

2016 Biology

Higher

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2016

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for Higher Biology

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive, ie marks should be awarded for what is correct and not deducted for errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) There are no half marks awarded.
- (e) Where a candidate makes an error at an early stage in a multi stage calculation, credit should normally be given for correct follow on working subsequent stages, unless the error significantly reduces the complexity of the remaining stages. The same principle should be applied in questions which require several stages of non-mathematical reasoning.
- (f) Unless a numerical question specifically requires evidence of working to be shown, full marks should be awarded for a correct final answer (including units) on its own.
- (g) Bulleted lists should not be used for extended response questions. Candidates must respond to the "command" word as appropriate and write extended answers in order to communicate fully their knowledge and understanding. Candidate responses in the form of bulleted lists may not be able to access the full range of available marks.
- (h) In the mark scheme, if a word is **underlined** then it is essential; if a word is **(bracketed)** then it is not essential.
- (i) In the mark scheme, words separated by / are alternatives.
- (j) If two answers are given that contradict one another the first answer should be taken. However, there are occasions where the second answer negates the first and no marks are given. There is no hard and fast rule here, and professional judgement must be applied.
- (k) Clear indication of understanding is what is required so:
 - if a description or explanation is asked for, a one word answer is not acceptable
 - if the question asks for **letters** and the candidate gives words and they are correct, then give the mark
 - if the question asks for a word to be **underlined** and the candidate circles the word, then give the mark
 - if the result of a calculation is in the space provided and not entered into a table and is clearly the answer, then give the mark
 - **chemical formulae** are acceptable eg CO₂, H₂O
 - contractions used in the Course Support Notes eg DNA, ATP are acceptable
 - words not required in the syllabus can still be given credit if used appropriately eg metaphase of meiosis.

- (I) Incorrect **spelling** is used:
 - if the term is recognisable then give the mark
 - if the term can easily be confused with another biological term then **do not** give the mark eg ureter and urethra
 - if the term is a mixture of other biological terms then **do not** give the mark, eg mellum, melebrum, amniosynthesis

(m) Presentation of data:

- if a candidate provides two graphs or bar charts, in response to one question (eg one in the question and another at the end of the booklet), mark both and give the higher score
- if a question asks for a particular type of graph/chart and the wrong type is given, then do not give the mark(s). Credit can be given for eg correctly labelling the axes, plotting the points, joining the points wither with straight lines or curves (best fit rarely used), constructing the height of the bars
- if the x and y data are transposed, then do not give the mark
- if the graph used less than 50% of the axes, then do not give the mark
- if 0 is plotted when no data is given, then do not give the mark (ie candidates should only plot the data given)
- no distinction is made between bar charts and histograms for marking purposes. For information: bar charts should be used to show discrete features, have descriptions of the x axis and have separate columns; histograms should be used to show continuous features, have ranges of numbers on the x axis and have continguous columns)
- where data is read off a graph it is often good practice to allow for acceptable minor error. An answer may be $7 \cdot 3 \pm 0 \cdot 3$.
- (n) Marks are awarded only for a valid response to the question asked. For example, in response to questions that ask candidate to:
 - identify, name, give or state, they need only name or present in brief form;
 - describe, they must provide a statement or structure of characteristics and/or features;
 - **explain**, they must relate cause and effect and/or make relationships between things clear;
 - **compare**, they must demonstrate knowledge and understanding of the similarities and/or differences between things;
 - calculate, they must determine a number from given facts, figures or information;
 - **predict**, they must suggest what may happen based on available information;
 - evaluate, they must make a judgement based on criteria;
 - **suggest**, they must apply their knowledge and understanding of biology to a new situation. Marks will be awarded for any suggestions that are supported by knowledge and understanding of biology.

