Functions

2019 P2 Q8	A function, f, is given by $f(x) = \sqrt[3]{x} + 8$.	
	The domain of f is $1 \le x \le 1000$, $x \in \mathbb{R}$.	
	The inverse function, f^{-1} , exists.	
	(a) Find $f^{-1}(x)$.	3
	(b) State the domain of f^{-1} .	1
	Functions f and g are defined by	
2019 P1 Q12	• $f(x) = \frac{1}{\sqrt{x}}$, where $x > 0$	
	• $g(x) = 5 - x$, where $x \in \mathbb{R}$.	
2	(a) Determine an expression for $f(g(x))$.	2
	(b) State the range of values of x for which $f(g(x))$ is undefined.	1
	A function $g(x)$ is defined on \mathbb{R} , the set of real numbers, by	
1 02	1	3
2018 PI Q2	$g(x) = \frac{1}{5}x - 4.$	
2	Find the inverse function, $g^{-1}(x)$.	
	Functions, f and g , are given by $f(x) = 3 + \cos x$ and $g(x) = 2x$, $x \in \mathbb{R}$.	
97	(a) Find expressions for	
2018 P2	(i) $f(g(x))$ and	2
201	(ii) $g(f(x))$.	1
	Functions f and g are defined on suitable domains by $f(x) = 5x$ and $g(x) = 2\cos x$.	
2017 PI QI		3
017 F	(a) Evaluate $f(g(0))$.	
20	(b) Find an expression for $g(f(x))$.	
90	A function, h , is defined by $h(x) = x^3 + 7$, where $x \in \mathbb{R}$.	
2017 P1 Q6	Determine an expression for $h^{-1}(x)$.	1
	betermine an expression for $n = (x)$.	2

2016 PI Q6	Functions f and g are defined on $\mathbb R$, the set of real numbers.		
	The inverse functions f^{-1} and g^{-1} both exist.		
	(a) Given $f(x) = 3x + 5$, find $f^{-1}(x)$.		2
	(b) If $g(2) = 7$, write down the value of $g^{-1}(7)$.		3
212	The functions f and g are defined on \mathbb{R} , the set of real numbers by $f(x) = 2x^2 - 4x + 5$ and $g(x) = 3 - x$.		
2016 PI Q12	(a) Given $h(x) = f(g(x))$, show that $h(x) = 2x^2 - 8x + 11$.		3
	(b) Express $h(x)$ in the form $p(x+q)^2 + r$.		1
25	A function g is defined on \mathbb{R} , the set of real numbers, by $g(x) = 6 - 2x$.		
2015 P1Q5	(a) Determine an expression for $g^{-1}(x)$.	2	
207	(b) Write down an expression for $g(g^{-1}(x))$.	1	
	Functions f and g are defined on suitable domains by		
	f(x) = 10 + x and $g(x) = (1 + x)(3 - x) + 2$.		
<i>Q</i> 2	(a) Find an expression for $f(g(x))$.	2	
2015 P2 Ç	(b) Express $f(g(x))$ in the form $p(x+q)^2 + r$.	3	
201	(c) Another function h is given by $h(x) = \frac{1}{f(g(x))}$.		
	What values of x cannot be in the domain of h ?	2	
	Functions f and g are defined on suitable domains by		
23	f(x) = x(x-1) + q and $g(x) = x + 3$.		
2014 P2 Q3	(a) Find an expression for $f(g(x))$.	2	
201	(b) Hence, find the value of q such that the equation $f(g(x)) = 0$ has equal roots.	4	

