Numeracy and Mathematics
 Programme \& Policy

A Numeracy and Mathematics programme has been drawn up to ensure progression of skills from Early to Second Level. By using the Significant Aspects of Learning, the Progression Framework, Lines of Progression and the guidance on Breadth, Challenge and Application in Numeracy and Mathematics, staff will plan learning, teaching and assessment using the Experiences and Outcomes.

How to use this programme:

1. Choose which significant aspect you wish to work on and a topic linked to this.
2. Identify which Experiences and Outcomes you will be covering through this topic. The Experiences and Outcomes which link to each topic have been bundled where appropriate, but may be adjusted for your topic if necessary.
3. Identify the correct level for your group of pupils and use the learning intentions and success criteria detailed below as a basis for planning activities incorporating breadth, challenge and application.

Significant aspects of learning in Numeracy and Mathematics

The Progression Framework for Numeracy and Mathematics (Appendix 1) shows the knowledge and understanding within a level and skills permeating all levels. These must be understood and supported by a range of assessment evidence to determine achievement of a level. The expectations for each Significant Aspect of Learning in Numeracy and Mathematics are outlined below:

1. Use knowledge and understanding of the number system, patterns and relationships

- Learners' ability to use their knowledge and understanding of the number system will provide the basis for all other learning in numeracy and mathematics.
- A sound understanding of place value, the concept of zero and its use as a place holder, underpins learners' ability to partition and to work confidently and flexibly with number, including fractions and decimal fractions. Confidence in mental agility will be central to ensuring learners are accurate in calculations.
- Learners' skills in, and application of, estimating and rounding should be a regular feature of learning. Progression in estimation should involve learners taking account of the impact of real life contexts and using this knowledge when communicating their understanding. For example, when solving word problems, such as those involving division, where the interpretation of the context is required to gain a reasonable answer.
- From early level, learners will develop an understanding of relationships between operations, including inverse processes, commutative, associative and distributive laws.
- The concept of wholes and parts, grouping and sharing will form the basis of understanding of number processes, fractions, decimal fractions and percentages including proportion.
- Numeracy and mathematics organisers/subdivisions, such as money, provide a context for learners to develop their knowledge and understanding of the number system.
- From early level, learners will be supported to think algebraically to provide a solid foundation for formal algebraic concepts. Learners' understanding of these algebraic concepts will be developed by investigating and exploring the relationships between operations. For example, inverse operations can be used to identify a missing number. Algebraic reasoning supports learners to identify, continue and extend a pattern. For example, when generalising a rule for sequences and using functions and creating pictorial representations.

2. Use knowledge and understanding of measurement and its application

- Learners' understanding of measurement and its application is supported by their ability to estimate, use number and number processes, fractions, decimal fractions and percentages.
- Through practical activities, learners will develop a conceptual understanding of measurement, relevant to their own experiences. For example, when using time management to organise everyday tasks or plan a journey. Learners will progress to the use of standardised units, their interrelationships and develop their ability to use measurement in unfamiliar contexts. For example, when calculating the surface area and volume of prisms and comparing their relative sizes.
- Learners will use measuring instruments with increasing accuracy. Within a context, they will choose the level of accuracy required and understand the impact of tolerance. For example, when exploring the importance of tolerance in measurement when manufacturing components.
- As learners progress, they will build an understanding of how formulae relates to measurement. They will establish algebraic formulae through investigative approaches, and progress to the use and manipulation of formulae.

3. Use knowledge and understanding of shape and space

- In developing an understanding of 2D shapes and 3D objects, learners will apply skills in number, measurement, patterns and relationships. Visualisation and spatial awareness are also developed through this significant aspect of learning. For example, creating a net from a representation of a 3D object then calculating the area of card required to build the net and using programmable toys or applications to explore properties of angles.
- Through experience, learners will develop mathematical language to classify shapes and objects and describe position and direction. Learners' development of the understanding of properties and relationships of 2D shapes and 3D objects, alongside that of angle, will allow them to interpret and calculate within complex mathematical diagrams. For example, using symmetry, rotation and transformation on a coordinate grid to create designs.