Marking Instructions for each question

Section 1

Question	Answer	Mark
1.	В	1
2.	А	1
3.	С	1
4.	В	1
5.	С	1
6.	В	1
7.	А	1
8.	А	1
9.	С	1
10.	С	1
11.	А	1
12.	D	1
13.	А	1
14.	D	1
15.	D	1
16.	В	1
17.	D	1
18.	С	1
19.	В	1
20.	D	1

Section 2

Que	Question		Expected Answer(s)	Max Mark	Additional Guidance	
1.	(a)		Amino acid	1		
	(b)		Protein	1		
			OR			
			Enzymes			
	(c)		Cut/cleave AND combine polypeptide chains	1	NOT – post translational modification NOT – cleave/cut alone	
			OR			
			add phosphate/carbohydrate			
	(d)		Name: <u>Alternative</u> (RNA) splicing (1)	2	NOT - a description suggesting the order of exons is changed	
			Description: Different (combinations of/variety of) <u>exons</u> are included/ spliced together (in the mature transcript/ RNA) (1)		NOT - depends what sections are treated as exons and introns	
2.	(a)	(i)	Prokaryotic has circular (chromosome) AND eukaryotic has	1	NOT – eukaryote has linear chromosome and prokaryote has not	
			linear (chromosomes)		NOT – prokaryotic has plasmid alone.	
		(ii)	Proteins/Histone	1		
	(b)		Mitochondrion	1		
			OR			
			Chloroplast			
			OR			
			plasmid in yeast			

Ques	Question		Expected Answer(s)	Max Mark	Additional Guidance
	(c)	(i)	Nucleotides added to $3'$ end	1	
			OR		
			Polymerase (only) adds to 3' end		
			OR		
			Polymerase works from 5' to 3'		
			OR		
			DNA/it is replicated from 5' to 3'		
		(ii)	(DNA) Nucleotides/primer	1	NOT – bases/helicase/ligase/polymerase
	(d)		So that an exact copy/complete set of genetic material /genetic instructions /genetic information/genes/DNA/ chromosomes AND is passed to (each)	1	
			new cell/daughter cell/the next generation		NOT – cell replication
			OR		
			during mitosis/cell division		
			OR		
			So new cells have the same genetic material/genetic instructions /genetic information/genes/DNA/ chromosomes as the original cell		
			OR		
			To maintain the number of chromosomes/chromosome complement in new/daughter cells		NOT – so daughter cells can carry out their normal function alone.

Que	stion	Expected Answer(s)	Max Mark	Additional Guidance	
3.	(a)	It differentiates into/specialises into/ becomes many/lots of/all/wide range of cell types/tissue types OR It is pluripotent/totipotent	1	NOT – multipotent	
	(b)	Different proteins will be produced/ synthesised/made (resulting in different cell types) OR Only proteins characteristic of that cell type are produced/synthesised/ made	1	NB : Protein coded for ≠ synthesised	
	(C)	Repair of damaged/diseased organs/cells/tissues OR Production of tissues for grafting/ transplant OR Correct examples eg bone marrow transplants/(make) skin grafts/ to treat a named disease/treat burns	1	NOT – cure/treat diseases alone NOT – research diseases	
	(d)	Embryo/it/baby/foetus/a potential life is destroyed/killed/not allowed to develop OR Embryos which would have been destroyed are being put to good use OR Use of stem cells for drug testing rather than animals OR Diseases could be cured	1	NOT – religious reasons alone	

Que	Question		Expected Answer(s)		Additional Guidance
4.	(a)	(i)	From start/0 – 5 weeks/over first 5 weeks it increased from <u>0</u> – 9·2 (1) From 5 (– 7) weeks it remained constant/levelled off (1) Correct values for 2 statements but no units (weeks) = 1 mark	2	
		(ii)	200	1	
		(iii)	В	1	
	(b)		BIt/number of shoots is highest/ greatest (at 7 weeks)(1)and(1)this is (still) increasing(1)OR(1)CIt/number of shoots is increasing more/most rapidly(1)and(1)B is slowing down/levelling off(1)	2	
	(c)		Greatest (average) <u>root</u> length/ Longer <u>roots</u> (1) More water absorbed for photolysis/photosynthesis OR More nutrients absorbed for named process eg protein synthesis/ATP production etc. (1)	2	

