Higher Chemistry Past Papers

September 2020

1 About this study aid...

This document has been designed to make revision and self-marking easy for students studying Higher chemistry in Scotland.
For those interested in how it was made, it has been compiled using LaTex.
The information in this publication has been reproduced to support SQA qualifications only on a noncommercial basis and can only be shared on that condition.

2 How to use...

The following two pages contain tables which cross-reference the course topics with SQA question numbers for the years 2015-19.
The first table is for multiple choice questions; the second accesses Section 2 questions. Each question number is hyperlinked to the SQA question and clicking it will take you there. The question pages have further hyperlinks taking you either back to the topic grid or to the SQA marking instructions.
Of course, you can always just treat it as a succession of question papers with marking instructions. This will be useful for end-of-course timed revision.

CfE Higher Past Papers - Multiple Choice Qs						
	Topic	2015	2016	2017	2018	2019
$\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \stackrel{4}{5} \end{aligned}$	Periodicity	2, 3			4	
	Structure and Bonding	1, 4, 5	1, 2, 3	$1,3,4,$	5	1, 2, 16
	Oxidising and Reducing Agents	20	$\begin{aligned} & 17,18, \\ & 19 \end{aligned}$	13	18, 19	3, 4
$\begin{aligned} & N \\ & \stackrel{N}{5} \\ & \hline \end{aligned}$	Systematic carbon chemistry	15	12	7, 10	7, 8	7,9
	Alcohols, Carb. acids, Esters, Fats and Oils	$\begin{array}{ll} \hline 7, & 8, \\ 14 \end{array}$	7	8, 19		5
	Soaps, Detergents and Emulsions		9, 10			
	Proteins		8		10	6
	Oxidation of Food	$\begin{aligned} & 6,10,11 \\ & 12 \end{aligned}$	6, 11	2	6,9	8, 11
	Fragrances	13	5	11		10
	Skincare			9		
$\begin{aligned} & m \\ & \vdots \\ & \hline \end{aligned}$	Controlling the rate	19	4		1, 2, 3	20, 22, 24
	Getting the most from reactants		13	6, 14	$\begin{array}{ll} 12, \quad 13 \\ 14 \end{array}$	$\begin{array}{lr} 13, & 14, \\ 15, & 17,18 \end{array}$
	Equilibria	18	15	17, 20	15, 20	23
	Chemical Energy	16, 17	14, 16	12, 18	16, 17	21
	Chemical Analysis		20	15		
	Problem Solving			16	11	12, 19, 25

Table 1: Topic Grid Multiple Choice

CfE Higher Past Papers - Section 2 Questions						
	Topic	2015	2016	2017	2018	2019
$\begin{aligned} & - \\ & \stackrel{1}{5} \\ & \stackrel{1}{5} \end{aligned}$	Periodicity	1(b)(ii)	2a-b	1b	1a 2a	2a-b
	Structure and Bonding	$\begin{aligned} & \text { 1a\&b(i\&iii) } \\ & \text { 12ci } \end{aligned}$	3a 5cii 12ai	$\begin{aligned} & \text { 1a } 1 \mathrm{c} \\ & 5 \mathrm{cii} \\ & 6 \mathrm{c} \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{~b} \quad 2 \mathrm{~b}-\mathrm{c} \\ & 9 \mathrm{~b} \end{aligned}$	$\begin{aligned} & \text { 2c 4di 6a } \\ & \text { 12b } \end{aligned}$
	Oxidising and Reducing Agents	12aii	11bii	9bi	11b	12d
$\begin{aligned} & N \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	Systematic carbon chemistry	4d(ii)	5bii		4eii	7biii
	Alcohols, Carb. acids, Esters, Fats and Oils	11a-c	$\begin{aligned} & 5 \text { 7biii-iv } \\ & \text { 7c } \end{aligned}$	4a	3ci 6a 9c	4c 4dii 7b
	Soaps, Detergents and Emulsions			9a		12a
	Proteins	6	6	9c	6c	8 a
	Oxidation of Food	13a	11bi\&iii	6 a	$\begin{aligned} & 4 \quad 7 \mathrm{cii} \\ & \text { 9diii } \end{aligned}$	4 e
	Fragrances	4d(i)			7a	4diii
	Skincare	12cii-iii	7		6b	7a
$\begin{aligned} & m \\ & \stackrel{H}{5} \end{aligned}$	Controlling the rate	2	1 a 1 c	$\begin{aligned} & \text { 2aii } \\ & \text { 2aiv } \end{aligned}$		9a
	Getting the most from reactants	3b 7a 12aiii	$\begin{aligned} & \text { 3b 7ciii } \\ & \text { 8bii } \end{aligned}$	5aii 9bii	$\begin{aligned} & \text { 2cii 3cii- } \\ & \text { iii 7b } \\ & \text { 11c 12b } \end{aligned}$	1ai 6 6aiii 6bii $8 b-c$ 10b-c
	Equilibria	8b	8a	2aiii		12c
	Chemical Energy	7b-c	8c 9b	$\begin{aligned} & \text { 2ai 4b } \\ & \text { 5b } \end{aligned}$	8	59 c
	Chemical Analysis	3a 10 12ai	1bi $\quad 5 \mathrm{ci}$ $6 \mathrm{~d} \quad 11 \mathrm{a}$ 11 biv	2b 5ai $\text { 5ci } 7$	2d 3a-b 9d 11a	4bii 9b 10
	Open ended	59	410	38	510	311
	Problem Solving	$\begin{aligned} & \hline 4(a-c) 4 e \quad 8 a \\ & 11 d \text { 12b } 13 \mathrm{~b} \end{aligned}$	1bii 2 c 3 c 6 eii 8 bi 9 a 12	$\begin{aligned} & \hline 6 \mathrm{~b} \quad 7 \mathrm{~d} \\ & 9 \mathrm{~d} 10 \end{aligned}$	$\begin{aligned} & \text { 4eii } \quad 7 \mathrm{ci} \\ & 9 \mathrm{a} \quad 12 \mathrm{a} \\ & 12 \mathrm{bii} \end{aligned}$	$\begin{aligned} & \text { 2d 4a 4bi } \\ & \text { 6a 6bi } \end{aligned}$

Table 2: Section 2 Questions

X713/76/02

Chemistry

Section 1 - Questions

THURSDAY, 28 MAY
1:00 PM - 3:30 PM

Instructions for the completion of Section 1 are given on Page two of your question and answer booklet X713/76/01.

Record your answers on the answer grid on Page three of your question and answer booklet.
Reference may be made to the Chemistry Higher and Advanced Higher Data Booklet.
Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not you may lose all the marks for this paper.

SECTION 1-20 marks

Attempt ALL questions

1. The elements nitrogen, oxygen, fluorine and neon

A can form negative ions
B are made up of diatomic molecules
C have single bonds between the atoms
D are gases at room temperature.
2. Which of the following equations represents the first ionisation energy of fluorine?

A $\quad \mathrm{F}^{-}(\mathrm{g}) \rightarrow \mathrm{F}(\mathrm{g})+\mathrm{e}^{-}$
B $\quad \mathrm{F}^{-}(\mathrm{g}) \rightarrow \frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{e}^{-}$
C $\mathrm{F}(\mathrm{g}) \rightarrow \mathrm{F}^{+}(\mathrm{g})+\mathrm{e}^{-}$
D $\quad \frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{F}^{+}(\mathrm{g})+\mathrm{e}^{-}$
3. Which of the following atoms has least attraction for bonding electrons?

A Carbon
B Nitrogen
C Phosphorus
D Silicon
4. Which of the following is not an example of a van der Waals' force?

A Covalent bond
B Hydrogen bond
C London dispersion force
D Permanent dipole - permanent dipole attraction
5. Which of the following has more than one type of van der Waals' force operating between its molecules in the liquid state?

A $\mathrm{Br}-\mathrm{Br}$
B $\quad \mathrm{O}=\mathrm{C}=\mathrm{O}$

C

D

6. Oil molecules are more likely to react with oxygen in the air than fat molecules. During the reaction the oil molecules

A are reduced
B become rancid
C are hydrolysed
D become unsaturated.
7. Which of the following mixtures will form when $\mathrm{NaOH}(\mathrm{aq})$ is added to a mixture of propanol and ethanoic acid?

A Propanol and sodium ethanoate
B Ethanoic acid and sodium propanoate
C Sodium hydroxide and propyl ethanoate
D Sodium hydroxide and ethyl propanoate
8. Oils contain carbon to carbon double bonds which can undergo addition reactions with iodine.

The iodine number of an oil is the mass of iodine in grams that will react with 100 g of oil.

Which line in the table shows the oil that is likely to have the lowest melting point?

	Oil	Iodine number
A	Corn	123
B	Linseed	179
C	Olive	81
D	Soya	130

9. When an oil is hydrolysed, which of the following molecules is always produced?
$\begin{array}{ll}\text { A } & \mathrm{COOH} \\ & \mathrm{CHOH} \\ & \mathrm{COOH}\end{array}$

B

C $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$
D $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COOH}$
10. Enzymes are involved in the browning of cut fruit.

One reaction taking place is:

Which of the following correctly describes the above reaction?
A Oxidation
B Reduction
C Hydrolysis
D Condensation
11. Which of the following statements is correct for ketones?

A They are formed by oxidation of tertiary alcohols.
B They contain the group $-C-$
C They contain a carboxyl group.
D They will not react with Fehling's solution.
12. Carvone is a natural product that can be extracted from orange peel.

Carvone

Which line in the table correctly describes the reaction of carvone with bromine solution and with acidified potassium dichromate solution?

	Reaction with bromine solution	Reaction with acidified potassium dichromate solution
A	no reaction	no reaction
B	no reaction	orange to green
C	decolourises	orange to green
D	decolourises	no reaction

13. The structure of isoprene is

A

B

C

D

14. The antibiotic, erythromycin, has the following structure.

To remove its bitter taste, the erythromycin is reacted to give the compound with the structure shown below.

Which of the following types of compound has been reacted with erythromycin to produce this compound?

A Alcohol
B Aldehyde
C Carboxylic acid
D Ketone
15. Which of the following is an isomer of 2,2-dimethylpentan-1-ol?

A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
B $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
16. Consider the reaction pathway shown below.