4. Research and evaluate data to assess risks and make informed choices

- Evaluating data to make informed choices involves extracting and interpreting information to draw valid, justified conclusions. When working with data in a variety of contexts, learners will apply the knowledge and skills from other aspects of numeracy and mathematics. For example, analysing statistical information relating to finances could provide opportunities to apply knowledge and understanding of fractions, decimal fractions and percentages.
- It is important that learners have the opportunity at all levels to experience and use technology to create and display data. Learners will have an increasing range of knowledge of different types of tables, charts and diagrams, be able to choose the most appropriate form of display and justify their choice Learners will gather data and create appropriate representations to communicate information. They will also assess the validity of data, consider its source and sample taken.
- Through the interpretation and analysis of increasingly complex information learners can use probability to assess risk and consider consequences to make informed decisions. For example, considering trends in weather records to predict the likelihood of rainfall.

5. Apply numeracy and mathematical skills

- It is important that learners develop numeracy and mathematical skills as they build their knowledge and understanding. As learners progress, they should demonstrate an increasing sophistication in their ability to:
- interpret questions
- select and communicate processes and solutions
- justify choice of strategy used
- link mathematical concepts
- use mathematical vocabulary and notation
- use mental agility
- reason algebraically
- determine the reasonableness of a solution

These skills should be evident across the other significant aspects of learning in numeracy and mathematics. Staff should actively promote the development of these skills and ensure they are embedded in planning for learning, teaching and assessment.

At all levels, learners should be encouraged to identify relevant strategies for carrying out a range of tasks, communicate their thinking in different ways and explain and justify their answers. Developing mathematical language and notation is vital to ensure learners are supported to become confident in sharing their ideas and are mathematically articulate.

As learners progress in their understanding, they should be able to identify and use the links between mathematical concepts which will enable the development of a range of flexible strategies for calculating mentally and the ability to manipulate numbers with fluency, accuracy and confidence.

At all stages, it is important to build on learners' algebraic thinking and reasoning skills. As learners progress, they should begin to use algebra in problems of increasing complexity and abstraction. Proficiency in interpreting questions will be evidenced by learners' ability to choose, apply, communicate and justify their strategies using appropriate notation and mathematical vocabulary.

Estimation and rounding should feature regularly in learning and teaching and go beyond the learning of a set of procedural rules. Learners should routinely use estimation and rounding to determine the reasonableness of their solutions or calculations.

Breadth, Challenge and Application in Mathematics

Breadth in numeracy and mathematics

Learners demonstrate breadth in numeracy and mathematics when they:

- work confidently with an increasing number of connected experiences and outcomes
- identify the mathematical ideas and concepts required to interpret questions
- use an increasing range of mathematical language and notation, formula and equations
- use an increasing range of mathematical tools.

Opportunities for breadth can be provided by planning a range of activities to bring together and use mathematical knowledge and understanding. For example, using money as a context for learning about number or using knowledge of decimal fractions within area and perimeter calculations.

Challenge in numeracy and mathematics

Learners are provided with challenge in numeracy and mathematics when they can:

- approach increased complexity of questions involving more steps and operations
- work with open ended questions and tasks
- use an extended range of mathematical knowledge in tasks
- interpret increasingly complex numerical information and use this to draw conclusions, assess risk, make reasoned evaluations and informed decisions
- communicate understanding by articulating ideas, approaches and processes with increasing clarity, both orally and in written form

Challenge can be provided through planning an appropriate range of opportunities within tasks and activities. These tasks and activities should increase in complexity and require a greater number of processes to complete them. For example, learners sorting a range shapes and objects using their own criteria or working out the cost and risks of various forms of loans and justifying choices. Using open ended tasks allows learners the opportunity to clearly explain their approach to the question.

