Graphs of Functions

The diagram shows the graphs with equations y = f(x) and y = kf(x) + a.

(a) State the value of a.

2019 PI Q10

(b) Find the value of k.

The diagram shows the curve with equation $y = \log_3 x$.

(a) On the diagram in your answer booklet, sketch the curve with equation $y = 1 - \log_3 x$.

3

	The diagram below shows the graph of a quartic $y = h(x)$, with stationary points at $x = 0$ and $x = 2$.	
2012 P2 Q4	points at $x = 0$ and $x = 2$.	
	On separate diagrams sketch the graphs of:	3
	(a) $y = h'(x)$;	
	(b) $y = 2 - h'(x)$.	3
2009 PI Q23	The diagram shows a sketch of the function $y = f(x)$. (a) Copy the diagram and on it sketch (-4, 8)	2
	(a) Copy the diagram and on it sketch the graph of $y = f(2x)$. (2, 8) $y = f(x)$	
	(b) On a separate diagram sketch the graph of $y = 1 - f(2x)$.	3
2007 P2 Q9	9. The diagram shows the graph of $y = a^x$, $a > 1$.	
	On separate diagrams, sketch the graphs of: $y = a^{x}$	
	(a) $y = a^{-x}$; (b) $y = a^{1-x}$.	2 2
200	(0) $y-u$.	

 \dot{x}

O

			2
2002 P1 Q7	7.	(a) Express $f(x) = x^2 - 4x + 5$ in the form $f(x) = (x - a)^2 + b$.	
		 (b) On the same diagram sketch: (i) the graph of y = f(x); 	
)2 P		(ii) the graph of $y = f(x)$, (ii) the graph of $y = 10 - f(x)$.	4
200		(c) Find the range of values of x for which $10 - f(x)$ is positive.	1
		(b) That the range of various of which to $f(w)$ is positive.	1
2001 PI Q10	10.	The diagram shows a sketch of part of the graph of $y = \log_2(x)$. (a) State the values of a and b . (b) Sketch the graph of $y = \log_2(x+1) - 3$. $y = \log_2(x)$ $(8, b)$	1 3
	2.	A sketch of the graph of $y = f(x)$ where $f(x) = x^3 - 6x^2 + 9x$ is shown below. The graph has a maximum at A and a minimum at B(3, 0). $y = f(x)$ $y = f(x)$	
2000 P1 Q2		$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}$	
		(a) Find the coordinates of the turning point at A.	4
		(b) Hence sketch the graph of $y = g(x)$ where $g(x) = f(x + 2) + 4$.	
		Indicate the coordinates of the turning points. There is no need to	
		calculate the coordinates of the points of intersection with the axes.	$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$
		(c) Write down the range of values of k for which $g(x) = k$ has 3 real roots.	

5. Part of the graph of y = f(x) is shown in the diagram. On separate diagrams, sketch the graphs of

5

(i)
$$y = f(x + 1)$$

(ii)
$$y = -2f(x)$$
.

Indicate on each graph the images of O, A, B, C and D.