According to Hess's Law, the ΔH value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for reaction Z to Y is
A +74
B $\quad-74$
C +346
D -346 .
17. $\mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})$
$\Delta H=+60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{I}(\mathrm{g})$
$\Delta H=+243 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{I}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{I}^{-}(\mathrm{g})$
$\Delta H=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Which of the following would show the energy diagram for $\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{g})$?
A

B

D

18. Which of the following statements regarding a chemical reaction at equilibrium is always correct?

A The rates of the forward and reverse reactions are equal.
B The concentration of reactants and products are equal.
C The forward and reverse reactions have stopped.
D The addition of a catalyst changes the position of the equilibrium.
19. A reaction has the following potential energy diagram.

The activation energy for the forward reaction is
A $X-Y$
B $Y-X$
C $Y-Z$
D Z-Y.
20. Which of the following will react with Br_{2} but not with I_{2} ?
$\mathrm{A} \mathrm{OH}^{-}$
B $\mathrm{SO}_{3}{ }^{2-}$
C Fe^{2+}
D Mn^{2+}
[END OF SECTION 1. NOW ATTEMPT THE QUESTIONS IN SECTION 2 OF YOUR QUESTION AND ANSWER BOOKLET.]

SECTION 2 - 80 marks

Attempt ALL questions

1. Volcanoes produce a variety of molten substances, including sulfur and silicon dioxide.
(a) Complete the table to show the strongest type of attraction that is broken when each substance melts.

Substance	Melting point $\left({ }^{\circ} \mathrm{C}\right)$	Strongest type of attraction broken when substance melts
sulfur	113	
silicon dioxide	1610	

(b) Volcanic sulfur can be put to a variety of uses. One such use involves reacting sulfur with phosphorus to make a compound with formula $\mathrm{P}_{4} \mathrm{~S}_{3}$.
(i) Draw a possible structure for $\mathrm{P}_{4} \mathrm{~S}_{3}$.
(ii) Explain why the covalent radius of sulfur is smaller than that of phosphorus.

1. (b) (continued)
(iii) The melting point of sulfur is much higher than that of

Explain fully, in terms of the structures of sulfur and phosphorus molecules and the intermolecular forces between molecules of each element, why the melting point of sulfur is much higher than that of phosphorus.

phosphorus.

* X 713760107 *

2. (a) A student investigated the effect of changing acid concentration on reaction rate. Identical strips of magnesium ribbon were dropped into different concentrations of excess hydrochloric acid and the time taken for the magnesium to completely react recorded.
A graph of the student's results is shown below.

Use information from the graph to calculate the reaction time, in seconds, when the concentration of the acid was $1.0 \mathrm{moll}^{-1}$. (
2. (continued)
(b) The rate of reaction can also be altered by changing the temperature or using a catalyst.
(i) Graph 1 shows the distribution of kinetic energies of molecules in a gas at $100^{\circ} \mathrm{C}$.

Add a second curve to graph 1 to show the distribution of kinetic energies at $50^{\circ} \mathrm{C}$.
(ii) In graph 2, the shaded area represents the number of molecules with the required activation energy, E_{a}.

Draw a line to show how a catalyst affects the activation energy.
3. (a) Methyl cinnamate is an ester used to add strawberry flavour to foods. It is a naturally occurring ester found in the essential oil extracted from the leaves of strawberry gum trees.
To extract the essential oil, steam is passed through shredded strawberry gum leaves. The steam and essential oil are then condensed and collected.
(i) Complete the diagram to show an apparatus suitable for carrying out this extraction.
(An additional diagram, if required, can be found on Page thirtyseven).

(ii) The essential oil extracted is a mixture of compounds.

Suggest a technique that could be used to separate the mixture into pure compounds.
(b) A student prepared a sample of methyl cinnamate from cinnamic acid and methanol.
cinnamic acid + methanol \rightarrow methyl cinnamate + water mass of one mole mass of one mole mass of one mole $=148 \mathrm{~g} \quad=32 \mathrm{~g} \quad=162 \mathrm{~g}$
6.5 g of cinnamic acid was reacted with 2.0 g of methanol.
3. (b) (continued)
(i) Show, by calculation, that cinnamic acid is the limiting reactant. (One mole of cinnamic acid reacts with one mole of methanol.)
(ii) (A) The student obtained 3.7 g of methyl cinnamate from 6.5 g of cinnamic acid.
Calculate the percentage yield.
(B) The student wanted to scale up the experiment to make 100 g of methyl cinnamate.
Cinnamic acid costs $£ 35 \cdot 00$ per 250 g.
Calculate the cost of cinnamic acid needed to produce 100 g of methyl cinnamate.
4. Up to 10% of perfumes sold in the UK are counterfeit versions of brand name perfumes.
One way to identify if a perfume is counterfeit is to use gas chromatography. Shown below are gas chromatograms from a brand name perfume and two different counterfeit perfumes. Some of the peaks in the brand name perfume have been identified as belonging to particular compounds.

Brand name perfume
(A) linalool
(B) citronellol
(C) geraniol
(D) eugenol
(E) anisyl alcohol
(F) coumarin
(G) benzyl salicylate

Counterfeit A

Counterfeit B

4. (continued)
(a) Identify one compound present in the brand name perfume that appears in both counterfeit perfumes.
(b) Some compounds in the brand name perfume are not found in the counterfeit perfumes. State another difference that the chromatograms show between the counterfeit perfumes and the brand name perfume.
(c) The gas used to carry the perfume sample along the chromatography column is helium.
(i) Suggest why helium is used.
(ii) Apart from the polarity of the molecules, state another factor that would affect the retention time of molecules during gas chromatography.
4. (continued)
(d) Many of the compounds in perfumes are molecules consisting of joined isoprene units.
(i) State the name that is given to molecules consisting of joined isoprene units.
(ii) Geraniol is one of the compounds found in perfume. It has the

3,7-dimethylocta-2,6-dien-1-ol

Linalool can also be present. Its structural formula is shown.

(A) State the systematic name for linalool.
(B) Explain why linalool can be classified as a tertiary alcohol.

4. (continued)
(e) Coumarin is another compound found in the brand name perfume. It is
present in the spice cinnamon and can be harmful if eaten in large quantities.
The European Food Safety Authority gives a tolerable daily intake of coumarin at 0.10 mg per kilogram of body weight.
1.0 kg of cinnamon powder from a particular source contains 4.4 g of coumarin. Calculate the mass of cinnamon powder, in g , which would need to be consumed by an adult weighing 75 kg to reach the tolerable daily intake.
5.

The Periodic Table is an arrangement of all the known elements in order of increasing atomic number. The reason why the elements are arranged as they are in the Periodic Table is to fit them all, with their widely diverse physical and chemical properties, into a logical pattern.
Periodicity is the name given to regularly-occurring similarities in physical and chemical properties of the elements.
Some Groups exhibit striking similarity between their elements, such as Group 1, and in other Groups the elements are less similar to each other, such as Group 4, but each Group has a common set of characteristics.

Adapted from Royal Society of Chemistry, Visual Elements (rsc.org)
Using your knowledge of chemistry, comment on similarities and differences in the patterns of physical and chemical properties of elements in both Group 1 and Group 4.
6. Uncooked egg white is mainly composed of dissolved proteins. During cooking processes, the proteins become denatured as the protein chains unwind, and the egg white solidifies.
(a) Explain why the protein chains unwind.
(b) The temperature at which the protein becomes denatured is called the melting temperature. The melting temperature of a protein can be determined using fluorescence. In this technique, the protein is mixed with a dye that gives out visible light when it attaches to hydrophobic parts of the protein molecule. The hydrophobic parts of the structure are on the inside of the protein and the dye has no access to them unless the protein unwinds.
(i) Ovalbumin is a protein found in egg white. Part of the structure of unwound ovalbumin is shown below.

Circle the part of the structure to which the hydrophobic dye is most likely to attach.
6. (continued)
(c) Once cooked and eaten, the digestive system breaks the protein chains into amino acids with the help of enzymes.
(i) State the name of the digestion process where enzymes break down proteins into amino acids.
(ii)

(A) State how many amino acid molecules joined to form this section of protein.
(B) Draw the structure of one amino acid that would be
produced when this section of the protein chain is broken down.
 -
7. Methanol can be used as a fuel, in a variety of different ways.

(a) An increasingly common use for methanol is as an additive in petrol.

Methanol has been tested as an additive in petrol at 118 g per litre of fuel.
Calculate the volume of carbon dioxide, in litres, that would be released by combustion of 118 g of methanol.

$$
2 \mathrm{CH}_{3} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

(Take the molar volume of carbon dioxide to be 24 litres mol^{-1}).
7. (continued)
(b) A student investigated the properties of methanol and ethanol.
(i) The student carried out experiments to determine the enthalpy of combustion of the alcohols.

(A) The student carried out the first experiment as shown, but was told to repeat the experiment as the thermometer had been placed in the wrong position.
Suggest why the student's placing of the thermometer was incorrect.
(B) The student always used $100 \mathrm{~cm}^{3}$ of water.

State another variable that the student should have kept constant.
7. (b) (i) (continued)
(C) The student burned 1.07 g of methanol and recorded a temperature rise of $23^{\circ} \mathrm{C}$.
Calculate the enthalpy of combustion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for methanol using the student's results.
(ii) The student determined the density of the alcohols by measuring

The student's results are shown below.

	Methanol	Ethanol
Volume of alcohol $\left(\mathrm{cm}^{3}\right)$	25.0	25.0
Mass of alcohol (g)	19.98	20.05
Density of alcohol $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$		0.802

Calculate the density, in gcm^{-3}, of methanol.

the mass of a volume of each alcohol.

7. (continued)
(c) Methanol is used as a source of hydrogen for fuel cells. The industrial process involves the reaction of methanol with steam.

(i) State why it is important for chemists to predict whether reactions in an industrial process are exothermic or endothermic.
(ii) Using bond enthalpies from the data booklet, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction of methanol with steam.
8. Sodium carbonate is used in the manufacture of soaps, glass and paper as well as the treatment of water.

One industrial process used to make sodium carbonate is the Solvay process. The Solvay process involves several different chemical reactions.
It starts with heating calcium carbonate to produce carbon dioxide, which is transferred to a reactor where it reacts with ammonia and brine. The products of the reactor are solid sodium hydrogencarbonate and ammonium chloride which are passed into a separator.
The sodium hydrogencarbonate is heated to decompose it into the product sodium carbonate along with carbon dioxide and water. To recover ammonia the ammonium chloride from the reactor is reacted with calcium oxide produced by heating the calcium carbonate. Calcium chloride is a byproduct of the ammonia recovery process.
(a) Using the information above, complete the flow chart by adding the names of the chemicals involved.

