Higher Mathematics October Revision

1. A sequence is defined by the recurrence relation $U_{n}=0.4 U_{n-1}+10$, where $U_{1}=34$
a. Calculate the value of U_{0} and U_{2}.
b. State why this sequence has a limit.
c. Hence, calculate the limit of this sequence when $\mathrm{n} \rightarrow \infty$.
2. A straight line, which passes through the point ($3,-2$), is parallel to the straight line with the equation $5 \mathrm{y}-3 \mathrm{x}+1=0$.

Find the equation of this straight line.
3. A sequence is defined by the recurrence relation $U_{n+1}=k U_{n}+9$.

If the limit of the recurrence relation is 24 , find the value of k.
4. The diagram below shows the graph of $y=f(x)$.

On separate diagrams, sketch and annotate the following graphs:
a. $y=f(x)+4$
b. $y=f(x-1)-2$
c. $y=-f(x)$
d. $y=f(2 x)+2$
5. The vertices of the triangle PQR are $\mathrm{P}(2,6), \mathrm{Q}(-4,-4)$ and $\mathrm{R}(-3,7)$.
a. Find the equation of the median from R .
b. Find the equation of the altitude from Q .
c. The median from R and altitude from Q intersect at point T . Find the coordinates of the point of intersection.
6. A curve has the equation $y=4 x^{2}-5 x+1$.

A tangent to this curve has a gradient of 3 . Find the equation of this tangent.
7. The distance, d metres, travelled by a rocket is calculated using the formula $d(t)=10 t^{3}-7 t$, where t is the time in seconds after the rocket takes off.

Calculate the speed of the rocket after 8 seconds.
8. A function f is defined by $f(x)=x^{4}+8 x^{3}-6$.
a. Find the coordinates of the points where the graph of $y=f(x)$ crosses the y-axis.
b. Find the stationary points and determine their nature.
9. For what values of x is the function $h(x)=2 x^{3}+3 x^{2}-12 x+1$ decreasing?
10. Find the exact value of:
a. $\tan 60^{\circ}$
b. $\sin 225^{\circ}$
c. $\cos \frac{5 \pi}{6}$
11. A curve has the equation $y=(x-2)\left(x^{2}+6 x-1\right)$.

Find the equation of the tangent to this curve at the point where $\mathrm{x}=-1$
12. A function is given by $f(x)=x^{3}+a x^{2}+b x+2$.

Given that $(x-1)$ and $(x+2)$ are factors of $x^{3}+a x^{2}+b x+2$, find the values of a and b.
13. Find the inverse of the following functions:
a. $f(x)=2 x-1$
b. $g(x)=5 x^{2}-3$
c. $p(x)=7+4 \sqrt{x}$
14. A function is given by $2 x^{3}-x^{2}-5 x-2$.
a. Show that $(x+1)$ is a factor of the function.
b. Hence, fully factorise the function.
15. A sequence is defined by the recurrence relation $U_{n}=0.7 U_{n-1}+18$, where $U_{1}=3$
a. Calculate the value of U_{0} and U_{2}.
b. State why this sequence has a limit.
c. Hence, calculate the limit of this sequence when $\mathrm{n} \rightarrow \infty$.
16. A function has the equation $f(x)=x^{3}-6 x^{2}+9 x$. A tangent to the curve is drawn at the point where $\mathrm{x}=0$.
a. Find the equation of the tangent to the curve.
b. This tangent meets the curve at a second point P . Find the coordinates of point P .
17. A triangle has vertices $\mathrm{A}(-1,12), \mathrm{B}(-2,-5)$ and $\mathrm{C}(7,-2)$.
a. Find the equation of the median BD.
b. Find the equation of the altitude AE.
c. Hence, find the coordinates of the point of intersection between the 2 lines.
18. Given that $x=-2$ and $x=1$ are two roots of the equation $x^{3}+\mathrm{px}^{2}-6 x+q=0$, establish values of p and q and hence find the third root of the equation.
19. A function is defined by the formula $f(x)=4 x^{2}(x-3)$ where x is a member of Real numbers.
a. Write down the coordinates of the points where the curve with equation $y=f(x)$ meets the coordinates axes.
b. Find the stationary points of $y=f(x)$ and determine their nature.
c. Sketch the curve.
20. Find the interval in which $f(x)=x^{3}+3 x^{2}-9 x+5$ is decreasing.
21. A function is given by $f(x)=3 x^{2}-2 x^{3}$.

Determine the interval where the function is increasing.
22. If $f(x)=2 x-5$ and $g(x)=2 x^{2}$
a. Find $f(g(x))$
b. $g(f(x))$
23. Functions are given by:
$f(x)=x^{2}-x$
$g(x)=3 x+1$
$h(x)=\frac{1}{3}(x-7)$

Find
a. $\mathrm{f}(\mathrm{g}(\mathrm{x}))$
b. $\mathrm{h}(\mathrm{g}(\mathrm{x}))$
c. $\mathrm{f}(\mathrm{h}(\mathrm{x}))$
24. A function is given by $y=\sqrt{x-3}$.

Find the restriction on the domain for the function above.
25 . The point A has coordinates $(7,4)$.
The straight lines with equations $x+3 y+1=0$ and $2 x+5 y=0$ intersect at point B.
a. Find the gradient of AB .
b. Hence show that $A B$ is perpendicular to only one of these 2 lines.
26. Solve the following equations for $0 \leq x \leq 360$:
a. $4 \sin 2 x-1=0$
b. $6 \cos 4 x+1=0$
27. Find the exact value of:
a. $\tan 45^{\circ}$
b. $\sin 150^{\circ}$
c. $\cos 210^{\circ}$
28. Convert the following into radians:
a. 90°
b. 300°
c. 15°
29. Solve the following equations for $0 \leq x \leq 360$:

$$
7 \sin ^{2} x-2 \sin x-5=0
$$

30. Express in the form $\mathrm{p}(\mathrm{x}+\mathrm{q})^{2}+\mathrm{r}$:
a. $y=2 x^{2}-8 x+2$
b. $y=5 x^{2}+10 x+1$
c. $y=3 x^{2}-9 x-1$
d. $y=2-4 x-x^{2}$
31. Find the values of b if $x^{2}+b x+36=0$ has two real and equal roots.
32. Find the range of values of d if $x^{2}+6 x+d^{2}=0$ has no real roots.
33. Find the value of k for which the equation $x^{2}+4(k-1) x=-4$ has real roots.
34. Prove that $x^{2}-(m+3) x+2 m+3=0$ has no real roots for $-1<m<3$.
35. Prove that the line $y=x-1$ is a tangent to the curve $y=x^{2}-x$ and find the point of contact.