Qı	estic	n	Expected Answer(s)	Max Mark	Additional Guidance
5.	(a)	(i)	Sympatric	1	
		(ii)	Prevents/interrupts/stops/blocks	1	
			gene flow/gene exchange/breeding/ mating		NOT – stops populations from mating/ breeding alone
			between populations		
			OR		
			Prevents interbreeding		
		(iii)	(DNA) sequence data/genome analysis would be similar	1	
			OR		
			They/the two populations can inter breed/breed together to produce fertile offspring		NOT – they can breed to produce fertile offspring
			(or converse statement)		NOT – answers referring to 2 species instead of 2 populations
	(b)	(i)	(At least one) extra set of chromosomes	1	
			OR		
			More than 2 (complete) sets of chromosomes.		NOT – more than 1 set of chromosomes
			OR		
			2n becomes 3n/4n etc.		NOT – 3n/4n/5n alone
			OR		
			genome duplication/multiple sets of genome		NOT – sets of DNA/genes/genetic material in place of chromosomes
		(ii)	Provides additional material upon which natural selection can work on	1	NOT – increased yield/size/seedless varieties
			OR		NOT – Polyploidy provides/creates new
			Additional sets of chromosomes can mask harmful mutations		variation for natural selection
			OR		
			Allows (advantageous) mutations to occur in extra chromosomes		
			OR		
			Can produce fertile/stable hybrids		
			OR		
			They are more vigorous/disease resistant/grow faster		NOT – hybrid vigour

Ques	tion		Expected Answer(s)	Max Mark	Additional Guidance
6.	(a)		Name: Lag phase (1)	2	NOT – l <u>og</u> (check handwriting)
					NOT – lagg <u>ing</u>
			Explanation: (time required for) DNA		NOT – enzymes are starting to work
			replication/enzyme induction/enzyme production		NOT - enzymes are being switched on
			OR		NOT – cells are getting used to the
			Cells can't divide until DNA replicates /enzymes induced (1)		environment/acclimatising
			NB: Correct explanation for lag phase with wrong name = 1 mark		NB : Incorrectly named phase with matching explanation = 0 marks
	(b)	(i)	Stationary	1	NOT – 'C' alone
		(ii)	Kills/inhibits/toxic to/prevents growth of other bacteria	1	NOT – kills other bacteria alone
			AND		
			reduces/eliminates competition from other bacteria		
			OR		
			allows it to outcompete other bacteria		
			OR		
			Eliminates interspecific competition		
	(c)		Cell number decreases/line goes down	1	
			during/in		
			death phase/phase D/at the end/ eventually		

Qı	uestio	'n	Expected Answer(s)	Max Mark	Additional Guidance
7.	A		 Anabolism is a synthesis/build up reaction OR Anabolism is build-up of molecules/ substances OR Anabolism is where simple molecules are built up into more complex/large molecules 	1	NB: For full marks to be awarded candidates must have provided at least 1 correct point for anabolism AND at least 1 point for catabolism
			2. Anabolism requires the input/ take up of energy/ATP	1	
			3. Catabolism is breakdown/ degradation of molecules/substances OR	1	
			Catabolism is a break down/degradation reaction		
			OR Catabolism is where complex/large molecules are changed into more simple molecules		
			4. Energy/ATP is released/given off in catabolism	1	NOT – catabolism does not require energy
			5. Both can have reversible and irreversible steps	1	
			6. Both can have alternative routes	1	
				(Max 4)	