Go to Answers

8 (continued)

(b) The reaction that produces the solid sodium hydrogencarbonate involves the following equilibrium:

$$
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{NaHCO}_{3}(\mathrm{~s})
$$

Brine is a concentrated sodium chloride solution.
Explain fully why using a concentrated sodium chloride solution encourages production of sodium hydrogencarbonate as a solid.
9. Occasionally, seabirds can become contaminated with hydrocarbons from oil spills. This causes problems for birds because their feathers lose their waterproofing, making the birds susceptible to temperature changes and affecting their buoyancy. If the birds attempt to clean themselves to remove the oil, they may swallow the hydrocarbons causing damage to their internal organs.
Contaminated seabirds can be cleaned by rubbing vegetable oil into their feathers and feet before the birds are rinsed with diluted washing-up liquid.
Using your knowledge of chemistry, comment on the problems created for seabirds by oil spills and the actions taken to treat affected birds.
10. Plants require trace metal nutrients, such as zinc, for healthy growth. Zinc ions are absorbed from soil through the plant roots.
The zinc ion concentration in a solution can be found by adding a compound which gives a blue colour to the solution with zinc ions. The concentration of zinc ions is determined by measuring the absorption of light by the blue solution. The higher the concentration of zinc ions in a solution, the more light is absorbed.
A student prepared a stock solution with a zinc ion concentration of $1 \mathrm{gl}^{-1}$. Samples from this were diluted to produce solutions of known zinc ion concentration.
(a) The stock solution was prepared by adding 1.00 g of zinc metal granules to $20 \mathrm{~cm}^{3}$ of $2 \mathrm{moll}^{-1}$ sulfuric acid in a $1000 \mathrm{~cm}^{3}$ standard flask.

$$
\mathrm{Zn}(\mathrm{~s}) \quad+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{ZnSO}_{4}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2}(\mathrm{~g})
$$

The flask was left for 24 hours, without a stopper. The solution was then diluted to $1000 \mathrm{~cm}^{3}$ with water.
(i) Explain fully why the flask was left for 24 hours, without a stopper.
(ii) Explain why the student should use deionised water or distilled
(b) Solutions of known zinc ion concentration were prepared by transferring accurate volumes of the stock solution to standard flasks and diluting with water.
(i) Name the piece of apparatus which should be used to transfer $10 \mathrm{~cm}^{3}$ of stock solution to a standard flask.

Abstract

water, rather than tap water, when preparing the stock solution.

10. (b) (continued)
(ii) Calculate the concentration, in mgl^{-1}, of the solution prepared by transferring $10 \mathrm{~cm}^{3}$ of the $1 \mathrm{gl}^{-1}$ stock solution to a $1000 \mathrm{~cm}^{3}$ standard flask and making up to the mark.
(c) The light absorbance of different solutions was measured and the results plotted.

A solution prepared from a soil sample was tested to determine the concentration of zinc ions. The solution had an absorbance of $0 \cdot 3$.

Determine the concentration, in mg^{-1}, of zinc ions in the solution.
11.

4-hydroxybenzoic acid

4-hydroxybenzoic acid can react with alcohols to form compounds known as parabens.
(a) Name the functional group circled in the structure of 4-hydroxybenzoic acid.
(b) Name the type of reaction taking place when parabens are formed.
(c) Draw the paraben formed when 4-hydroxybenzoic acid reacts with

Abstract

ethanol.

11. (continued)
(d) Parabens can be used as preservatives in cosmetics and toiletries.

Parabens are absorbed into the body through the skin. The following table indicates the absorption of some parabens.

Paraben	Absorption $\left(\mu \mathrm{g} \mathrm{cm}^{-2}\right)$
Methyl	32.50
Ethyl	20.74
Propyl	11.40
Butyl	7.74
Hexyl	1.60

State a conclusion that can be drawn from the information in the table.
12. (a) The concentration of sodium hypochlorite in swimming pool water can be determined by redox titration.

Step 1

A $100.0 \mathrm{~cm}^{3}$ sample from the swimming pool is first reacted with an excess of acidified potassium iodide solution forming iodine.

$$
\mathrm{NaOCl}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

Step 2

The iodine formed in step 1 is titrated using a standard solution of sodium thiosulfate, concentration $0.00100 \mathrm{moll}^{-1}$. A small volume of starch solution is added towards the endpoint.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Nal}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{aq})
$$

(i) Describe in detail how a burette should be prepared and set up,
(ii) Write the ion-electron equation for the oxidation reaction occurring in step 1.
ready to begin the titration.
12. (a) (continued)
(iii) Calculate the concentration, in moll^{-1}, of sodium hypochlorite in the swimming pool water, if an average volume of $12.4 \mathrm{~cm}^{3}$ of sodium thiosulfate was required.
(b) The level of hypochlorite in swimming pools needs to be maintained between 1 and 3 parts per million (1-3ppm).
$400 \mathrm{~cm}^{3}$ of a commercial hypochlorite solution will raise the hypochlorite level of 45000 litres of water by 1 ppm .
Calculate the volume of hypochlorite solution that will need to be added to an Olympic-sized swimming pool, capacity 2500000 litres, to raise the hypochlorite level from 1 ppm to 3 ppm .
[Turn over
12. (continued)
(c) The familiar chlorine smell of a swimming pool is not due to chlorine but compounds called chloramines. Chloramines are produced when the hypochlorite ion reacts with compounds such as ammonia, produced by the human body.
$\mathrm{OCl}^{-}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{2} \mathrm{Cl}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Chloramines are less soluble in water than ammonia due to the polarities of the molecules, and so readily escape into the atmosphere, causing irritation to the eyes.
(i) Explain the difference in polarities of ammonia and trichloramine molecules.

$$
\begin{array}{ll}
& \text { monochloramine } \\
\mathrm{OCl}^{-}(\mathrm{aq})+\mathrm{NH}_{2} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{NHCl}_{2}(\mathrm{aq}) \\
\text { dichloramine }
\end{array}+\mathrm{NCl}^{-}(\mathrm{aq})+\mathrm{NHCl}_{2}(\mathrm{aq}) \rightarrow \begin{aligned}
& \mathrm{NCl}_{3}(\mathrm{aq}) \\
& \text { trichloramine }
\end{aligned}+\mathrm{OH}^{-}(\mathrm{aq})
$$

ammonia

trichloramine

12. (c) (continued)
(ii) Chloramines can be removed from water using ultraviolet light treatment.
One step in the process is the formation of free radicals.
$\mathrm{NH}_{2} \mathrm{Cl} \xrightarrow{\mathrm{UV}} \cdot \mathrm{NH}_{2}+\quad \cdot \mathrm{Cl}$

State what is meant by the term free radical.
(iii) Another step in the process is shown below.
$\mathrm{NH}_{2} \mathrm{Cl}+\bullet \mathrm{Cl} \longrightarrow \quad \bullet \mathrm{NHCl}+\mathrm{HCl}$

State the name for this type of step in a free radical reaction.
13. (a) One test for glucose involves Fehling's solution.

Circle the part of the glucose molecule that reacts with Fehling's solution.
(b) In solution, sugar molecules exist in an equilibrium in straight-chain and ring forms.
To change from the straight-chain form to the ring form, the oxygen of the hydroxyl on carbon number 5 joins to the carbonyl carbon. This is shown below for glucose.

glucose
Draw the structure of a ring form for fructose.

[END OF QUESTION PAPER]

2015 Chemistry

New Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed Marking Instructions for each question

Section 1

Question	Answer	Max Mark
1.	D	1
2.	C	1
3.	D	1
4.	A	1
5.	C	1
6.	B	1
7.	A	1
8.	B	1
9.	B	1
10.	A	1
11.	D	1
12.	D	1
13.	B	1
14.	C	1
15.	B	1
16.	A	1
17.	D	1
18.	A	1
19.	A	1
20.	C	1

Section 2

Question			Answer	Max	Additional Guidance
1.	(a)		Sulfur - London dispersion forces / van der Waals / intermolecular forces Silicon dioxide - (polar)covalent (network) bonds	2	Accept LDF for London dispersion forces If candidate answers pure covalent, ignore pure.
	(b)	(i)	Any structure for $\mathrm{P}_{4} \mathrm{~S}_{3}$ that obeys valency rules	1	Only trivalent phosphorus structures accepted
		(ii)	Increased nuclear attraction for electrons / increased nuclear charge / sulfur has more protons in nucleus	1	0 marks awarded for increased attraction of electrons for nucleus
		(iii)	1 mark Correctly identify that the forces are stronger between sulfur (molecules) than between the phosphorus molecules 1 mark Correctly identifying that there are London dispersion forces between the molecules of both these elements 1 mark These forces are stronger due to sulfur structure being S_{8} whereas phosphorus is P_{4}	3	This mark should only be awarded if no other forces are mentioned Must mention S_{8} and P_{4} (A-mark)
2.	(a)		$\begin{aligned} & \text { From graph, rate }=0.022 \\ & t=1 / \text { rate }=45 \mathrm{~s} \end{aligned}$ accept answers in range 45-46 s	1	Units not required
	(b)	(i)	Second line displaced to left of original. Peak of curve should be to the left of the original peak	1	
		(ii)	A vertical line drawn at a lower kinetic energy that the original E_{a} shown on graph	1	

Go to Topic Grid

Question			Answer	Max	Additional Guidance
3.	(a)	(i)	Workable apparatus for passing steam through strawberry gum leaves Workable apparatus for condensing the steam and essential oil	2	Treat both marks separately "Through" not "over" A closed system would not allow candidates to gain mark for condensation.
		(ii)	(Fractional) distillation or chromatography	1	
	(b)	(i)	1 mark awarded for correct arithmetical calculation of moles of acid $=0.044$ and moles alcohol $=0.063$ (no penalty for candidates who round to 0.04 and 0.06 etc) or working out that 9.25 g cinnamic acid would be needed to react with 2 g methanol or 6.5 g cinnamic acid would react with 1.41 g methanol 1 mark awarded for statement demonstrating understanding of limiting reactant. eg there are less moles of cinnamic acid therefore it is the limiting reactant or 0.0625 moles methanol would require 0.625 moles cinnamic acid or methanol is in excess therefore cinnamic acid is the limiting reactant.	2	

