S4 Homework - Week 26

Q1. Given vectors $\mathbf{a}=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right)$, calculate:
i. $\quad \mathbf{2 a}-\mathbf{b}$
ii. $\mathbf{b}-2 \mathbf{a}$
iii. $|a+b|$

Q2. The minutes (in minutes) it takes a professional snooker player to pot the final ball in a game is recorded and shown below:

$$
\begin{array}{lllll}
12 & 18 & 21 & 23 & 26
\end{array}
$$

Calculate the mean and standard deviation
Q3. A quadratic equation is given as $\quad y=(x+2)^{2}-5$
a. Find the co-ordinates of the turning point and state its nature
b. Write down the equation of the axis of symmetry.

Q4. A straight line has the equation $2 x-4 y=6$
a. State the gradient
b. Find the co-ordinates where the straight line meets the x axis.

Q5. Solve the inequation $3+2(x-3) \geq 4(x+5)$
Q6. Simplify, expressing with a positive power where necessary:
a. $\frac{g^{4} \times g^{3}}{g^{5}}$
b. $\frac{m^{4}}{m^{7} \times m}$
c. $\left(2 f^{-3}\right)^{2}$

Q7. Determine the nature of the roots of the function $f(x)=3 x^{2}-7 x+2$
Q8. A Function is given by $f(x)=x^{2}+8 x$
a. Evaluate $\mathrm{f}(-2)$
b. Find the two solutions when $f(m)=20$

Q9. Simplify $\frac{3 x}{x^{2}-9} \div \frac{2}{x+3}, x \neq \pm 3$, as a single fraction in its simplest form.

Q10. Change the subject of the formula to x :
a. $(x+y)^{2}=z$
b. $\frac{y}{x}-5=z$
c. $y-\frac{1}{5} x=z$

Q11. The graph of $y=\boldsymbol{b}$ sinax is shown below. State the values of \boldsymbol{b} and \mathbf{a}.

Q12.