2012 P2 Q1	Functions f and g are defined on the set of real numbers by	
	$\bullet f(x) = x^2 + 3$	
	• $g(x) = x + 4$.	
	(a) Find expressions for:	3
	(i) $f(g(x))$;	
	(ii) $g(f(x))$.	
	(b) Show that $f(g(x)) + g(f(x)) = 0$ has no real roots.	3
	Functions f , g and h are defined on the set of real numbers by	
	$\bullet f(x) = x^3 - 1$	
	$\bullet g(x) = 3x + 1$	
32	$\bullet h(x) = 4x - 5.$	2
P2 ((a) Find $g(f(x))$.	1
2011 P2 <u>Q</u> 2	(b) Show that $g(f(x)) + xh(x) = 3x^3 + 4x^2 - 5x - 2$.	
	(c) (i) Show that $(x-1)$ is a factor of $3x^3 + 4x^2 - 5x - 2$.	5
	(ii) Factorise $3x^3 + 4x^2 - 5x - 2$ fully.	
	(d) Hence solve $g(f(x)) + xh(x) = 0$.	1
2	Functions f and g are given by $f(x) = 3x + 1$ and $g(x) = x^2 - 2$.	
P2 <i>Q</i> 2	(a) (i) Find $p(x)$ where $p(x) = f(g(x))$.	
2009 P2	(ii) Find $q(x)$ where $q(x) = g(f(x))$.	
2	(b) Solve $p'(x) = q'(x)$.	
	23. Functions f , g and h are defined on suitable domains by	
2008 PI	$f(x) = x^2 - x + 10$, $g(x) = 5 - x$ and $h(x) = \log_2 x$.	
20	(a) Find expressions for $h(f(x))$ and $h(g(x))$.	3
2007 PI	3. Functions f and g, defined on suitable domains, are given by $f(x) = x^2 + 1$ and $g(x) = 1 - 2x$.	
	Find:	
	(a) g(f(x));	2
	(b) $g(g(x))$.	2

PI	3.	Two functions f and g are defined by $f(x) = 2x + 3$ and $g(x) = 2x - 3$, where x is a real number. (a) Find expressions for:	
2006 P.I		(i) $f(g(x))$;	3
		(ii) $g(f(x))$.	
		(b) Determine the least possible value of the product $f(g(x)) \times g(f(x))$.	2
l	4.	Functions $f(x) = 3x - 1$ and $g(x) = x^2 + 7$ are defined on the set of real numbers.	
2005 P.		(a) Find $h(x)$ where $h(x) = g(f(x))$.	2
200		 (b) (i) Write down the coordinates of the minimum turning point of y = h(x). (ii) Hence state the range of the function h. 	2
I	9.	Functions $f(x) = \frac{1}{x-4}$ and $g(x) = 2x + 3$ are defined on suitable domains.	
2003 P.I		(a) Find an expression for $h(x)$ where $h(x) = f(g(x))$.	2
200		(b) Write down any restriction on the domain of h.	1
		2	
Ιd	9.	The function f, defined on a suitable domain, is given by $f(x) = \frac{3}{x+1}$.	
2002W PI		(a) Find an expression for $h(x)$ where $h(x) = f(f(x))$, giving your answer as a fraction in its simplest form.	3
2((b) Describe any restriction on the domain of h .	1
	3.	Functions f and g are defined on suitable domains by $f(x) = \sin(x^\circ)$ and $g(x) = 2x$.	
2 PI		(a) Find expressions for:	
2002		(i) $f(g(x))$;	
		(ii) $g(f(x))$.	2
le	7.	Functions $f(x) = \sin x$, $g(x) = \cos x$ and $h(x) = x + \frac{\pi}{4}$ are defined on a suitable set of real numbers.	
2001 PI		(a) Find expressions for:	
26		(i) $f(h(x))$;	2
		(ii) $g(h(x))$.	<u> </u>
2	3.	$f(x) = 3 - x$ and $g(x) = \frac{3}{x}, x \neq 0$.	
2000 P2		(a) Find $p(x)$ where $p(x) = f(g(x))$.	2
20		(b) If $q(x) = \frac{3}{3-x}$, $x \ne 3$, find $p(q(x))$ in its simplest form.	3

8. Functions f and g are defined on the set of real numbers by

$$f(x) = x - 1$$
$$g(x) = x^{2}.$$

- (a) Find formulae for
 - (i) f(g(x))
 - (ii) g(f(x)).

3