Question	Answer	Max Mark	Additional Guidance
(ii) (A)	Partial Marking 1 mark is given for working out the theoretical yield ie $7 \cdot 1$ g or for working out both the moles of reactant used and product formed ie both 0.044 moles and 0.023 moles 1 mark is given for calculating the \% yield, either using the actual and theoretical masses, or using the actual number of moles of products and actual number of moles of reactant	2	0 marks awarded for $3 \cdot 7 / 6 \cdot 5 \times 100$ or 56.9%
$\begin{aligned} & \text { (ii) } \\ & \text { (B) } \end{aligned}$	£24.59 Partial marking for 1 mark Award 1 mark for Evidence for costing to produce of 3.7 g (£0.91) or evidence of a calculated mass of cinnamic acid x 14 p or evidence that 176 g of cinnamic acid required £12.80 would be using 100% yield	2	Assume units are $£$ unless otherwise stated Apply follow through from (b) (ii) (A)

Go to Topic Grid

Question		Answer	$\begin{array}{c}\text { Max } \\ \text { Mark }\end{array}$	Additional Guidance
5.	$\begin{array}{l}\text { This is an open ended question } \\ \text { 1 mark: The student has } \\ \text { demonstrated, at an appropriate } \\ \text { level, a limited understanding of the } \\ \text { chemistry involved. The student has } \\ \text { made some statement(s) which } \\ \text { is/are relevant to the situation, } \\ \text { showing that at least a little of the } \\ \text { chemistry within the problem is } \\ \text { understood. } \\ 2 \text { marks: The student has } \\ \text { demonstrated a reasonable }\end{array}$	3	$\begin{array}{l}\text { Zero marks should be awarded if: } \\ \text { The student has demonstrated no } \\ \text { understanding of the chemistry } \\ \text { involved. There is no evidence } \\ \text { that the student has recognised } \\ \text { the area of chemistry involved or } \\ \text { has given any statement of a } \\ \text { relevant chemistry principle. This } \\ \text { mark would also be given when } \\ \text { the student merely restates the }\end{array}$	
chemistry given in the question.				

Question			Answer	Max	Additional Guidance
6.	(a)		Heat breaks hydrogen bonds	1	
	(b)	(i)	Either of structures shown circled	1	
		(ii)	$50 \cdot 5 \pm 1^{\circ} \mathrm{C}$	1	
	(c)	(i)	Hydrolysis	1	
		(ii) (A)	5	1	

Question	Answer	Max	Additional Guidance
(ii) (B)	Correctly drawn amino acid structure	1	Ignore bond positioning in side chains

Go to Topic Grid

Go to Topic Grid

Question			Answer	Max	Additional Guidance
		(ii)	$0 \cdot 799$ (0.8)	1	Units not required
	(c)	(i)	If reactions are exothermic heat will need to be removed / If reactions are endothermic heat will need to be supplied or Chemists can create conditions to maximise yield	1	This is not a mark about safety
		(ii)	Answer $=+191 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Partial mark 1 mark Evidence of the use of all the correct bond enthalpies. $\begin{equation*} (412,360,463,436,743) \tag{1} \end{equation*}$ or Correct use of incorrect bond enthalpy values	2	Positive sign does not need to be given in answer
8.	(a)		Calcium carbonate / carbon dioxide / ammonia / calcium oxide all correctly identified in flow diagram Ammonium chloride / sodium hydrogen carbonate / sodium carbonate / water - all correctly identified in flow diagram	2	
	(b)		(Adding brine) increases sodium ion concentration hence equilibrium shifts to right Rate of forward reaction is increased (by addition of brine)	2	

Go to Topic Grid

Go to Topic Grid

Question			Answer	Max	Additional Guidance
12.	(a)	(i)	3 points 1 mark for rinsing the burette - rinse the burette with the thiosulfate / required solution / with the solution to be put in it. 2 marks (1 mark each) for any 2 of the following points fill burette above the scale with thiosulfate solution filter funnel used should be removed tap opened / some solution drained to ensure no air bubbles (thiosulfate) solution run into scale reading should be made from bottom of meniscus	3	
		(ii)	$2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{e}^{-}$	1	Ignore state symbols

Question	Answer	Max	Additional Guidance
(iii)	$0 \cdot 000062\left(\mathrm{~mol} \mathrm{l}^{-1}\right)$ Partial marks can be awarded using a scheme of two "concept" marks, and one "arithmetic" mark 1 mark for knowledge of the relationship between moles, concentration and volume. This could be shown by one of the following steps: Calculation of moles thiosulfate solution eg $0.001 \times 0.0124=$ $0 \cdot 0000124$ or calculation of concentration of iodine solution eg 0.0000062/0.1 or Insertion of correct pairings of values for concentration and volume in a valid titration formula 1 mark for knowledge of relationship between moles of thiosulfate and hypochlorite. This could be shown by one of the following steps: Calculation of moles hypochlorite from moles thiosulfate - eg $0.0000124 / 2=0.0000062$ or Insertion of correct stoichiometric values in a valid titration formula 1 mark is awarded for correct arithmetic through the calculation. This mark can only be awarded if both concept marks have been awarded.	3	units not required

[END OF MARKING INSTRUCTIONS]

WEDNESDAY, 18 MAY
9:00 AM - 11:30 AM

Instructions for the completion of Section 1 are given on Page 02 of your question and answer booklet X713/76/01.

Record your answers on the answer grid on Page 03 of your question and answer booklet.
Reference may be made to the Chemistry Higher and Advanced Higher Data Booklet.
Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not you may lose all the marks for this paper.

SECTION 1-20 marks

Attempt ALL questions

1. Particles with the same electron arrangement are said to be isoelectronic.

Which of the following compounds contains ions which are isoelectronic?
A $\mathrm{Na}_{2} \mathrm{~S}$
B MgCl_{2}
C KBr
D CaCl_{2}
2. Which line in the table is correct for the polar covalent bond in hydrogen chloride?

	Relative position of bonding electrons	Dipole notation
A	$\mathrm{H}-\mathrm{Cl}$	$\begin{array}{ll} \delta+ \\ \mathrm{H}-\mathrm{Cl} \end{array}$
B	$\mathrm{H} \div$ - Cl	$\begin{array}{ll} \delta+ & \delta- \\ \mathrm{H}- & \mathrm{Cl} \end{array}$
C	$\mathrm{H}-\mathrm{Cl}$	$\begin{array}{ll} \delta- & \delta+ \\ \mathrm{H}- & \mathrm{Cl} \end{array}$
D	$\mathrm{H} \div$ - Cl	$\begin{array}{ll} \delta- & \delta+ \\ \mathrm{H}-\mathrm{Cl} \end{array}$

3. Which of the following compounds has the greatest ionic character?

A Caesium fluoride
B Caesium iodide
C Sodium fluoride
D Sodium iodide
4. The diagram below shows the energy profiles for a reaction carried out with and without a catalyst.

What is the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the catalysed reaction?
A -100
B $\quad-50$
C +50
D +100
5. Limonene is a terpene molecule present in lemons.
 limonene

How many isoprene units are joined together in a limonene molecule?
A 1
B 2
C 3
D 4
6. The following molecules give flavour to food.

Which of the following flavour molecules would be most likely to be retained in the food when the food is cooked in water?

A

B

C

D

7. vegetable oil \longrightarrow vegetable fat

Which of the following reactions brings about the above change?
A Hydrolysis
B Condensation
C Hydrogenation
D Dehydrogenation
8. The rate of hydrolysis of protein, using an enzyme, was studied at different temperatures. Which of the following graphs would be obtained?

A

B

C

D

9. Which of the following is the salt of a long-chain fatty acid?

A Fat
B Oil
C Soap
D Glycerol
10. Emulsifiers for use in food are commonly made by reacting edible oils with

A esters
B glycerol
C fatty acids
D amino acids.
11. The equation for the reduction reaction taking place when ethanal reacts with Tollens' reagent is

A $\quad \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})$
B $\quad \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$
C $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\ell)$
D $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$
12. The name of the compound with structure:

is
A 2,3-dimethylpentan-4-one
B 2,3-dimethylpentan-2-al
C 3,4-dimethylpentan-2-one
D 3,4-dimethylpentan-2-al.
13.

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+ \\
& \text { Mass of } 1 \mathrm{~mol} \\
& \text { Mass of } 1 \mathrm{~mol}=164 \mathrm{~g} \\
&=100 \mathrm{~g}=102(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \\
&
\end{aligned}
$$

2.00 g of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ was reacted with $200 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moll}^{-1}$ nitric acid $\left(\mathrm{HNO}_{3}\right)$.

Take the volume of 1 mole of carbon dioxide to be 24 litres.
In the reaction
A CaCO_{3} is the limiting reactant
B an excess of 0.1 mol of nitric acid remains at the end of the reaction
C 1.64 g of calcium nitrate is produced by the reaction
D $480 \mathrm{~cm}^{3}$ of carbon dioxide is produced by the reaction.
14. The mean bond enthalpy of a $\mathrm{C}-\mathrm{F}$ bond is $484 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

In which of the processes is $\Delta \mathrm{H}$ approximately equal to $+1936 \mathrm{~kJ} \mathrm{~mol}^{-1}$?
$\mathrm{A} \quad \mathrm{CF}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{s})+2 \mathrm{~F}_{2}(\mathrm{~g})$
B $\quad \mathrm{CF}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{~F}(\mathrm{~g})$
C $\quad \mathrm{CF}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+2 \mathrm{~F}_{2}(\mathrm{~g})$
$\mathrm{D} \quad \mathrm{CF}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{s})+4 \mathrm{~F}(\mathrm{~g})$
15. In a reversible reaction, equilibrium is reached when

A molecules of reactants cease to change into molecules of products
B the concentrations of reactants and products are equal
C the concentrations of reactants and products are constant
D the activation energy of the forward reaction is equal to that of the reverse reaction.
16. Which of the following equations represents the enthalpy of combustion of propane?

A $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B $\quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$
D $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{~g})$
17. An oxidising agent

A gains electrons and is oxidised
B loses electrons and is oxidised
C gains electrons and is reduced
D loses electrons and is reduced.
18. During a redox process in acid solution, chlorate ions, $\mathrm{ClO}_{3}^{-}(\mathrm{aq})$, are converted into chlorine, $\mathrm{Cl}_{2}(\mathrm{~g})$.

$$
\mathrm{ClO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})
$$

The numbers of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(\ell)$ required to balance the ion-electron equation for the formation of 1 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ are, respectively

A 3 and 6
B 6 and 3
C 6 and 12
D 12 and 6 .
19. Which of the following ions could be used to oxidise iodide ions to iodine?

$$
2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-}
$$

A $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
B $\quad \mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$
C $\mathrm{Cr}^{3+}(\mathrm{aq})$
D $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})$
20.

