Higher Exercise 1

1. A sequence is defined by the recurrence relation $U_{n+1}=3 U_{n}-1$, where $U_{0}=2$.

Calculate the next three consecutive terms in the sequence.
2. A sequence is defined by the recurrence relation $U_{n+1}=0.5 U_{n}+3$ where $U_{1}=2$.
a. Calculate the value of U_{2} and U_{3}.
b. Explain why the sequence above has a limit.
c. Find the limit of this sequence when $n \rightarrow \infty$.
3. A straight line passing through the point $(3,-1)$ is parallel to the line $5 y-2 x+1=0$.

Find the equation of this line.
4. A sequence is defined by the recurrence relation $U_{n}=0.8 U_{n-1}+1000$, where $U_{1}=500$.
a. Calculate the value of U_{0} and U_{2}.
b. What is the smallest value of n for which $U_{n}>3000$?
c. Find the limit of this sequence when $n \rightarrow \infty$.
5. Two functions, f and g, defined on suitable domains, are given by $f(x)=3 x-1$ and $g(x)=7-2 x$.

Find $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ in its simplest form.
6. A sequence is defined by the recurrence relation $U_{n+1}=k U_{n}+7$.

If the limit of the recurrence relation is 21 , find the value of k.
7. A lake next to a waste factory currently contains approximately 30 tonnes of pollutant. Due to health regulations the factory runs a filtration process where they remove 75% of the waste each month, however an extra 1.5 tonnes is released into the lake over the same month.
a. Establish a recurrence relation to describe this situation.
b. Health inspectors inform the factory that a level of 2.1 tonnes of waste or less will be acceptable. In the long run will the factory reach an acceptable level of waste in the lake?

