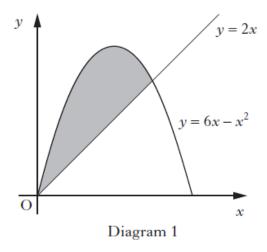

8. Integration

2018 PI Q10	Given that $ \cdot \frac{dy}{dx} = 6x^2 - 3x + 4, \text{ and} $	
2018	• $y = 14$ when $x = 2$, express y in terms of x .	4
2018 P2 Q1	The diagram shows the curve with equation $y = 3 + 2x - x^2$.	4
	Calculate the shaded area.	4
2017 PI Q10	Two curves with equations $y = x^3 - 4x^2 + 3x + 1$ and $y = x^2 - 3x + 1$ intersect as shown in the diagram. $y = x^3 - 4x^2 + 3x + 1$ $y = x^2 - 3x + 1$ (a) Calculate the shaded area. The line passing through the points of intersection of the curves has equation $y = 1 - x$.	5
	(b) Determine the fraction of the shaded area which lies below the line $y = 1 - x$.	4

	For a function f , defined on a suitable domain, it is known that:	
P2 Q9	$\bullet \qquad f'(x) = \frac{2x+1}{\sqrt{x}}$	
2016 P2	• $f(9) = 40$	
	Express $f(x)$ in terms of x .	4
	The diagram shows part of the graph of $y = a \cos bx$.	
	The shaded area is $\frac{1}{2}$ unit ² .	
2015 PI Q12	$\frac{y}{\sqrt{3\pi}}$	
	What is the value of $\int_0^{\frac{3\pi}{4}} (a\cos bx)dx$?	2
	The rate of change of the temperature, T °C of a mug of coffee is given by $\frac{dT}{dt} = \frac{1}{25}t - k \ , \ 0 \le t \le \ 50$	
2015 PI QIS	 t is the elapsed time, in minutes, after the coffee is poured into the mug k is a constant initially, the temperature of the coffee is 100 °C 10 minutes later the temperature has fallen to 82 °C. 	
		6
	Express T in terms of t .	


Spec, P2,	Find $\int \frac{4x^3 + 1}{x^2} dx, x \neq 0.$	4
Exp, P2, Q4	The line with equation $y = 2x + 3$ is a tangent to the curve with equation $y = x^3 + 3x^2 + 2x + 3$ at A(0, 3), as shown. $y = x^3 + 3x^2 + 2x + 3$ $x = x^3 + 3x^2 + 2x + 3$ $x = x^3 + 3x^2 + 2x + 3$ $x = x^3 + 3x^2 + 2x + 3$ $x = x^3 + 3x^2 + 2x + 3$ $x = x^3 + 3x^2 + 2x + 3$	
	y = 2x + 3 The line meets the curve again at B(-3, -3).	

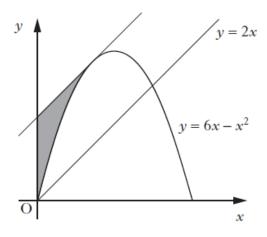
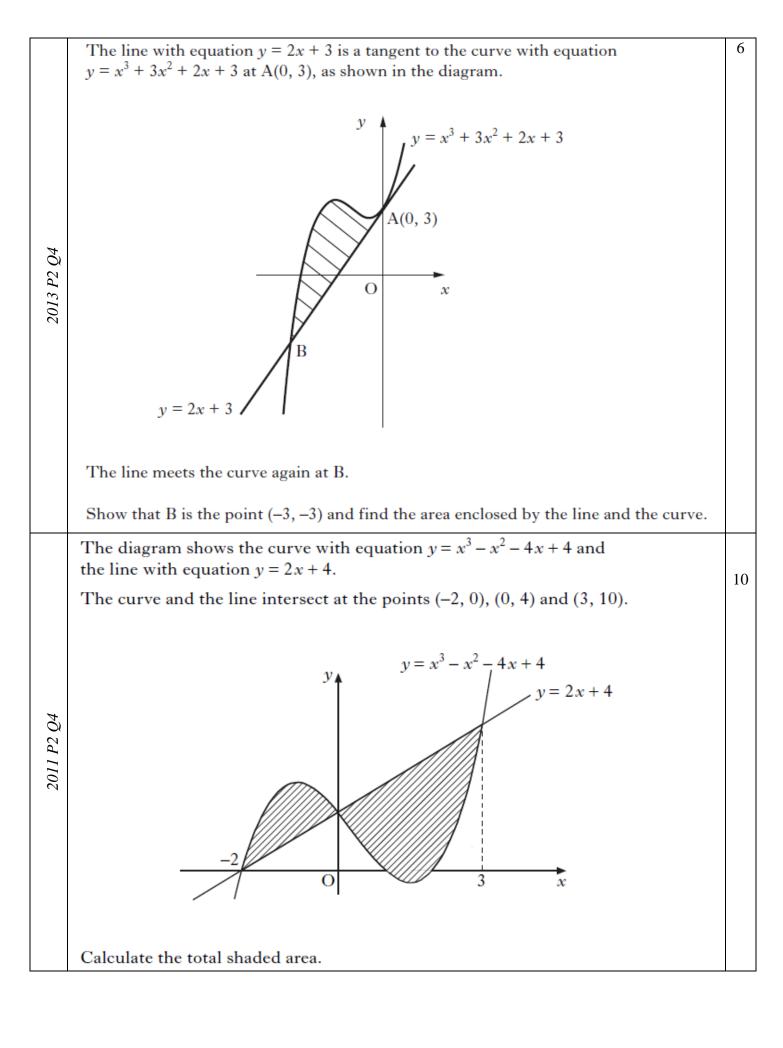
Find the area enclosed by the line and the curve.