A student was carrying out a titration to establish the concentration of vitamin C using iodine solution.

Which of the following would help the student achieve a precise end-point?
A Placing a white tile underneath the conical flask
B Using the bottom of the meniscus when reading the burette
C Repeating titrations
D Carrying out a rough titration first

SECTION 2-80 marks

Attempt ALL questions

1. Hydrogen peroxide gradually decomposes into water and oxygen, according to the following equation.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})
$$

(a) At room temperature, the reaction is very slow. It can be speeded up by heating the reaction mixture.

State why increasing the temperature causes an increase in reaction rate.
(b) (i) The reaction can also be speeded up by adding a catalyst, such as manganese dioxide.

To determine the rate of the reaction, the volume of gas produced in a given time can be measured.

Complete the diagram below to show how the gas produced can be collected and measured.
(An additional diagram, if required, can be found on Page 38).

1. (b) (continued)
(ii) The concentration of hydrogen peroxide is often described as a volume strength. This relates to the volume of oxygen that can be produced from a hydrogen peroxide solution.

| volume of
 oxygen produced |
| :---: |$=$| volume |
| :---: |
| strength |$\quad \times \quad$| volume of hydrogen |
| :---: |
| peroxide solution |

In an experiment, $74 \mathrm{~cm}^{3}$ of oxygen was produced from $20 \mathrm{~cm}^{3}$ of hydrogen peroxide solution.
Calculate the volume strength of the hydrogen peroxide.
(c) Hydrogen peroxide can react with potassium iodide to produce water and iodine.

A student carried out an experiment to investigate the effect of changing the concentration of potassium iodide on reaction rate. The results are shown below.

Concentration of potassium iodide $\left(\mathrm{moll}^{-1}\right)$

Calculate the time taken, in s , for the reaction when the concentration of potassium iodide used was $0.6 \mathrm{moll}^{-1}$.
2. (a) Graph 1 shows the sizes of atoms and ions for elements in the third period of the Periodic Table.

The covalent radius is a measure of the size of an atom.
(i) Explain why covalent radius decreases across the period from sodium to chlorine.
(ii) Explain fully why the covalent radius of sodium is larger than the ionic radius of sodium.
2. (continued)
(b) Graph 2 shows the first and second ionisation energies of elements in Group 1 of the Periodic Table.

(i) Explain why the first ionisation energy decreases going down Group 1.
(ii) Explain fully why the second ionisation energy is much greater than the first ionisation energy for Group 1 elements.
2. (continued)
(c) The lattice enthalpy is the energy needed to completely separate the ions in one mole of an ionic solid.

Table 1 shows the size of selected ions.
Table 1

Ion	Li^{+}	Na^{+}	K^{+}	Rb^{+}	F^{-}	Cl^{-}
Ionic radius (pm)	76	102	138	152	133	181

Table 2 shows the lattice enthalpies, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for some Group 1 halides.

Table 2

lons	F^{-}	Cl^{-}
Li^{+}	1030	834
Na^{+}	910	769
$\mathrm{~K}^{+}$	808	701
Rb^{+}		658

(i) Predict the lattice enthalpy, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for rubidium fluoride.
(ii) Write a general statement linking lattice enthalpy to ionic radii.
3. Phosphine $\left(\mathrm{PH}_{3}\right)$ is used as an insecticide in the storage of grain.

Phosphine can be produced by the reaction of water with aluminium phosphide

$$
\mathrm{AlP}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow \mathrm{PH}_{3}(\mathrm{~g})+\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{aq})
$$

(a) State the type of bonding and structure in phosphine.
(b) 2.9 kg of aluminium phosphide were used in a phosphine generator.

Calculate the volume of phosphine gas, in litres, that would have been produced.
(Take the volume of 1 mole of phosphine to be 24 litres).
(c) Carbon dioxide is fed into the phosphine generator to keep the phosphine concentration less than $2 \cdot 6 \%$. Above this level phosphine can ignite due to the presence of diphosphane, $\mathrm{P}_{2} \mathrm{H}_{4}(\mathrm{~g})$, as an impurity.
Draw a structural formula for diphosphane.
4. The viscosity of alcohols depends on a number of factors:

- the strength of intermolecular forces
- the size of the molecule
- temperature

These factors can be investigated using alcohols and apparatus from the lists below.

Alcohols	Apparatus
methanol	beakers
ethanol	funnels
propan-1-ol	burettes
ethane-1,2-diol	measuring cylinders
butan-1-ol	plastic syringes
propane-1,3-diol	glass tubing
pentan-1-ol	stoppers
propane-1,2,3-triol	timer
	metre stick
	ball bearing
	clamp stands
	kettle
	thermometer

Using your knowledge of chemistry, identify the alcohols and apparatus that you would select and describe how these could be used to investigate one, or more, of the factors affecting the viscosity of alcohols.
5. When fats and oils are hydrolysed, mixtures of fatty acids are obtained.
(a) Name the other product obtained in this reaction.
(b) The table below shows the percentage composition of the fatty acid mixtures obtained by hydrolysis of coconut oil and olive oil.

Class of fatty acids produced on hydrolysis	Name of oil	
	Coconut oil	Olive oil
Saturated	91	14
Monounsaturated	6	72
Polyunsaturated	3	14

(i) One of the fatty acids produced by the hydrolysis of olive oil is linoleic acid, $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{COOH}$.
State the class of fatty acid to which linoleic acid belongs.
(ii) Hydrolysed coconut oil contains the fatty acid, caprylic acid, with the formula $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$.
State the systematic name for caprylic acid.
(c) The degree of unsaturation of oil can be tested by adding drops of bromine solution to the oil. Bromine adds across carbon to carbon double bonds in the fatty acid chains.

5. (c) (continued)

The following apparatus can be used to compare the degree of unsaturation of different oils.

(i) Describe how this apparatus could be used to show that olive oil has a greater degree of unsaturation than coconut oil.
(ii) Suggest why hexane is used as the solvent, rather than water.
(iii) Coconut oil has a melting point of $25^{\circ} \mathrm{C}$. Olive oil has a melting point of $-6^{\circ} \mathrm{C}$.

Give two reasons why coconut oil has a higher melting point than olive oil.
6. Peptide molecules can be classified according to the number of amino acid units joined by peptide bonds in the molecule.

Type of peptide	Example of amino acid sequence
dipeptide	aspartic acid-phenylalanine
tripeptide	isoleucine-proline-proline
tetrapeptide	lysine-proline-proline-arginine
pentapeptide	serine-glycine-tyrosine-alanine-leucine
	alanine-glycine-valine-proline-tyrosine-serine
polypeptide	many amino acids

(a) Complete the table to identify the type of peptide with the following amino acid sequence
alanine-glycine-valine-proline-tyrosine-serine
(b) Partial hydrolysis of another pentapeptide molecule gave a mixture of three smaller peptide molecules with the following amino acid sequences.

> leucine-glycine-valine
> isoleucine-leucine
> glycine-valine-serine

Write the amino acid sequence for the original pentapeptide molecule.
(c) Some amino acids needed to form polypeptides cannot be produced in the human body.
State the term used to describe amino acids that the body cannot make.
6. (continued)
(d) Paper chromatography is often used to analyse the mixtures of amino acids produced when peptides are broken down.

On a chromatogram, the retention factor R_{f}, for a substance can be a useful method of identifying the substance.

$$
R_{f}=\frac{\text { distance moved by the substance }}{\text { maximum distance moved by the solvent }}
$$

The structure of the pentapeptide methionine enkephalin was investigated.

A sample of the pentapeptide was completely hydrolysed into its constituent amino acids and this amino acid mixture was applied to a piece of chromatography paper and placed in a solvent.
The chromatogram obtained is shown below.

(i) Suggest why only four spots were obtained on the chromatogram of the hydrolysed pentapeptide.
(ii) It is known that this amino acid mixture contains the amino acid methionine. The R_{f} value for methionine in this solvent is 0.40 .
Draw a circle around the spot on the chromatogram that corresponds to methionine.
6. (continued)
(e) Over the last decade several families of extremely stable peptide molecules have been discovered, where the peptide chain forms a ring.
(i) A simple cyclic dipeptide is shown.

Draw a structural formula for one of the amino acids that would be formed on complete hydrolysis of the above cyclic dipeptide.
(ii) Alpha-amanitin is a highly toxic cyclic peptide found in death cap mushrooms. The lethal dose for humans is 100 mg per kg of body mass.
$1 \cdot 0 \mathrm{~g}$ of death cap mushrooms contains 250 mg of alpha-amanitin.
Calculate the minimum mass of death cap mushrooms that would contain the lethal dose for a 75 kg adult.
7. Modern shellac nail varnishes are more durable and so last longer than traditional nail polish.

The shellac nail varnish is applied in thin layers to the nails and then the fingers are placed under a UV lamp.
(a) The Skin Care Foundation has recommended that a sun-block is applied to the fingers and hand before using the lamp.
Suggest why the Skin Care Foundation makes this recommendation.
(b) A free radical chain reaction takes place and the varnish hardens.
(i) State what is meant by the term free radical.
7. (b) (continued)
(ii) The shellac nail varnish contains a mixture of ingredients that take part in the free radical chain reaction.

One of the steps in the free radical chain reaction is:

State the term used to describe this type of step in a free radical chain reaction.
(iii) During the free radical chain reaction small molecules join to form large chain molecules.
One example of a small molecule used is

Name the functional group circled above.
(iv) Alcohol wipes are used to finish the varnishing treatment. Alcohol wipes contain the alcohol propan-2-ol. State why propan-2-ol can be described as a secondary alcohol.
7. (continued)
(c) Traditional nail varnishes use ethyl ethanoate and butyl ethanoate as solvents.
(i) Draw a structural formula for butyl ethanoate.
(ii) Ethyl ethanoate can be made in the laboratory using the following apparatus.

Suggest why a wet paper towel is wrapped around the test tube.
7. (c) (continued)
(iii) A student used 2.5 g of ethanol and a slight excess of ethanoic acid to produce 2.9 g of ethyl ethanoate.

$$
\begin{gathered}
\text { ethanol }+ \text { ethanoic acid } \rightleftharpoons \text { ethyl ethanoate }+ \text { water } \\
\text { mass of } \\
\text { one mole } \\
=46.0 \mathrm{~g}
\end{gathered}
$$

(One mole of ethanol reacts with one mole of ethanoic acid to produce one mole of ethyl ethanoate.)
Calculate the percentage yield of ethyl ethanoate.
(iv) Name the type of reaction that takes place during the formation of ethyl ethanoate.
[Turn over
8. Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is an important chemical in industry.
(a) Methanol is produced from methane in a two-step process.