Application in numeracy and mathematics

Learners demonstrate application of their numeracy and mathematics when they:

- make connections and apply knowledge, understanding and skills across the numeracy and mathematics experiences and outcomes
- use numeracy and mathematical skills in other curricular areas
- understand and explain how numeracy and mathematics impacts on the world of learning, life and work

Learners should be provided with opportunities to use a wide range of mathematical skills to experience tasks in new and unfamiliar contexts. Learners should also have planned opportunities to use their mathematical skills in other curriculum areas. For example, designing and creating a new board game or working out the electrical consumption of a house and calculating the most effective way to save money, given a variety of options.

Development of Skills

In the Numeracy and Mathematics Principles and Practice paper, it is stated that:
"From the early years through to the senior stages, children and young people will demonstrate progress in their skills in interpreting and analysing information, simplifying and solving problems, assessing risk and making informed choices. They will also show evidence of progress through their skills in collaborating and working independently as they observe, explore, experiment with and investigate mathematical problems.

The experiences and outcomes encourage learning and teaching approaches that challenge and stimulate children and young people and promote their enjoyment of mathematics. To achieve this, teachers will use a skilful mix of approaches, including:

- planned active learning which provides opportunities to observe, explore, investigate, experiment, play, discuss and reflect
- modelling and scaffolding the development of mathematical thinking skills
- learning collaboratively and independently
- opportunities for discussion, communication and explanation of thinking
- developing mental agility
- using relevant contexts and experiences, familiar to young people
- making links across the curriculum to show how mathematical concepts are applied in a wide range of contexts, such as those provided by science and social studies
- using technology in appropriate and effective ways
- building on the principles of Assessment is for Learning, ensuring that young people understand the purpose and relevance of what they are learning
- developing problem-solving capabilities and critical thinking skills.

Mathematics is at its most powerful when the knowledge and understanding that have been developed are used to solve problems. Problem solving will be at the heart of all our learning and teaching. We should regularly encourage children and young people to explore different options: 'what would happen if...?' is the fundamental question for teachers and learners to ask as mathematical thinking develops."

The following programme takes all of these principles into account and provides a clear, coherent path of progression across levels of Numeracy and Mathematics. The table below shows each area of Numeracy and Mathematics and the expectations within and across levels. This Experiences and Outcomes have then been matched to each of the topics and areas to be covered within Numeracy and Mathematics, in order to achieve the Significant Aspects of Learning at each level.

The three main areas of Numeracy and Mathematics, as highlighted in the Principles and Practice paper, have been colour-coded:

- Number, Money and Measure
- Shape, Position and Movement
- Information Handling

Monitoring, Tracking \& Assessment:

Teachers from similar stages plan together and meet throughout the year to discuss learning and teaching strategies. There are transition processes in place between Nursery and P1, and also between stages. This includes a formal meeting between teachers and the completion of a hand-on sheet. This informs teachers of levels achieved, work covered and next steps. This information is used for the next stage in planning. Assessment is carried out through: teacher observations; check-ups; self and peer assessment; formal assessments (PiMs). Moderation occurs through specific moderation topics, as part of LQAG work, and ongoing moderation discussions where standards are shared and agreed.

Numeracy and Mathematics Programme - Sgoil nan Loch

Learning Statements (From Lines of Progression Framework)

