

- A 1 mole of aluminium
- B 2.5 Moles of Oxygen gas
- C 0.5 moles of Lithium sulphate
- D 0.1 moles of ethane

- A 14g of Nitrogen gas
- B 84.5g of Magnesium carbonate
- C 400g of Copper (II) oxide
- D 321g of Iron (III) hydroxide

Concentration Calculations

n = c x v (Formula in data book)

- n = number of moles
- c = concentration (mol l⁻¹)
- v = volume (litres)

Be careful to make sure Volume is converted to Litres

Example – What is the concentration of a solution that contains 0.25 moles of Potassium hydroxide in 500cm3 of solution?

$$C = \frac{\mathbf{n}}{\mathbf{v}} = \frac{0.25}{0.5} = 0.5 \text{ mol } \mathrm{I}^{-1}$$

3 – Calculate the number of moles of substance in each of the following;

- A 250cm³ of 0.5 mol l⁻¹ Potasium nitrate solution
- B 5 litres of 0.1 mol l^{-1} Ammonium sulphate solution
- C 500cm3 of 0.2 mol I^{-1} Sulfuric acid solution

4 - What concentration of solution is obtained when we dissolve;

A – 0.1 mol of Sodium chloride in 100 cm³ of solution

B - 0.5 mol of Lithium fluoride in 1500cm³ of solution

C – 2.8g of Potassium hydroxide in 100cm³ of solution

Q	1a	1b	1c	1d	2a	2b	2c	2d	3a	3b	3c	4a	4b	4c
^	270	80g	550	2 a	05	1	5	3	0.125	0.5	0.1	1	0.3	0.5
A	27g	oug	JJg	зg	0.5	mol	mol	mol	mol	mol	mol	mol l ⁻¹	mol l ⁻¹	mol l ⁻¹

National 5 - Calculations from equations

Steps to take;

- 1 Write a balanced equation
- 2 Circle the chemicals you are interested in
- 3 Change the value you're given into moles
- 4 Write the mole ratio for the chemicals
- 5 Calculate the unknown number of moles
- 6 Calculate the unknown mass, volume etc.

Questions to try

1 - Calculate the mass of Oxygen required to burn 6g of Magnesium

2 – Calculate the mass of Mercury formed when 4.34g of Mercury (II) oxide completely decomposes to form its elements

3 – Calculate the mass of Iron formed when 480kg of Iron (III) oxide reacts with Carbon monoxide to produce Iron and Carbon dioxide.

Answers	1 – 4g	2 – 4g	3 – 336kg