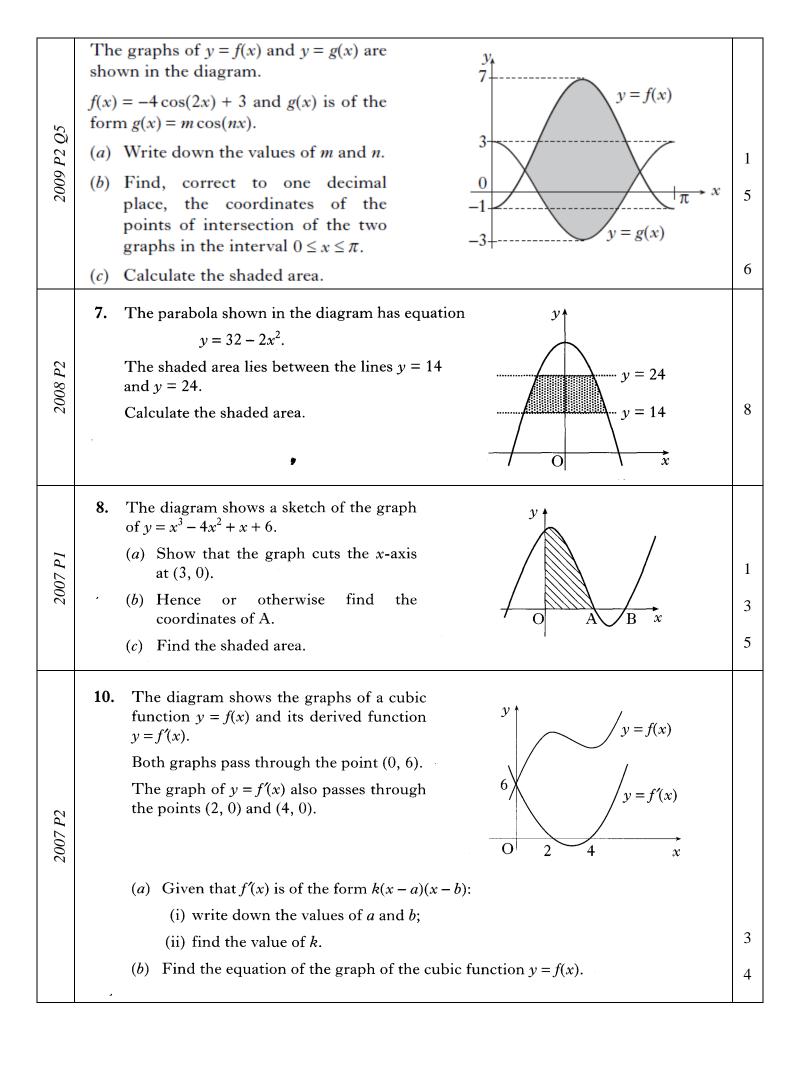
Land enclosed between a path and a railway line is being developed for housing.

