National 5 Course

Algebraic Operations

- Expanding Brackets
- $(a x+b)(c x+d)$
- $(a x+b)\left(c x^{2}+d x+e\right)$
- Factorising
- Common factor
- Difference of two squares
- Trinomials with unitary and non-unitary coefficients of x^{2}
- Write quadratic expressions with unitary coefficient of x^{2} in completed square form

Linear Relationships

- Find the equation of a straight line using $y-b=m(x-a)$
- Find the coordinates of points where straight lines intersect both axes

Statistics

- Calculate the standard deviation of a data sample
- Median and semi-interquartile revision
- Compare the consistency of data referencing standard deviation and SIQR
- Scatter graphs and equation of line of best fit

Changing the Subject of a Formula

- Change the subject of a linear equation
- Change the subject of an equation involving a square or square root term

Simultaneous Equations

- Construct linear equations from text involving two variables
- Solve simultaneous equations graphically
- Solve simultaneous equations algebraically

Triangle Trigonometry

- Use the sine rule to find missing sides and angles
- Use the cosine rule to find missing sides and angles
- Find the area of a triangle using $A_{\text {tri }}=1 / 2 a b \sin C$
- Solve trigonometry problems in context including problems involving bearings

Surds

- Simplify surds by identifying squared term factors
- Perform calculations involving surds (all four operations)
- Rationalise the denominator

Indices

- Multiply and divide terms of the form $a x^{b}$ where a and b are rational numbers
- Understand and apply the rule that $\left(a^{m}\right)^{n}=a^{m n}$
- Express terms of the form $\mathrm{ax}^{-\mathrm{b}}$ in the form $\frac{a}{\mathrm{X}^{\mathrm{D}}}$
- Understand that $x^{\frac{m}{n}}=\sqrt[n]{x^{m}}$ and apply this knowledge to calculations

Algebraic Fractions

- Reduce an algebraic fraction to its simplest form
- Apply one of the four operations to algebraic fractions

Vectors

- Adding or subtracting two-dimensional vectors using directed line segments
- Determining coordinates of a point from a diagram representing a 3D object
- Adding or subtracting two-dimensional or three-dimensional vectors using components
- Express a journey as a difference of position vectors i.e. $\overline{A B}=\boldsymbol{b}-\boldsymbol{a}$
- Magnitude of a vector (link to Pythagoras)

Function Notation

- Understand and use functional notation in the following ways
- Evaluate $f(2)$ for various functions
- Solve $f(a)=b$ where a and b are rational numbers

Shape Properties

- Use shape properties to find interior and exterior angles in polygons

Equations and Inequations with Fractions

- Solve equations and inequations with fractions

Quadratic Equations

- Factorise to solve quadratic equations
- Apply quadratic formula to solve quadratic equations
- Understand relationship between discriminant and roots
- Apply knowledge graphically

Quadratic Relationships

- Recognise and determine the equation of a quadratic function from its graph
- $y=k x^{2}$
- $y=(x+p)^{2}+q$
- Sketch a quadratic function
- $y=(x-m)(x-n)$
- $y=(x+p)^{2}+q$
- Identify features of a quadratic function
- Nature
- Turning point
- Equation of axis of symmetry

Trigonometric Graphs

- Know how to sketch basic graphs
- $y=\sin x$
- $y=\cos x$
- $y=\tan x$
- Understand features of trigonometric graphs including
- Amplitude
- Vertical translation
- Multiple angles
- Phase angles

Trigonometric equations

- Work with trigonometric relationships in degrees
- Evaluate sine, cosine and tangent of angles 0-360
- Understand the concept of related angles
- Solve basic equations
- Apply trigonometric identities to simplify expressions

Please note that Vectors and Simiarity are not included in then course for session 22/23 due to COVID mitigations.