Q	uestior	Expected Answer(s)	Max Mark	Additional Guidance
7.	В	1. Conformers' metabolism/ metabolic rate/internal environment is dependent on/affected by surroundings/external environment/ external factors/external variables	1	NB : For full marks to be awarded candidates must give at least 1 correct point for conformers AND regulators.
		2. Conformers use behaviour to maintain optimum metabolic rate	1	
		3. Regulators can maintain/control/ regulate their metabolism/metabolic rate/internal environment/ regardless of external conditions	1	
		4. Regulators requires energy for homeostasis/negative feedback	1	
		5. Conformers have narrower (ecological) niches (or converse)	1	
		6. Conformers have low <u>er</u> metabolic costs/rates of metabolism (or converse)	1	
			(Max 4)	

Ques	Question		Expected Answer(s)	Max Mark	Additional Guidance
8.	(a)		990	1	
	(b)		As temperature increases population decreases	1	NOT - As the population decreases the temperature increases (Dependent
			OR		variable controlling the independent is wrong)
			The higher the temperature the lower the population		
			NB: If values included (21 to 72)/(123 to 0.1) they must be correct, units not necessary		
			NB: Any description extended beyond the first 4 days negates		
	(c)	(i)	Species: B (1)	2	NOT – As the temperature increased the population increased
			Justification: high population/ population thrived at 72°C/highest temperature		NOT – its optimum temperature is 72°C/ highest temperature
			OR		NOT – can withstand a wider range of temperatures
			higher population than A or C at72°C/highest temperature (1)		
		(ii)	Contain enzymes/proteins which are tolerant of/don't denature at/are resistant to/optimum at/working at high temperatures	1	NOT – they are heat tolerant NOT – extreme temperatures
		(iii)	hot springs/geysers/volcanoes/seabed vents	1	· · ·

Ques	tion		Expected Answer(s)	Max Mark	Additional Guidance
9.	(a)		Name: restriction endonuclease(1)Function: Cuts DNA/ genes out OR(1)ORCuts plasmid(1)OR(1)	2	NOT – cuts gene from plasmid
			Name: Ligase(1)Function: Joins/seals/inserts gene into plasmid(1)ORJoins/seals/ sticky ends of plasmid and gene(1)		NOT – <u>to</u> plasmid NOT – joins sticky ends alone NOT – joins together gene and plasmid
	(b)	(i)	Grow/culture with ampicillin/ antibiotic (1) Only cells containing the plasmid/that gene/transformed cells/modified cells can grow/survive (1)	2	NOT – only plasmids with gene survive NOT – only resistant cells survive
		(ii)	DNA/gene/plasmid/genetic info. passed from/between/to cell/bacterium/bacteria in same generation/without reproduction/in same population/ neighbouring bacteria OR DNA/gene/plasmid/genetic information/vector passed by conjugation/transduction/ transformation (or description) OR DNA/gene/plasmid/genetic info. passed from prokaryote to eukaryote	1	NOT – DNA/gene/plasmid/genetic info. passed from one bacterium to another alone NOT – term <i>conjugation</i> alone
9.	(c)		Eliminates/kills other/contaminating/unwanted microorganisms/bacteria OR Eliminates competition from other/unwanted microorganisms/bacteria OR So only insulin-producing bacteria can grow	1	 NOT - contamination alone NOT - answers relating to idea of patient safety NB: germs ≠ microorganisms NOT - Reduces contamination by other Microorganisms