In step 1, methane is reacted with steam as shown.
Step 1: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Delta \mathrm{H}=+210 \mathrm{~kJ} \mathrm{~mol}^{-1}$
In step 2, hydrogen reacts with carbon monoxide.
Step 2: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad \Delta \mathrm{H}=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Complete the table to show the most favourable conditions to maximise the yield for each step.

	Temperature (High/Low)	Pressure (High/Low)
Step 1		
Step 2		

(b) Methanol reacts with compound X , in an addition reaction, to form methyl tertiary-butyl ether, an additive for petrol.

(i) Suggest a structure for compound X .
(ii) The atom economy of this reaction is 100%.

Explain what this means.
8. (continued)
(c) Methanol can be converted to methanal as shown.

Using bond enthalpy and mean bond enthalpy values from the data booklet, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction.
9. A group of students carried out an investigation into the energy changes that take place when metal hydroxides dissolve in water.
The following apparatus was used as a simple calorimeter to determine the change in temperature.

The experiment was carried out as follows.
Step 1: $100 \mathrm{~cm}^{3}$ of deionised water was added to the cup.
Step 2: The stop-clock was started, the water stirred continuously and the temperature recorded every 20 seconds.
Step 3: After 60 seconds, an accurately weighed mass of the metal hydroxide was added to the water and the temperature recorded every 20 seconds.

Graph 1 shows the group's results for lithium hydroxide.

The heat energy transferred to the water can be calculated as shown.

$$
\begin{aligned}
E_{h} & =c m \Delta T \\
& =4.18 \times 0.10 \times 8.0 \\
& =3.3 \mathrm{~kJ}
\end{aligned}
$$

9. (continued)

(a) The experiment was repeated using sodium hydroxide. Graph 2 shows the results of this experiment.

(i) Using Graph 2 calculate the heat energy transferred to the water, in kJ , when the sodium hydroxide dissolved.
(ii) Suggest why the experiment was carried out in a polystyrene cup with a lid.
9. (a) (continued)
(iii) In another experiment the students found that $5 \cdot 61 \mathrm{~g}$ of potassium hydroxide (KOH) released $5 \cdot 25 \mathrm{~kJ}$ of heat energy on dissolving.

Use this information to calculate the energy released, in $\mathrm{kJ} \mathrm{mol}^{-1}$, when one mole of potassium hydroxide dissolves in water.
(b) Calcium hydroxide solution can be formed by adding calcium metal to excess water.
Solid calcium hydroxide would form if the exact molar ratio of calcium to water is used. The equation for the reaction is

$$
\mathrm{Ca}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction above by using the data shown below.

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Ca}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) & \Delta \mathrm{H}=-986 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

10. The chemical industry creates an immense variety of products which impact on virtually every aspect of our lives. Industrial scientists, including chemical engineers, production chemists and environmental chemists, carry out different roles to maximise the efficiency of industrial processes.

Using your knowledge of chemistry, comment on what industrial scientists can do to maximise profit from industrial processes and minimise impact on the environment.
11. Soft drinks contain a variety of sugars. A student investigated the sugar content of a soft drink.
(a) The density of the soft drink can be used to estimate its total sugar concentration. Solutions of different sugars, with the same concentration, have similar densities.

The first experiment was to determine the total sugar concentration of the soft drink by comparing the density of the drink with the density of standard sucrose solutions.
(i) This firstly involved producing standard sucrose solutions of different concentrations.

The standard sucrose solutions were made up in volumetric flasks.
Draw a diagram of a volumetric flask.
(ii) The density of each standard sucrose solution was then determined. In order to determine the density of each solution, the student accurately measured the mass of $10.0 \mathrm{~cm}^{3}$ of each sucrose solution.
Describe fully a method that the student could have used to accurately measure the mass of $10.0 \mathrm{~cm}^{3}$ of each sucrose solution.
11. (a) (continued)
(iii) The results that the student obtained for the density of the standard solutions of sucrose are shown in the table.

\% Concentration of sucrose solution	Density of sucrose solution $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
0.0	1.00
5.0	1.10
10.0	1.19
15.0	1.31
20.0	1.41

Draw a line graph using the student's results.
(Additional graph paper, if required, can be found on Page 38.)

Density of sucrose solution $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$

11. (a) (continued)
(iv) The student used the line graph to obtain the relationship between the concentration of sugars in solution and the density of the solution.

This equation shows the relationship.

```
density of sugar in g cm }\mp@subsup{}{}{-3}=(0.0204\times%\mathrm{ concentration of sugars in solution ) +1.00
```

The student then determined the density of a soft drink. In order to ensure that the drink was flat, all the gas had been allowed to escape.
(A) Suggest a reason why the soft drink needed to be flat before its density was determined.
(B) The soft drink tested had a density of $1.07 \mathrm{~g} \mathrm{~cm}^{-3}$.

Using the equation, calculate the \% concentration of sugars present in the soft drink.
(v) A different soft drink is found to contain 10.6 grams of sugar in $100 \mathrm{~cm}^{3}$.
Calculate the total mass of sugar present, in grams, in a $330 \mathrm{~cm}^{3}$ can of this soft drink.
(b) The second experiment in the investigation was to determine the concentration of specific types of sugar called reducing sugars. This was carried out by titration with Fehling's solution.
(i) Reducing sugars contain an aldehyde functional group.

Draw this functional group.
11. (b) (continued)
(ii) The overall reaction that occurs with Fehling's solution and a reducing sugar is shown.

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\underset{2 \mathrm{Cu}^{2+}}{ }$| reducing |
| :--- |
| sugar |
| Fehling's |
| solution |

Write the ion-electron equation for the oxidation reaction.
(iii) State the colour change that would be observed when reducing sugars are reacted with Fehling's solution.
(iv) For the titrations, the student diluted the soft drink to improve the accuracy of results.
$25.0 \mathrm{~cm}^{3}$ samples of the diluted soft drink were titrated with Fehling's solution which had a Cu^{2+} concentration of $0.0250 \mathrm{moll}^{-1}$.
The average volume of Fehling's solution used in the titrations was $19 \cdot 8 \mathrm{~cm}^{3}$.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+2 \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{7}+2 \mathrm{Cu}^{+}+2 \mathrm{H}^{+}$
reducing Fehling's
sugar solution
Calculate the concentration, in moll^{-1}, of reducing sugars present in the diluted sample of the soft drink.
12. (a) The table shows the boiling points and structures of some isomers with molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$.

Isomer	Structure	Boiling point (${ }^{\circ} \mathrm{C}$)
1		205
2		201
3		187
4		132
5		125
6		119
7		126
8		98

12. (a) (continued)
(i) Name the intermolecular force which accounts for the higher boiling points of isomers 1,2 and 3 .
(ii) Using the information in the table, describe two ways in which differences in structure affect the boiling points of isomeric esters 4-8.
(iii) Predict the boiling point, in ${ }^{\circ} \mathrm{C}$, for the isomer shown below.

12. (continued)

(b) Carbon-13 NMR spectroscopy is a technique that can be used in chemistry to determine the structure of organic molecules such as esters.

In a carbon-13 NMR spectrum, a carbon atom in a molecule is identified by its chemical shift. This value depends on the other atoms bonded to the carbon atom, which is known as the "chemical environment" of the carbon-13 atom.

Carbon-13 chemical shift values are shown in the table below.
The carbon-13 atom in each chemical environment has been circled.

Chemical environment	Chemical shift (ppm)
	25-35
	16-25
	50-90
	10-15
	20-50
	170-185

The number of peaks in a carbon-13 NMR spectrum corresponds to the number of carbon atoms in different chemical environments within the molecule.
The position of a peak (the chemical shift) indicates the type of carbon atom.
12. (b) (continued)

The spectrum for ethyl ethanoate is shown below.

(i) Label each peak in the ethyl ethanoate spectrum with a number to match the carbon atom in ethyl ethanoate, shown below.

(ii) Determine the number of peaks that would be seen in the carbon-13 NMR spectrum for the ester shown below.

Number of peaks in carbon-13 NMR spectrum
\qquad
[END OF QUESTION PAPER]

2016 Chemistry

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2016
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Marking Instructions for each question

Section 1

Question	Answer	Max Mark
1.	D	1
2.	A	1
3.	A	1
4.	B	1
5.	B	1
6.	A	1
7.	C	1
8.	D	1
9.	C	1
10.	B	1
11.	B	1
12.	C	1
13.	C	1
14.	B	1
15.	C	1
16.	A	1
17.	C	1
18.	D	1
19.	D	1
20.	A	1

Section 2

Question			Answer	Max Mark	Additional Guidance
1.	(a)		The number of successful collisions will increase/There will be a greater chance of successful collisions (1 mark) OR More reactant particles will have energy equal to or greater than the activation energy. (1 mark)	1	Also acceptable More particles have sufficient/enough energy to react.
	(b)	(i)	1 mark for drawing suitable experiment that will work and for indicating how volume will be measured eg collecting in a gas syringe or downward displacement of water from a measuring cylinder or similar.	1	Accept a recognisable/labelled gas syringe, as long as graduations are shown. Graduations must be shown if a measuring cylinder is used. Mark not awarded if delivery tube passes through the side of a measuring cylinder.
		(ii)	$3 \cdot 7$ (volume strength).	1	Ignore any units. 3.7 must clearly be final answer.
	(c)		8 (s).	1	Accept $7 \cdot 7(1 / 0 \cdot 13)$ to $8 \cdot 3$ $(1 / 0 \cdot 12)$ or correct answer to 2 decimal places. No units required but no mark is awarded if wrong unit is given. (wrong units would only be penalised once in any paper).