	- Sort according to shape - Recognise properties	- Know properties of shapes	- Extend the range of 2D shapes
		- Extend understanding of shape	- Extend knowledge of shapes
	- Name triangle, circle, square and rectangle	- Develop understanding of properties of shape through tiling and tessellation - Sketch/Draw 2D shapes	- Continue to extend the range of shapes and properties
	- Sort according to shape	- Identify and describe 3D shapes, including prisms and pyramids.	- Extend understanding of 3D shape - Use and create nets of 3D shapes
		- Link properties of 2 D shapes to faces of 3D shapes	- Extend the range of 3D shapes
	- Name cube, cuboid, cone, sphere, cylinder	- Recognise properties of 3D shapes - vertices, corners, faces	- Extend knowledge of properties of 3D shapes
	- Use simple directions to describe positions- forwards and backwards	- Know quarter, half, full turns	- Identify acute, obtuse, straight and reflex angles - Name the 8 compass rose, use three figure bearings
		- Clockwise and anti-clockwise	- Name angles using 3 capital letters - Measure and draw angles
	- Use simple directions, including left and right, to describe positions	- Know that 90 degrees is a right angle and a quarter turn - Know the compass points are North, South, East and West - Describe simple journeys using NSEW, turns and clockwise/antclockwise	- Measure and draw 3 figure compass bearings - Draw triangles given angles and sides - Know that scale is used to produce maps, plans - Know that the sum of 3 angles in a triangle is 180 .
	- Understand what symmetrical means	- Identify lines of symmetry in 2D shapes by folding and draw one line of symmetry	- Identify lines of symmetry of irregular shapes, drawn on square grids
		- Identify symmetrical patterns and shapes in the environment	- Identify and draw up to four lines of symmetry
	- Create symmetrical pictures and patterns	- Complete a shape to make it symmetrical	- Complete and create symmetrical shapes with vertical, horizontal and diagonal lines of symmetry - Recognise shapes and designs with rotational symmetry
	- Describe where objects are and place objects using language of position	- Understand the purpose of a grid and use grid references to describe positions in the grid - Create a grid and give instructions of how to use Ongoing across level, with more complex activities and grid systems.	- Interpret a co-ordinate system to locate and plot a point on a grid
			- Apply knowledge of grid systems to real-life scenarios, e.g. maps, atlases
	- Use the language of direction to describe and direct		

Early Level	Experiences \& Outcomes Covered
	BUNDLE E1 I am developing a sense of size and amount by observing, exploring, using and communicating with others about things in the world around me. MNU 0-01a
	BUNDLE E2 I have explored numbers, understanding that they represent quantities, and I can use them to count, create
	I use practical materials and can 'count on and back' to help me to understand addition and subtraction, recording my ideas and solutions in different ways. MNU 0-03a
	BUNDLE E3 I can share out a group of items by making smaller groups and can split a whole object into smaller parts. MNU 0-07a
	BUNDLE E4 I have spotted and explored patterns in my own and the wider environment and can copy and continue these and create my own patterns. MTH 0-13a

BUNDLE E10

I can collect objects and ask questions to gather information, organising and displaying my findings in different ways. MNU 0-20a

I can match objects, and sort using my own and others' criteria, sharing my ideas with others. MNU 0-20b
I can use the signs and charts around me for information, helping me plan and make choices and decisions in my daily life. MNU 0-20c

First Level	Experiences \& Outcomes Covered
	BUNDLE F1 I can share ideas with others to develop ways of estimating the answer to a calculation or problem, work out the actual answer, then check my solution by comparing it with the estimate. MNU 1-01a
	BUNDLE F2 I have investigated how whole numbers are constructed, can understand the importance of zero within the system and can use my knowledge to explain the link between a digit, its place and its value. MNU 1-02a I can use addition, subtraction, multiplication and division when solving problems, making best use of the mental strategies and written skills I have developed. MNU 1-03a
	BUNDLE F3 Having explored fractions by taking part in practical activities, I can show my understanding of: - how a single item can be shared equally - the notation and vocabulary associated with fractions - where simple fractions lie on the number line. MNU 1-07a Through exploring how groups of items can be shared equally, I can find a fraction of an amount by applying my knowledge of division. MNU 1-07b Through taking part in practical activities including use of pictorial representations, I can demonstrate my understanding of simple fractions which are equivalent. MTH 1-07c