Ques	Question		Expected Answer(s)	Max Mark	Additional Guidance	
10.	(a)	(i)	To allow (time) for respiration/metabolic rate to be affected by temperature/conditions/change OR To allow crickets (time) to acclimatise/adjust/respond to/get used to temperature/condition/change OR To allow flask/equipment/crickets (time) to reach the temperature	1	Environment / surroundings / ≠ flask / situation conditions NOT - to allow crickets time to adapt NOT - to allow time for (steady rate of) respiration NOT - to acclimatise alone NOT - to acclimatise alone NOT - To allow it to adjust to the conditions NOT - to allow environment to reach the temperature	
		(ii)	Description: (exactly) the same set up/experiment OR	2	NOT – a flask with no crickets	
			full description(same size/volume of flask, in water bath and CO ₂ sensor) AND		NOT – allow comparison alone	
			(With) no crickets/dead crickets/ glass beads (1) Explanation: To show it was the crickets that respired/metabolised/ produced the CO ₂		NOT – to prove the independent variable is causing the result	
			OR No CO ₂ production/respiration/ metabolism without live crickets/ with dead crickets/with no crickets/with control (1)			
	(b)		Axes labelled correctly and scales to fill at least half the grid (1) Points plotted correctly and joined with a ruler (1)	2	Common zero is acceptable 5 boxes = 200 or 5 boxes = 250 are both acceptable scales. Y axis does not have to start at 0 Mark not awarded if line extended to zero from 5°C If axes wrong way around but points plotted correctly, award 1 mark	
	(c)		As the temperature increased, the (rate of) metabolism increased	1	NOT - rate of CO ₂ production/ respiration alone NOT - As metabolism increases temperature decreases	

Ques	Question		Expected Answer(s)		Additional Guidance	
11.	(a)	(i)	Colchicine concentration	1	NOT - colchicine alone NOT - concentration alone	
		(ii)	50 plants/seeds at each concentration	1	NOT – many plants at each concentration NOT – repeated and average calculated NOT – 50 plants used alone NOT – 50 plants and average collected	
	(b)	(i)	8	1		
		(ii)	3:7	1		
	(C)		More photosynthesis(1)More energy for growth/seed production(1)	2		
12.	(a)	(i)	(female) mosquito	1	NOT – mosquito saliva NOT – male mosquito	
		(ii)	Females/they need the <u>blood</u> for egg production OR males don't produce eggs so don't need <u>blood</u>	1	NOT – females need blood for eggs alone NOT – females need blood to carry eggs	
	(b)		(The host is harmed) by losing energy/ nutrients/food OR (Host harmed as)parasite feeds off it/ gains nutrients from it	1	NOT – host loses resources NOT – destroys liver/red blood cells	
	(c)		Method 1: Mosquito discouraged/stopped from biting/feeding/fewer people bitten AND it cannot spread parasite/disease/ virus/bacteria OR Method 2: There areno/fewer(parasites to transmit to the human/mosquito (1)	1		

Question		on	Expected Answer(s)		Additional Guidance	
13	(a)	(i)	110	1		
		(ii)	3100	1		
		(iii)	325	1		
	(b)		Zebra mussel population increased and unionid decreased	1	one species must be named order not important	
					NOT – description of 2003 numbers alone	
	(c)		Unionid/native population drops (from 140) to zero/killed off/ eliminated	1	NOT – Unionid decreases	
	(d)		New environment may be free from/ have less/have no predators OR parasite/disease OR pathogens OR competitors (which would limit its population in its native habitat)	1		
	(e)		Number/abundance AND	1		
			frequency of alleles in a population/ gene pool/species		NOT – ecosystem/community	

Question			Expected Answer(s)	Max Mark	Additional Guidance
14.	A	(i)	Weeds : 1. Weeds compete with/inhibit (crop) plants AND reduce productivity/growth/yield	1	NB: For full marks to be awarded, candidates must give at least 1 correct point for weeds AND at least 1 correct point for pests AND at least 1 correct point for diseases.
			2. <u>Annual</u> weeds have rapid growth/short life cycles/ complete life cycle within a year/ produce many seeds/ produce seeds with long term viability	1	
			OR <u>Perennial</u> weeds have storage organs/vegetative reproduction		
			Pests : 3. Pests eat/damage crops/plants/plant parts AND reduce productivity/growth/yield	1	
			4. Any 2 from nematodes/insects/molluscs	1	Not examples eg aphid
			Diseases : 5. Diseases are caused by bacteria/fungi/viruses	1	
			6. Diseases are often spread by invertebrates/pests	1	
				(Max 4)	

