\qquad

Solution Calculations

1. Calculate the number of moles for a solution of concentration $0.1 \mathrm{moll}^{-1}$ and volume $30 \mathrm{~cm}^{3}$.
$\mathrm{n}=\mathrm{CV}=$ \qquad x \qquad $=$ moles
2. $\mathbf{3}$ moles of a substance is dissolved in $50 \mathrm{~cm}^{3}$ of water. What is the concentration of the solution?

$$
\mathrm{C}=\frac{\mathrm{n}}{\mathrm{~V}}=-=\ldots \mathrm{moll}^{-1}
$$

4. A solution of concentration $5 \mathrm{~mol}^{-1}$ has 0.2 moles of a substance dissolved in it. What is the volume of the solution?

$$
\mathrm{V}=\frac{\mathrm{n}}{\mathrm{C}}=\square=\ldots \text { litres }=\ldots \mathrm{cm}^{3}
$$

5. Calculate the concentration of a solution which has a volume of $2000 \mathrm{~cm}^{3}$ where 3.2 moles of a substance has been dissolved in water.

$$
\mathrm{C}=\frac{\mathrm{n}}{\mathrm{~V}}=-=\ldots \mathrm{moll}^{-1}
$$

6. Which has the greater concentration, a solution of 5 moles dissolved in $600 \mathrm{~cm}^{3}$ of water or a solution of 6 moles dissolved in $700 \mathrm{~cm}^{3}$ of water (hint - use $C=\frac{\boldsymbol{n}}{\boldsymbol{V}}$ for each solution and compare the answers)?
7. Which contains the greater number of moles, $40 \mathrm{~cm}^{3}$ of a $0.3 \mathrm{~mol} \mathrm{l}^{-1}$ solution or 2 litres of a $0.003 \mathrm{~mol} \mathrm{l}^{-1}$ solution (hint - use $n=C V$ for each solution and compare the answers)?