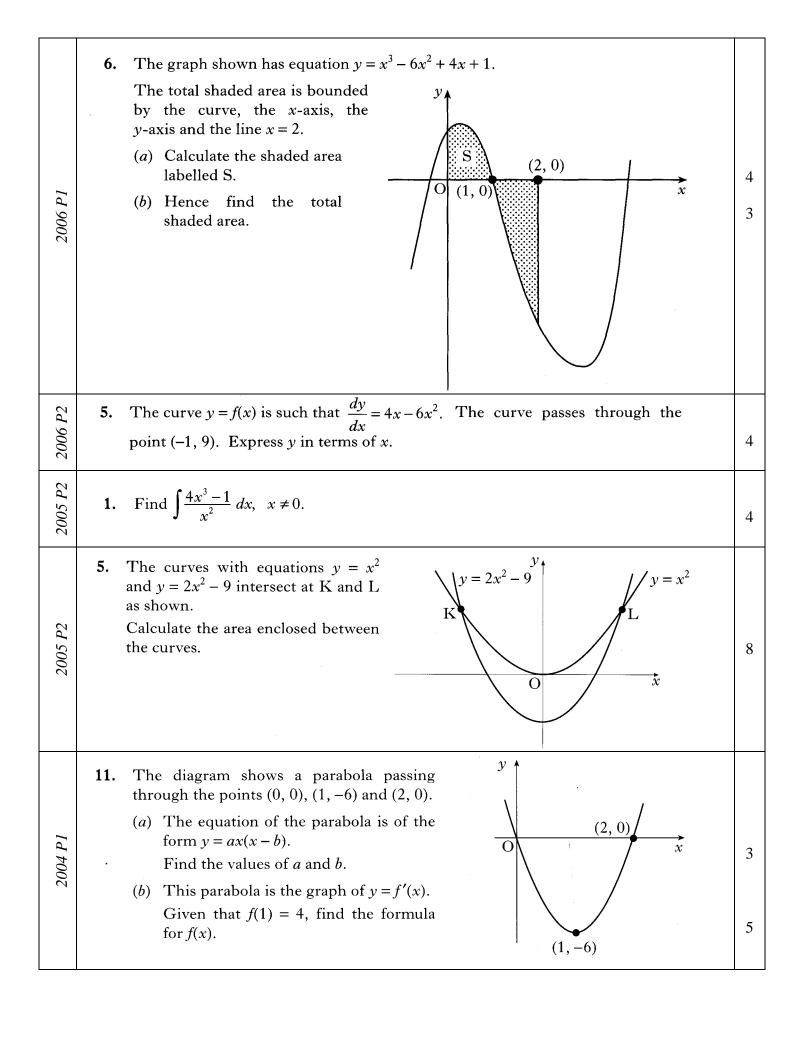
This land is represented by the shaded area shown in Diagram 1.

- The path is represented by a parabola with equation $y = 6x x^2$.
- The railway is represented by a line with equation y = 2x.
- One square unit in the diagram represents 300 m² of land.

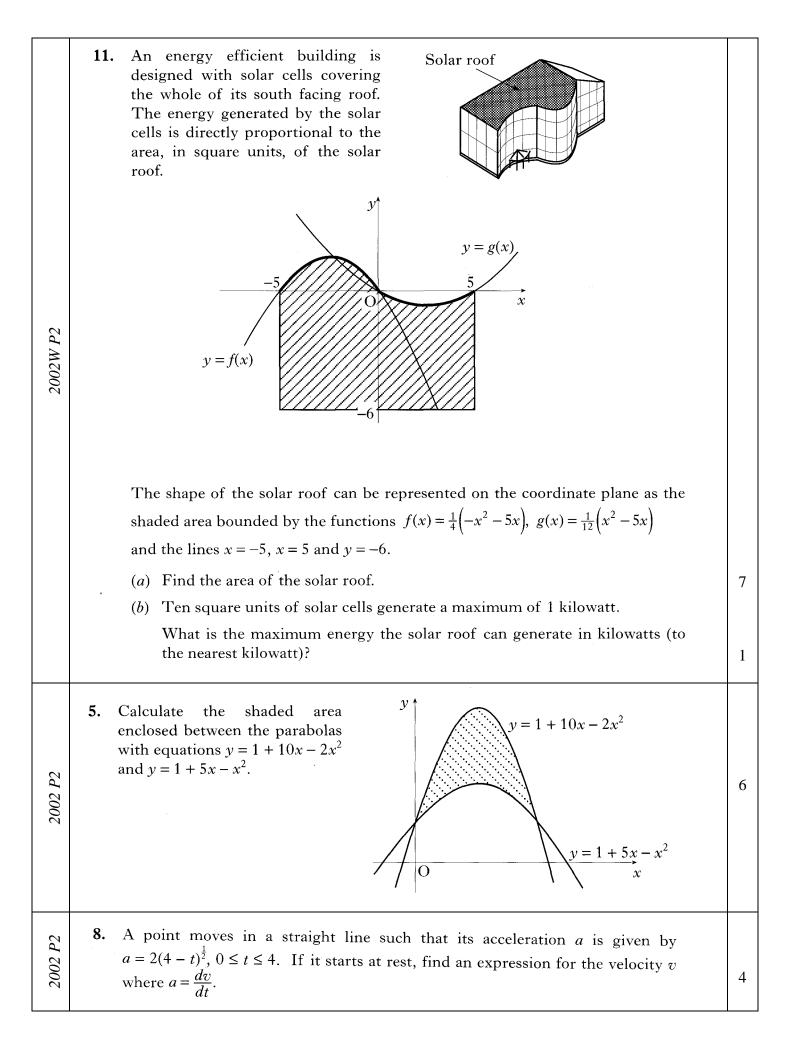
- (a) Calculate the area of land being developed.
- (b) A road is built parallel to the railway line and is a tangent to the path as shown in Diagram 2.

