The right-angled triangle in the diagram is such that $\sin x = \frac{2}{\sqrt{11}}$ and $0 < x < \frac{\pi}{4}$.

- 2018 PI Q13
- (a) Find the exact value of:
 - (i) $\sin 2x$
 - (ii) $\cos 2x$.
- (b) By expressing $\sin 3x$ as $\sin (2x+x)$, find the exact value of $\sin 3x$.

2017 P2 Q6

2016 PI Q13

Solve $5\sin x - 4 = 2\cos 2x$ for $0 \le x < 2\pi$.

Triangle ABD is right-angled at B with angles BAC = p and BAD = q and lengths as shown in the diagram below.

Show that the exact value of $\cos(q-p)$ is $\frac{19\sqrt{17}}{85}$

10	Given that $\tan 2x = \frac{3}{4}$, $0 < x < \frac{\pi}{4}$, find the exact value of	
2015 PI Q10	(a) $\cos 2x$	
	(b) cos x.	
2014 P2Q6	Solve the equation $\sin x - 2\cos 2x = 1 \qquad \text{for } 0 \le x < 2\pi.$	5
2 08	Solve algebraically the equation	
2013 P2 Q8	$\sin 2x = 2\cos^2 x \qquad \text{for } 0 \le x < 2\pi$	6
923	(a) Solve $\cos 2x^{\circ} - 3\cos x^{\circ} + 2 = 0$ for $0 \le x < 360$.	5
2011 P1 Q23	(b) Hence solve $\cos 4x^{\circ} - 3\cos 2x^{\circ} + 2 = 0$ for $0 \le x < 360$.	2
2010 P2 Q4	Solve $2\cos 2x - 5\cos x - 4 = 0$ for $0 \le x < 2\pi$.	5

2007 PI Q6	6. Solve the equation $\sin 2x^{\circ} = 6\cos x^{\circ}$ for $0 \le x \le 360$.	4
2007 P2 Q2	 2. The diagram shows two right-angled triangles with angles c and d marked as shown. (a) Find the exact value of sin (c + d). (b) (i) Find the exact value of sin 2c. (ii) Show that cos 2d has the same exact value. 	4
2006 PI Q7	7. Solve the equation $\sin x \circ - \sin 2x \circ = 0$ in the interval $0 \le x \le 360$.	4
2006 P2 Q8	 8. The diagram shows a right-angled triangle with height 1 unit, base 2 units and an angle of a° at A. (a) Find the exact values of: (i) sin a°; (ii) sin 2a°. (b) By expressing sin 3a° as sin (2a + a)°, find the exact value of sin 3a°. 	1 4 4
2005 PI Q9	9. If $\cos 2x = \frac{7}{25}$ and $0 < x < \frac{\pi}{2}$, find the exact values of $\cos x$ and $\sin x$.	4
2005 P2	2. Triangles ACD and BCD are right-angled at D with angles p and q and lengths as shown in the diagram. (a) Show that the exact value of $\sin(p+q)$ is $\frac{84}{85}$. (b) Calculate the exact values of: (i) $\cos(p+q)$; (ii) $\tan(p+q)$.	3

Spec 2 P1 Q7	7. Using triangle PQR, as shown, find the exact value of $\cos 2x$. $ \begin{array}{c} R \\ \sqrt{7} \\ \end{array} $	3
Spec 1 P1 Q4	4. If x° is an acute angle such that $\tan x^{\circ} = \frac{4}{3}$, show that the exact value of $\sin(x+30)^{\circ}$ is $\frac{4\sqrt{3}+3}{10}$.	3
Spec 1 P2 Q7	 7. (a) Show that 2cos 2x° - cos²x° = 1 - 3sin²x°. (b) Hence (i) write the equation 2cos 2x° - cos²x° = 2sin x° in terms of sin x° (ii) solve this equation in the interval 0 ≤ x < 90. 	3