Question			Answer	Max Mark	Additional Guidance
2.	(a)	(i)	(The electron shells are pulled closer because) nuclear charge increases/the number of protons in the nucleus increases.	1	Mention must be made of nuclear charge or number of protons in candidate's answer giving the idea of pull by the nucleus. Increased nuclear pull is not accepted.
		(ii)	Two points are required Understanding that the atom loses an electron (when the ion is formed), (1 mark) AND the Sodium ion will only have two electron shells whereas the sodium atom has three electron shells OR the sodium ion will have fewer electron shells (than the sodium atom). (1 mark)	2	A diagram of the atom and ion or stating the electron arrangement of both would be sufficient to gain 1 mark but the second mark can only be awarded if this diagram or electron arrangement is accompanied with an explanatory statement.
	(b)	(i)	As you go down the group the outer electron is more shielded from the nuclear pull OR less strongly attracted by the nucleus.	1	
		(ii)	$2^{\text {nd }}$ ionisation energy involves removal from an electron shell which is inner/full (whole)/(more) stable/closer to the nucleus OR second electron is removed from an electron shell which is inner/full (whole)/(more) stable/closer to the nucleus. (1 mark) The electron is less shielded from, or, more strongly attracted to the nucleus. (1 mark)	2	Stating that more energy is required to remove the second electron would be seen as restating the information from the stem.

Question			Answer	Max Mark	Additional Guidance
2.	(c)	(i)	Any value in range 720-770 ($\mathrm{kJ} \mathrm{mol}^{-1}$).	1	Data value $760 \mathrm{~kJ} \mathrm{~mol}^{-1}$ No units required but no mark is awarded if wrong unit is given. (wrong units would only be penalised once in any paper).
		(ii)	As the ionic radii (of the positive and/or the negative ion) increase, the lattice enthalpy decreases.	1	A general statement stating the greater the difference in ionic radii the greater the lattice enthalpy must be related to either chlorides or fluorides. The mark cannot be awarded for a statement such as, "As the lattice enthalpy decreases the ionic radii increases" which implies that ionic radius is a dependent variable.

Question		Answer	Max Mark	Additional Guidance
3.	(a)	Covalent molecular.	1	
	(b)	$\mathrm{n}=\mathrm{m} / \mathrm{gfm}=2900 / 58=50$ (1 mark) $\mathrm{V}=\mathrm{n} \times \mathrm{Vm}=50 \times 24=1200 \text { (litres) }$ (1 mark) Or by Proportion $\left.\begin{array}{l} \begin{array}{l} 58 \mathrm{~g} \longrightarrow 24 \mathrm{l} \\ (1 \mathrm{mark}) \end{array} \\ 2.9 \mathrm{~kg} \longrightarrow 24 \times 2900 / 58 \ell \\ (1 \mathrm{mark}) \end{array}\right) 1200(\ell) \mathrm{l}$	2	Follow through applies in this question. No units required but only one mark can be awarded if wrong unit is given. (wrong units would only be penalised once in any paper) Accept L for ℓ.
	(c)		1	

Question		Answer	Max Mark	Additional Guidance
4.		This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The student has made some statement(s) which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. 2 marks: The student has demonstrated a reasonable understanding, at an appropriate level, of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood. 3 marks: The maximum available mark would be awarded to a student who has demonstrated a good understanding, at an appropriate level, of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an "excellent" answer or a "complete" one.	3	Zero marks should be awarded if: The student has demonstrated no understanding of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.

Question			Answer	Max Mark	Additional Guidance
5.	(a)		Glycerol or glycerine or propan(e)-1,2,3-triol.	1	
	(b)	(i)	Polyunsaturated.	1	
		(ii)	Octanoic acid.	1	
	(c)	(i)	Bromine solution is added to both until the bromine is no longer decolourised. (or reddish-brown colour remains) (1 mark) More bromine would be required for the more unsaturated/olive oil OR Less bromine would be required for the more saturated/coconut oil. (1 mark)	2	
		(ii)	Hexane is a non-polar (solvent)/ water is a polar (solvent).	1	Answers in terms of "Like dissolves like" are only acceptable if explanation in terms of polarity is given. Oil and water don't mix would not be awarded a mark.
		(iii)	Coconut oil molecules can pack more closely together OR Coconut oil has linear fatty acid chains/olive oil chains have bends/kinks (due to the double bonds) (1 mark) There are stronger/more intermolecular forces between the molecules in coconut oil OR The London dispersion forces (van der Waals' forces) between the molecules in coconut oil are stronger than in olive oils. (1 mark)	2	

Question			Answer	Max Mark	Additional Guidance
6.	(a)		Hexapeptide.	1	
	(b)		isoleucine-leucine-glycine-valineserine OR serine-valine-glycine-leucineisoleucine.	1	
	(c)		Essential.	1	
	(d)	(i)	The peptide molecule: must have contained an amino acid that is repeated in the sequence OR contained only four different amino acids (accept four different peptides). OR The peptide contains two amino acids: with the same R_{f} value OR that moved the same distance.	1	
				1	

Question			Answer	Max Mark	Additional Guidance
6.	(e)	(i)	 or	1	
		(ii)	30 g - units required (2 marks) Partial marks: Correctly calculated mass of mushrooms without units, (1 mark) Appropriate units (1 mark)	2	If an incorrect mass is calculated but the units used are appropriate to the calculation then 1 mark would be awarded. If the candidate has ended the calculation at the lethal dosage then the mark for units can be awarded if the unit is appropriate to the value calculated. If the candidate's working is unclear in terms of what is being worked out then the mark for units cannot be awarded.

Question			Answer	Max Mark	Additional Guidance
7.	(a)		Any reason from list UV light is damaging/harmful to skin. UV light causes sunburn. UV light can break bonds/molecules in skin. UV light damages collagen. UV light can cause skin cancer. UV light ages skin. UV light causes photo ageing. UV light creates free radicals/initiates free-radical chain reactions. Sunblocks contain free-radical scavengers.	1	
	(b)	(i)	Species (Atoms/molecules etc) with unpaired electrons.	1	
		(ii)	Initiation.	1	
		(iii)	Carboxylic acid OR carboxyl group.	1	
		(iv)	The hydroxyl/functional group is attached to a carbon that is attached to two other carbons OR The hydroxyl/functional group is attached to a carbon which has only one hydrogen attached.	1	The answer required is an answer based on structure not an answer based on a chemical property. ie, an answer stating it can be oxidised to give a ketone would not be awarded the mark.

Question			Answer	Max Mark	Additional Guidance
7.	(c)	(i)	A correct structural formula for butyl ethanoate.	1	
		(ii)	To condense any vapours or reactants/products which evaporate OR To act as a condenser.	1	Must be indication that gases are being turned to liquid.
		(iii)	60•7/61 \% (2 marks) 1 mark Calculates theoretical mass $=4.78 \mathrm{~g}$ OR correctly calculates no of moles reactant (0.054) and product (0.033) 1 mark Calculating \% yield using the actual and theoretical masses, or using the actual number of moles of products and actual number of moles of reactant.	2	Follow through applies.
		(iv)	Condensation OR Esterification.	1	

Question		Answer			Max Mark	Additional Guidance

Question		Answer	Max Mark	Additional Guidance
8	(c)	56 or +56 Bond breaking $412+412+412+360+463=2059$ Bond forming $743+412+412+436=2003$ $2059-2003=56\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ A single mark is available if either of the following operations is correctly executed Either The five relevant values for the bond enthalpies of the $\mathrm{C}-\mathrm{H}, \mathrm{H}-\mathrm{H}$, $\mathrm{C}-\mathrm{O}, \mathrm{O}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds (or multiples thereof) are retrieved from the data book 412,360,463,743,436 (ignore signs) OR If only four values are retrieved, the candidate recognises that bond breaking is endothermic and bond formation is exothermic and correctly manipulates the bond enthalpy values they have used to give their answer.	2	-56 would qualify for 1 mark. No units required but only one mark can be awarded for correct answer if wrong unit is given. (wrong units would only be penalised once in any paper). kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$. If less than four bond enthalpy values are retrieved then no mark can be awarded.

Go to Topic Grid

Question			Answer	Max Mark	Additional Guidance
9.	(a)	(i)	4.93 (kJ) (no units required) 1 mark for extrapolating the graph and finding the corrected temperature difference $\Delta \mathrm{T}=11 \cdot 8\left({ }^{\circ} \mathrm{C}\right)$ 1 mark for use of the relationship $\mathrm{E}_{\mathrm{h}}=\mathrm{cm} \Delta \mathrm{T}$ to calculate the $\mathrm{E}_{\mathrm{h}}=$ 4.93 (kJ) Maximum of 1 mark for using $\Delta T=$ $11 \cdot 2$ which gives $E_{h}=4.68(\mathrm{~kJ})$	2	वT 11.6-12.0 acceptable $\begin{aligned} 11.6 \longrightarrow 4.85 \\ 11.7 \longrightarrow 4.89 \\ 11.8 \longrightarrow 4.93 \\ 11.9 \longrightarrow 4.97 \\ 12.0 \longrightarrow 5.02 \end{aligned}$ - T follow through applies No units required but only one mark can be awarded for correct answer if wrong unit is given. (wrong units would only be penalised once in any paper).
		(ii)	To prevent (minimise) heat loss to the surroundings OR polystyrene cup is a poor conductor of heat/insulator.	1	
		(iii)		1	accept $-52 \cdot 5\left(\mathrm{~kJ} \mathrm{or} \mathrm{kJ} \mathrm{mol}^{-1}\right)$. No units required. No mark can be awarded if wrong unit is given. (wrong units would only be penalised once in any paper).
	(b)		$-414 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (no units required) Partial marks Treat as two concepts either would be acceptable for 1 mark Evidence of understanding of reversal of first equation in order to achieve the target equation. Reversal of both equations would be taken as cancelling OR evidence of understanding of multiplying first equation by 2 in order to achieve the target equation.	2	No units required but only one mark can be awarded for correct answer if wrong unit is given. (wrong units would only be penalised once in any paper).

Question		Answer	Max Mark	Additional Guidance
10.	This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The student has made some statement(s) which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. 2 marks: The student has demonstrated a reasonable understanding, at an appropriate level, of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood. 3 marks: The maximum available mark would be awarded to a student who has demonstrated a good understanding, at an appropriate level, of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an "excellent" answer or a "complete" one.	Zero marks should be awarded if: The student has demonstrated no understanding of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.		