	BUNDLE F4 I can continue and devise more involved repeating patterns or designs, using a variety of media. MTH 1-13a Through exploring number patterns, I can recognise and continue simple number sequences and can explain the rule I have applied. МTH 1-13b
uolzenb pue suo!ssardxヨ	BUNDLE F5 I can compare, describe and show number relationships, using appropriate vocabulary and the symbols for equals, not equal to, less than and greater than. MTH 1-15a When a picture or symbol is used to replace a number in a number statement, I can find its value using my knowledge of number facts and explain my thinking to others. MTH 1-15b
$$	BUNDLE F6 I can tell the time using 12 hour clocks, realising there is a link with 24 hour notation, explain how it impacts on my daily routine and ensure that I am organised and ready for events throughout my day. MNU 1-10a I can use a calendar to plan and be organised for key events for myself and my class throughout the year. MNU 1-10b I have begun to develop a sense of how long tasks take by measuring the time taken to complete a range of activities using a variety of timers. ,MNU 1-10c
$\begin{aligned} & \text { 3 } \\ & \text { O } \\ & \text { Non } \end{aligned}$	BUNDLE F7 I can use money to pay for items and can work out how much change I should receive. MNU 1-09a I have investigated how different combinations of coins and notes can be used to pay for goods or be given in change. MNU 1-09b
	BUNDLE F8 I can estimate how long or heavy an object is, or what amount it holds, using everyday things as a guide, then measure or weigh it using appropriate instruments and units. MNU 1-11a
	I can estimate the area of a shape by counting squares or other methods. MNU 1-11b
O	

N	BUNDLE F9 I have explored simple 3D objects and 2D shapes and can identify, name and describe their features using appropriate vocabulary. MTH 1-16a
咢	I can explore and discuss how and why different shapes fit together and create a tiling pattern with them. MTH 1-16b
$\frac{00}{0}$	BUNDLE F10 I can describe, follow and record routes and journeys using signs, words and angles associated with direction and turning. MTH 1-17a
$\stackrel{0}{*}$	BUNDLE F11 I have explored symmetry in my own and the wider environment and can create and recognise symmetrical pictures, patterns and shapes. MTH 1-19a
-	BUNDLE F12 I have developed an awareness of where grid reference systems are used in everyday contexts and can use them to locate and describe position. MTH 1-18a

	BUNDLE F13 I can use appropriate vocabulary to describe the likelihood of events occurring, using the knowledge and experiences of myself and others to guide me. MNU 1-22a
	BUNDLE F14 I have explored a variety of ways in which data is presented and can ask and answer questions about the information it contains. MNU 1-20a I have used a range of ways to collect information and can sort it in a logical, organised and imaginative way using my own and others' criteria. MNU 1-20b Using technology and other methods, I can display data simply, clearly and accurately by creating tables, charts and diagrams, using simple labelling and scale. MTH 1-21a
	BUNDLE F15 I have discussed the important part that numbers play in the world and explored a variety of systems that have been used by civilisations throughout history to record numbers. MTH 1-12a

Second Level	Experiences \& Outcomes Covered
	BUNDLE S1 I can use my knowledge of rounding to routinely estimate the answer to a problem then, after calculating, decide if my answer is reasonable, sharing my solution with others. MNU 2-01a
	BUNDLE S2 I have extended the range of whole numbers I can work with and having explored how decimal fractions are constructed, can explain the link between a digit, its place and its value. MNU 2-02a
2	Having determined which calculations are needed, I can solve problems involving whole numbers using a range of methods, sharing my approaches and solutions with others. MNU 2-03a I have explored the contexts in which problems involving decimal fractions occur and can solve related problems
	using a variety of methods. MNU 2-03b Having explored the need for rules for the order of operations in number calculations, I can apply them correctly when solving simple problems. MTH 2-03c
	investigated how these numbers occur and are used. MNU 2-04a
	BUNDLE S3 Having explored the patterns and relationships in multiplication and division, I can investigate and identify the multiples and factors of numbers. MTH 2-05a
(1)	