Question			Expected Answer(s)	Max Mark	Additional Guidance
14.	Α	(ii)	a. Weeds/pests/diseases can be controlled by <u>cultural</u> means AND example (ploughing/weeding/ roguing/crop rotation/time of	1	
			sowing) b. Selective weed killer/selective herbicide only kills/affects certain plant species/broad leaved weed	1	NOT – descriptions of herbicides mimicking plant hormones etc.
			 c. Systemic weed killer spreads through(vascular system)/ enters plant AND kills (whole) plant/stops regrowth/ 	1	systematic negates correct description
			regeneration OR		
			Systemic pesticide/insecticide spreads through/enters plant/ in the phloem		
			AND kills pest feeding on plant		
			d. Applications of fungicide based on disease forecasts are more effective than treating diseased	1	
			crop e. Compensatory mark to be awarded if none of points b /c /d awarded but fungicide, pesticide/ insecticide and herbicide are all named	1	
			f. Biological control is use of predator/parasite of pest	1	
			g. example of a problem with chemical/biological control		
			 ANY one from : toxicity to non pest/target species persistence in the environment accumulation/magnification in food chains/food webs production of resistant populations predator/parasite/control organism/disease organism becomes invasive/outcompetes/ prove on (parasitized other species) 	1	
			preys on/parasitizes other species h. Integrated pest management combines biological and chemical control OR chemical and cultural control	1	
			OR biological and cultural control		NOT - IPM as abbreviation
			OR biological, cultural and chemical control	(Max 4)	

Question		า	Expected Answer(s)	Max Mark	Additional Guidance
14.	В	(i)	 Social hierarchy is a rank order/pecking order in a group of animals OR dominant/alpha AND subordinates/lower rank 	1	NOT – most important/ strongest
			2. aggression/fighting/conflict/violence reduced	1	NOT – prevents conflict/aggression/conflict/ violence
			3. ritualistic display/appeasement/ threat/submissive behaviour	1	
			OR alliances formed to increase social status OR		
			descriptive examples		
			 ensures best/successful genes/characteristics are passed on 	1	NOT – ensures genes from dominant are passed on
			OR guarantees experienced leadership		
			Max 3 marks from points 1 to 4		
			 cooperative hunting is where animals hunt in a group/together AND one from 	1	NOT – being in a larger group means they get more food
			increases hunting success OR		NOT allows larger prey to be hunted/targeted – must be successful
			allows larger prey to brought down OR		
			more successful than hunting individually		
			6. (subordinate) animals all get more food/energy than hunting alone	1	
			7. less energy used/lost per individual	1	
				(Max 4)	

Question			Expected Answer(s)	Max Mark	Additional Guidance
14.	В	(ii)	a. Any 2 examples - bees, wasps, ants, termites	1	
			 b. Only some members of colony (hive reproduce / are fertile) 	1	NOT – some members of colony produce children
			OR Queen <u>AND</u> males/drones mate/ reproduce		NOT – only queen reproduces alone
			OR		
			only queen lays eggs		NOT – queen gives birth
			OR		
			some/most members of colony are sterile/infertile/do not reproduce		
			OR		
			some/most of colony are workers who are sterile		
			c. examples of worker roles ANY one from :	1	
			 raise relatives defend the hive collect pollen/nectar/food waggle dance to show direction of food etc. 		NOT – waggle dance alone
			d. social insects show kin selection/altruism between related individuals	1	
			e. increases/helps survival of shared genes		
			OR		
			so shared genes are passed on to next generation		
			f. Some are <u>keystone species</u> which are crucial for (stability of) the ecosystem/ food web/pollination/soil fertility	1	NOT – some are keystone species which are crucial for the
			OR		environment
			The removal of <u>keystone species</u> can disrupt/collapse the ecosystem/food web		
				(Max 4)	

[END OF MARKING INSTRUCTIONS]