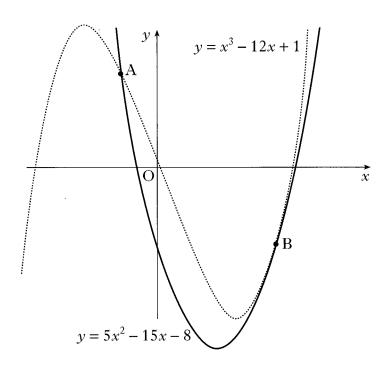




Diagram 2


It is decided that the land, represented by the shaded area in Diagram 2, will become a car park.

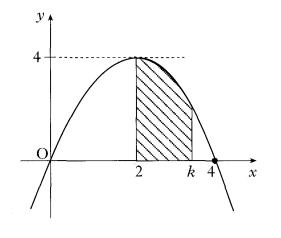
Calculate the area of the car park.


5



	11. An architectural feature of a building is a wall with arched windows. The curved edge of	
2004 P2	each window is parabolic. The second diagram shows one such window. The shaded part represents the glass. The top edge of the window is part of the parabola with equation $y = 2x - \frac{1}{2}x^2$. Find the area in square metres of the glass in one window.	8
2003 P2	3. The incomplete graphs of $f(x) = x^2 + 2x$ and $g(x) = x^3 - x^2 - 6x$ are shown in the diagram. The graphs intersect at A(4, 24) and the origin. Find the shaded area enclosed between the curves. $y = f(x)$ $y = f(x)$ $y = g(x)$	5
2002W P1	7. Find $\int \left(\sqrt[3]{x} - \frac{1}{\sqrt{x}} \right) dx$.	4

	1			1
2001 P2	6.	Find $\int \frac{(x^2 - 2)(x^2 + 2)}{x^2} dx$, $x \neq 0$		4
2001 P2	8.	A firm asked for a logo to be designed involving the letters A and U. Their initial sketch is shown in the hexagon. A mathematical representation of the final logo is shown in the coordinate diagram. The curve has equation $y = (x + 1)(x - 1)(x - 3)$ and the straight line has equation $y = 5x - 5$. The point $(1, 0)$ is the centre of half-turn symmetry. Calculate the total shaded area.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7


- (a) (i) Find the x-coordinates of the points on the curves where the gradients are equal.
 - (ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
- (b) The point A is (-1, 12) and B is (3, -8). Find the area enclosed between the two curves.

4. The parabola shown crosses the x-axis at (0, 0) and (4, 0), and has a maximum at (2, 4).

The shaded area is bounded by the parabola, the *x*-axis and the lines x = 2 and x = k.

- (a) Find the equation of the parabola.
- (b) Hence show that the shaded area, A, is given by

$$A = -\frac{1}{3}k^3 + 2k^2 - \frac{16}{3}$$

2

1

5

3

	8.	Functions f and g are defined on the set of real numbers by	
		$f(x) = x - 1$ $g(x) = x^2.$	
Specimen 2 PI	•	 (a) Find formulae for (i) f(g(x)) (ii) g(f(x)). (b) The function h is defined by h(x) = f(g(x)) + g(f(x)). Show that h(x) = 2x² - 2x and sketch the graph of h. (c) Find the area enclosed between this graph and the x-axis. 	3 4
Specimen 2 P1	9.	Find $\int \frac{x^2 - 5}{x\sqrt{x}} dx$.	4
7. Find the value of $\int_{1}^{2} \frac{u^{2} + 2}{2u^{2}} du$.			
	4.	In the diagram below, a winding river has been modelled by the curve $y = x^3 - x^2 - 6x - 2$ and a road has been modelled by the straight line AB. The road is a tangent to the river at the point A(1, -8).	
		(a) Find the equation of the tangent at A.	3
		(b) Hence find the coordinates of B.	4
		(c) Find the area of the shaded part which represents the land bounded by the river and the road.	3
Specimen 1 P2		B O x	