	BUNDLE S5 Having explored more complex number sequences，including well－known named number patterns，I can explain the rule used to generate the sequence，and apply it to extend the pattern．MTH 2－13a
	BUNDLE S6 I can apply my knowledge of number facts to solve problems where an unknown value is represented by a symbol or letter．MTH 2－15a
$\underset{\sim}{\overrightarrow{3}}$	BUNDLE S7 I can use and interpret electronic and paper－based timetables and schedules to plan events and activities，and make time calculations as part of my planning．MNU 2－10a I can carry out practical tasks and investigations involving timed events and can explain which unit of time would be most appropriate to use．MNU 2－10b Using simple time periods，I can give a good estimate of how long a journey should take，based on my knowledge of the link between time，speed and distance．MNU 2－10c
$\begin{aligned} & \text { ? } \\ & \text { 웅 } \\ & \end{aligned}$	BUNDLE S8 I can manage money，compare costs from different retailers，and determine what I can afford to buy． MNU 2－09a I understand the costs，benefits and risks of using bank cards to purchase goods or obtain cash and realise that budgeting is important．MNU 2－09b I can use the terms profit and loss in buying and selling activities and can make simple calculations for this． MNU 2－09c
¢	I can use my knowledge of the sizes of familiar objects or places to assist me when making an estimate of measure． MNU 2－11a
	I can use the common units of measure，convert between related units of the metric system and carry out calculations when solving problems．MNU 2－11b
¢	
¢ $⿳ 亠 口 了$ 0	I can explain how different methods can be used to find the perimeter and area of a simple 2D shape or volume of a simple 3D object．MNU 2－11c

	BUNDLE S14 I can conduct simple experiments involving chance and communicate my predictions and findings using the vocabulary of probability. MNU 2-22a
	BUNDLE S15 Having discussed the variety of ways and range of media used to present data, I can interpret and draw conclusions from the information displayed, recognising that the presentation may be misleading. MNU 2-20a I have carried out investigations and surveys, devising and using a variety of methods to gather information and have worked with others to collate, organise and communicate the results in an appropriate way. MNU 2-20b I can display data in a clear way using a suitable scale, by choosing appropriately from an extended range of tables, charts, diagrams and graphs, making effective use of technology. MTH 2-21a
	BUNDLE S16 I have worked with others to explore, and present our findings on, how mathematics impacts on the world and the important part it has played in advances and inventions. MTH 2-12a

Appendix 1: Progression Framework for Numeracy and Mathematics

Numeracy and Mathematics: assessing progress and achievement This progression framework is a guide which is intended to support practitioners as they consider the evidence of knowledge and understanding, skills, attributes and capabilities provided by learners as they progress through and achieve a level in Numeracy and Mathematics. The significant aspects of learning (detailed in the professional learning paper) relate to the statements for each level within this progression framework. They should be considered jointly when assessing progress and achievement. In order to demonstrate achievement of a level in Numeracy and Mathematics, the learner provides a range of evidence related to the experiences and outcomes within a level as well as towards learning at the next level. - Education Scotland

	interpret questions select and communicate processes and solutions justify choice of strategy used link mathematical concepts use mathematical vocabulary and notation mental agility algebraic reasoning determine the reasonableness of a solution	
Early	First	Second
Concept of zero Associates number with quantities Subitising Order of number Grouping and sharing A whole and parts Concept of pattern in number Concept of measurement including time Non-standard units of measurement Comparison of size Classification and grouping of 2D shapes and 3D objects Positional language Concept of pattern and symmetry Organise items and information Informed choice and decision making	Zero as a placeholder in whole numbers Conceptual place value Round numbers Accuracy of calculations Compare estimate to solution Relative size of fractions Relationship between operations Connections between operations and fractions Simple number sequences Rules for patterns and sequences Importance of numbers and number systems Instruments for measurement Standard units of measurement Scales for measurement including time Accuracy of measurement Features of a wide range of 2D shapes and 3D objects Concept of angles Grids Pattern and symmetrical shapes Interrogating data Graphical representations Likelihood of an event to inform choice	Zero as a place holder in decimal fractions Choose the appropriate level of accuracy in a given context Negative numbers Relationship between fractional numbers, decimal fractions and percentages Multiples and factors of numbers Order of operations Complex number sequences Impact of mathematics in our global environment Conservation of measurement Calculate measurements Convert standard units Area, perimeter, volume Properties of, and relationships between, 2D shapes and 3D objects Symmetry in a range of 2D shapes Geometric representations Nets Bearings Coordinates Appropriate collection of data and graphical representations Reliability of data and graphical presentation Probability

Numeracy \& Maths: Securing Levels with Success Criteria

I can engage in discussion about times which are special to me.

