

1. Unreactive metals can be extracted from their ores by heating them, more reactive metals can be extracted from their ores by heating them with carbon and very reactive metals require electrolysis.

Complete the table showing how you would extract these metals from their ores.

Metal	Reactivity of metal	Extraction Method
Silver	Unreactive	
Sodium	Very reactive	
Copper	Quite reactive	
Iron	Quite reactive	
Potassium	Very reactive	

2.	What is a Blas	t Furnace used fo	r?	
	3. Write down reactions that	the word and eq happen in a Blast	uations for two Furnace.	
,	Word:			
-				
_				
,	Word:			
-				
_				

Corrosion

1. What is corrosion?

2. What is rusting?

3. Write down three ways that we can prevent metals corroding

4. Sometimes metals are galvanised to prevent corrosion. What metal is used in this process?

5. Cars rust (corrode) faster in the winter than the summer. Why is this?

Displacement and Equations

1. What is displacement?

2. If if a solid metal is higher in the electrochemical series than a metal in solution, displacement will occur. Using p10 of the data book at http://www.sqa.org.uk/files_ccc/ChemistryDataBookle tSQPN5.pdf, state whether a displacement reaction would occur for these pairs...

Solid Metal	Metal in	Displacement
	Solution	Occurs?
Magnesium	Copper	Yes
Copper	Magnesium	No
Magnesium	Sodium	
Silver	Zinc	
Zinc	Aluminium	
Calcium	Aluminium	
Aluminimu	Zinc	
Silver	Copper	
Magnesium	Zinc	

3. If you write down the equations for a displacement reaction, you must reverse the equation for the solid metal. Using p10 of the data book at http://www.sqa.org.uk/files ccc/ChemistryDataBookle tSQPN5.pdf, write down the equations for these reactions. Solid Magnesium metal added to copper solution \rightarrow Mg²⁺(aq) Mg(s) + 2e⁻ Cu²⁺⁽aq) + 2e Cu(s) Solid Aluminium metal added to copper solution \rightarrow Solid zinc metal added to aluminium solution \rightarrow Solid calcium metal added to zinc solution \rightarrow Solid iron metal added to copper solution \rightarrow

Properties of Plastics

Date Due _____

2. Draw the polymer made from the monomer shown above.

3. Draw the repeating unit for this polymer.

Fertilisers

Date Due _____

Fertilisers

1.	What are	the three	elements	most fertilisers	s contain?

2. Complete the table with the chemical formulae of these common fertilisers (maybe Google is your friend if you can't work it out!)

Ammonium nitrate	
Ammonium phosphate	
Ammonium sulfate	
Urea	
Potassium nitrate	

Why is each substance above a good fertiliser (hint: think about the elements they contain?

3. What are the problems with using fertilisers?

4. Why do we need to use fertilisers?