I can show that I am beginning to have a sense of how I organize my time.

I can arrange times of my day and other events in the year in order.

MNU 0-10a

I can engage in discussion about why time is important in our lives.

I can tell the time on digital and analogue clocks - o'clock, half past, quarter past, quarter to, multiples of 5 minutes and 1 minute times.

MNU 1-10a

I can engage in discussion about days, months and seasons and relate this to how they are shown on different calendars.

MNU 1-10b

I can read, interpret and create timetables to help in planning their time.

MNU 1-10a/MNU 1-10b

I can measure how long it will take to do something using non-standard units, showing that I am beginning to have a sense of how long a second, minute or hour lasts.

I can estimate what I can do in different lengths of time, checking my estimates using a variety of different timers and units of time.

I can tell any time on 12 hour digital and analogue clocks.

I can tell the time on 24 hour digital clocks, relating this to 12 hour times.

I can engage in discussion about how people plan their lives, using times and dates.

I can explore the different time calculations people carry out to help them plan their lives.

I can explore how people plan and make decisions about their time and how these are recorded.

MNU 2-10a

I can estimate and then measure how long tasks or events will take and what I can achieve in a given time period.

MNU 2-10b

I can explore the relationships between speed, time and distance.

MNU 2-10c

I can solve a variety of problems involving time.
MNU 2-10a/MNU 2-10b/MNU 2-10c

I have experimented with everyday items as units of measure to investigate and compare sizes and amounts in my environment, sharing my findings with others.

I can explore objects which have different sizes; different weights and can hold different amounts.

I can make comparisons between two objects and say which is longer, heavier or holds more.

I can explore and make choices about how they measure.

MNU 0-11a

I can estimate how long or heavy an object is, or what amount it holds, using everyday things as a guide, then measure or weigh it using appropriate instruments and units.

I can engage in discussion about how measurements are used all around them.

I can make comparisons and order the measurements of different objects, using direct comparison and non-standard units - length, weight, capacity and volume.

I know how to explore the need for standard units, talking about different types.

I can estimate, measure and compare different quantities - length, weight, area, capacity and volume.

I can solve problems involving measures.

MNU 1-11a

I can estimate the area of a shape by counting squares or other methods.

I can make comparisons and order the

 measurements of different objects, using direct comparison and non-standard units - area.
MNU 1-11b

I can use my knowledge of the sizes of familiar objects or places to assist me when making an estimate of measure.

MNU 2-11a

I can use the common units of measure, convert between related units of the metric system and carry out calculations when solving problems.

I know how to engage in discussion about how and why measurement is used in everyday life.

I know how scale can be used to help me represent objects in drawings, plans and maps.

MNU 2-11b

I can use the measurements of everyday items to help me estimate.

I know how to estimate and measure items and then check to see how close they were - capacity and liquid volume; weight; length.

MNU 2-11a/MNU 2-11b

I can explain how different methods can be used to find the perimeter and area of a simple 2D shape or volume of a simple 3D object.

I know how to explore the area and perimeter of 2D shapes and the volume of solid 3D objects - area and perimeter of squares and rectangles; of compound shapes using squares and rectangles and triangles; volume of solid objects and their surface area.

MNU 2-11c
I can interpret a problem involving measures and find a solution.
MNU 2-11a/MNU 2-11b/MNU 2-11c

PATTERNS \& RELATIONSHIPS	I can recognise, copy and continue a pattern. I can create my own patterns in a variety of ways - singing, playing instruments, using my body, art, block play, weaving. I know that numbers create patterns. MTH 0-13a	I can describe, continue and make patterns using shape and colour etc. I understand odds and evens; time tables. I can design a pattern using isometric paper. MTH 1-13a I can describe and continue simple number sequences within 100. I can estimate the place of a number on a number line. MTH 1-13b	I can look at a complex number sequence, identify the rule being used and be able to apply it to carry on/complete the sequence. I can continue, identify and explain a sequence involving square numbers; triangular numbers; involving prime numbers. I can continue, describe and understand more complex linear patterns. MTH 2-13a
EXPRESSIONS \& EQUATIONS		I can compare and describe statements using = and \neq I know and can use $=, \neq,>, \&<$ MTH 1-15a I can find missing number in statements ($\mathrm{eg} 3+$ 固 $=6$, $\mathrm{B}+2=8$) I can compare and describe $3+2=1+$ 回 I can replace a symbol with a number in equations to 20/100/1000. MTH 1-15b	I can find the output given input and a function. I can find the missing numbers and/or operations in more complex statements. I can find the function given the input and output; find the input given the function and output. MTH 2-15a

DATA \&
ANALYSIS

I can collect objects and ask questions to gather information, organising and displaying my findings in different ways

I can ask questions to help gather information and display findings in different ways.

MNU 0-20a

I can match objects, and sort using my own and others' criteria, sharing my ideas with others.

I can sort when playing and in everyday activities.

I can sort in a variety of different ways according to own and others' criteria.

MNU 0-20b

I can use the signs and charts around me for information, helping me plan and make choices and decisions in my daily life.

I can create and 'read' signs and charts.
MNU 0-20c

I have explored a variety of ways in which data is presented and can ask and answer questions about the information it contains.

I know how to explore and gather examples of the different ways that information is collected and presented in their world and how it helps them.

MNU 1-20a

I have used a range of ways to collect information and can sort it in a logical, organised and imaginative way using my own and others' criteria.

MNU 1-20b

Using technology and other methods, I can display data simply, clearly and accurately by creating tables, charts and diagrams, using simple labelling and scale.

MTH 1-21a

I can sort and organise objects based on own and others' criteria and talk about what was done.

I can create and use own questions to find out information and display findings in different ways.

I know how information can be sorted and displayed in different ways, talking about what was done - One or two criteria: Venn, Carroll and tree diagrams.

I can devise and use simple questionnaires to collect information

I can select and use the most appropriate way to display information
MNU 1-20a/MNU 1 -20b/ MTH 1 - 21a

Having discussed the variety of ways and range of media used to present data, I can interpret and draw conclusions from the information displayed, recognising that the presentation may be misleading.

MNU 2-20a
I have carried out investigations and surveys, devising and using a variety of methods to gather information and have worked with others to collate, organise and communicate the results in an appropriate way.

I know how to explore and design questionnaires to help them answer questions and solve problems.

MNU 2-20b

I can display data in a clear way using a suitable scale, by choosing appropriately from an extended range of tables, charts, diagrams and graphs, making effective use of technology.

MTH 2-21a

I know how to explore and gather examples of the different ways that information is collected and presented in my world and how it helps me.

MNU 2-20b/MTH 2-21a
I know how to display information in pictograms, bar and bar line graphs and understand the impact of scale on these.

I can sort data using Venn, Carroll and tree diagrams.
I can interpret information presented in a pie chart.
I can interpret and create line graphs.
MNU 2-20a/MTH 2-21a

IDEAS OF CHANCE \& UNCERTAINTY		I can guess/ predict Heads and tail; how many times the dice will land on ' 6 ' in a minute I can use language to describe likelihood of events occurring. I can describe events using language like: likely, probable, unlikely; certain, never; possible, impossible. I can participate in discussions about life regarding the 'chances of x happening' MNU 1-22a	I can list all the possible outcomes of an event, such as rolling a die. I can assign a numerical value to the likelihood of the occurrence of simple events understanding, for example: equal chance; fifty-fifty; one in two or two in three; percentage chance. I am aware of how the implications of chance are used in daily routines, decision making and the media I understand the meaning of fair, unfair and bias. MNU 2-22a
MATHEMATICS - IT'S IMPACT ON THE WORLD, PAST, PRESENT AND FUTURE		I can discuss the important part numbers play in the world. I can read and write Roman Numerals to 5/10/20. I know our numbers are Arabic. MTH 1-12a	I can name various ways that mathematics has impacted on the world and discuss these. I know that maths is incorporated in some everyday objects e.g. computer, games console. I know how Maths has played its part in advances and inventions and can give examples. MTH 2-12a