Go to Topic Grid

Question				Answer	Max Mark	Additional Guidance
11.	(a)	(i)	A dr long grad com on t	awing that shows a flask with a narrow neck and a single ation mark which goes pletely across, or is labelled, the narrow neck.	1	
		(ii)	Acc mea (1 m Desc or u (1 m	urate method for volume surement eg uses pipette ark) ribes weighing by difference using a tared balance. mark)	2	Burette would be accepted. Syringe not accepted for measuring volume accurately.
		(iii)	All p tole (1 m Best (1 m	points plotted correctly within rance of $1 / 2$ a box mark) fit line mark)	2	
		(iv)	(A)	The dissolved gas/bubbles will affect the density/mass/ volume of solution.	1	"The gas would affect the results" would not be enough to be awarded the mark.
			(B)	3.43%.	1	If a rounded answer is given there must be evidence of the equation being used.
		(v)	34.9	$8(\mathrm{~g}) / 35 \cdot 0(\mathrm{~g})$.	1	No units required. No mark can be awarded if wrong unit is given. (wrong units would only be penalised once in any paper).
	(b)	(i)		ectly drawn aldehyde group	1	Functional group must show open bond. Aldehyde structures only acceptable if functional group is highlighted.
		(ii)		$\mathrm{I}_{2} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{7}+2 \mathrm{H}+2 \mathrm{e}$	1	
		(iii)	Blue yell	to orange/(brick)red/brown/ w/green.	1	Blue-green is not acceptable as the original colour.

Question			Answer	Max Mark	Additional Guidance
11.	(b)	(iv)	$0.0099\left(\mathrm{~mol} \mathrm{l}^{-1}\right) \quad$ (3 marks) Partial marks can be awarded using a scheme of two 'concept' marks, and one 'arithmetic' mark. 1 mark for knowledge of the relationship between moles, concentration and volume. This could be shown by any one of the following steps: - Calculation of number of moles of Cu^{2+} $\mathrm{eg} 0.025 \times 0.0198=0.000495$ - Calculation of conc of reducing sugars eg $0.0002475 \div 0.025$ - Insertion of correct pairings of values of conc and volume in titration formula eg $\frac{0.025 \times 19 \cdot 8}{n_{1}}=\frac{C_{R S} \times 25 \cdot 0}{n_{2}}$ 1 mark for knowledge of relationship between Cu^{2+} and reducing sugars. This could be shown by any one of the following steps: - Calculation of moles of reducing sugars from moles Cu^{2+} eg $0.000495 \div 2=0.0002475$ - Insertion of correct stoichiometric values in titration formula e.g. $\frac{0.025 \times 19 \cdot 8}{2}=\frac{C_{R S} \times 25 \cdot 0}{1}$ 1 mark is awarded for correct arithmetic throughout the calculation. This mark can only be awarded if both concept marks have been awarded.	3	No units required but only two marks can be awarded for correct answer if wrong unit is given. (wrong units would only be penalised once in any paper). 2 concept marks 1 mark for stoichiometric relationship being applied. 1 mark for correctly using $\mathrm{n}=\mathrm{c} \times \mathrm{v}$ Candidates require to correctly apply relationship if used twice in their working. In terms of the mark for the stoichiometric relationship, the 1 should be associated with the unknown concentration of the sugar and the 2 with the with concentration of the Fehling's.

Question			Answer	Max Mark	Additional Guidance
12.	(a)	(i)	hydrogen bonding.	1	
		(ii)	(More) branching lowers the boiling point (1 mark) The shorter the alcohol, the lower the boiling point/The longer the carboxylic acid the lower the b.p. OR The nearer the ester link is to the right hand end (of the molecule) the higher the boiling point. (1 mark)	2	An answer relating to chain length must be specific to either the alcohol or carboxylic acid portion of the ester. Accept this positional trend if the candidate correctly identifies it by reference to the oxygen atom in the chain or the $\mathrm{C}=0$ but not if candidate refers to a carbonyl group.
		(iii)	Any temperature between 99 and $124\left({ }^{\circ} \mathrm{C}\right)$ (data value $116^{\circ} \mathrm{C}$)	1	No units required. No mark can be awarded if wrong unit is given. (wrong units would only be penalised once in any paper).
	(b)	(i)	Peaks labelled in order $\xrightarrow{2,3,1,4}$	1	
		(ii)	5.	1	

[END OF MARKING INSTRUCTIONS]

X713/76/02
Chemistry
Section 1 - Questions

MONDAY, 8 MAY
9:00 AM - 11:30 AM

Instructions for the completion of Section 1 are given on Page 02 of your question and answer booklet X713/76/01.

Record your answers on the answer grid on Page 03 of your question and answer booklet.
You may refer to the Chemistry Data Booklet for Higher and Advanced Higher.
Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

SECTION 1-20 marks
Attempt ALL questions

1. Which of the following bonds is the least polar?

A C-I
B $\quad \mathrm{C}-\mathrm{F}$
C $\mathrm{C}-\mathrm{Cl}$
D $\mathrm{C}-\mathrm{Br}$
2. Which of the following compounds would be the most water soluble?

A

B

C

D

3. Which of the following atoms has the greatest attraction for bonding electrons?

A Sulfur
B Silicon
C Nitrogen
D Hydrogen
4. Which type of structure is found in phosphorus?

A Covalent network
B Covalent molecular
C Monatomic
D Metallic lattice
5. The polarity of molecules can be investigated using a charged rod. The charged rod will attract a stream of polar liquid flowing from a burette.

Which of the following liquids would not be attracted?
A Water
B Propanone
C Propanol
D Hexane
6. $x \mathrm{P}_{2} \mathrm{H}_{4}+y \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}+z \mathrm{H}_{2} \mathrm{O}$

The equation is balanced when
A $x=1, y=5, z=4$
B $x=4, y=6, z=2$
C $x=2, y=7, z=4$
D $x=2, y=5, z=2$
7. What is the systematic name for the compound below?

A 2,2,2-trimethylethanol
B 2,2-dimethylpropan-1-ol
C 2,2-dimethylpropan-3-ol
D 2,2-dimethylpentan-1-ol
8. Which of the following fatty acids is the most unsaturated?

A $\quad \mathrm{C}_{15} \mathrm{H}_{29} \mathrm{COOH}$
B $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}$
C $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{COOH}$
D $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$
9. Which of the following is not a step in a free radical chain reaction?

A Activation
B Initiation
C Propagation
D Termination
10. Which of the following is an isomer of ethyl propanoate $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$?

A Methyl propanoate
B Pentan-2-one
C Pentanoic acid
D Pentane-1,2-diol
11. Essential oils are

A non-water soluble, non-volatile compounds
B non-water soluble, volatile compounds
C water soluble, non-volatile compounds
D water soluble, volatile compounds.
12. The enthalpy of combustion of a hydrocarbon is the enthalpy change when

A one mole of a hydrocarbon burns to give one mole of water
B one mole of a hydrocarbon burns to give one mole of carbon dioxide
C one mole of a hydrocarbon burns completely in oxygen
D one mole of a hydrocarbon burns in one mole of oxygen.
13. Which of the following is the strongest reducing agent?

A Fluorine
B Lithium
C Calcium
D lodine

The atom economy for the production of titanium in the above equation is equal to
A $\frac{47 \cdot 9}{189 \cdot 9+24 \cdot 3} \times 100$
B $\frac{47 \cdot 9}{189 \cdot 9+(2 \times 24.3)} \times 100$
C $\frac{95 \cdot 3+47 \cdot 9}{189 \cdot 9+24 \cdot 3} \times 100$
D $\frac{(2 \times 47 \cdot 9)}{189 \cdot 9+24 \cdot 3} \times 100$
15. The vitamin C content of a carton of orange juice was determined by four students. Each student carried out the experiment three times.

	Experiment 1 	Experiment 2 $\left(\mathrm{mg} / 100 \mathrm{~cm}^{3}\right)$	Experiment 3 $\left(\mathrm{mg} / 100 \mathrm{~cm}^{3}\right)$
Student A	$30 \cdot 0$	$29 \cdot 0$	28.0
Student B	$26 \cdot 4$	$26 \cdot 6$	$26 \cdot 8$
Student C	$26 \cdot 9$	$27 \cdot 0$	26.9
Student D	26.9	26.5	$26 \cdot 9$

The most reproducible results were obtained by
A Student A
B Student B
C Student C
D Student D.
16. Cyanohydrin compounds can be made from carbonyl compounds by reacting the carbonyl compound with hydrogen cyanide (HCN).

Which carbonyl compound would react with hydrogen cyanide (HCN) to form the following compound?

A

B

C

D

17. Chemical reactions are in a state of dynamic equilibrium only when

A the reaction involves no enthalpy change
B the concentrations of reactants and products are equal
C the activation energies of the forward and backward reactions are equal
D the rate of the forward reaction equals that of the backward reaction.
18. Bromine and hydrogen react together to form hydrogen bromide.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

Bonds broken	Bonds made
$\mathrm{H}-\mathrm{H}$	$2 \times \mathrm{H}-\mathrm{Br}$
$\mathrm{Br}-\mathrm{Br}$	

Bond	Bond enthalpy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{Br}-\mathrm{Br}$	194
$\mathrm{H}-\mathrm{Br}$	366

The enthalpy change for this reaction, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is
A -102
B +102
C -264
D +264 .
19. Which of the following is a structural formula for glycerol?

B $\underset{\mathrm{CH}_{2} \mathrm{OH}}{\mathrm{CH}_{2} \mathrm{OH}}$

C

D

20. Which line in the table best describes the effect of adding a catalyst to the following reaction?
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-\mathrm{ve}$

	Position of equilibrium	Rate of forward reaction
A	unchanged	unchanged
B	unchanged	increased
C	moves to right	unchanged
D	moves to right	increased

[END OF SECTION 1. NOW ATTEMPT THE QUESTIONS IN SECTION 2 OF YOUR QUESTION AND ANSWER BOOKLET.]

SECTION 2 - 80 marks

Attempt ALL questions

1. The elements sodium to argon make up the third period of the Periodic Table.

Na	Mg	Al	Si	P	S	Cl	Ar

(a) Name the element from the third period that exists as a covalent network.
(b) Ionisation energy changes across the period.
(i) Explain why the first ionisation energy increases across the period.
(ii) Write an equation, including state symbols, for the second ionisation energy of magnesium.
(iii) The table shows the values for the first four ionisation energies of aluminium.

Ionisation energies $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$			
First	Second	Third	Fourth
578	1817	2745	11577

Explain why there is a large difference between the third and fourth ionisation energies.

1. (continued)
(c) The boiling point of chlorine is much higher than that of argon.

Explain fully, in terms of structure and the type of van der Waals forces present, why the boiling point of chlorine is higher than that of argon.
2. Reactions involving iodine are commonly used to investigate rates of reaction.
(a) One reaction involves hydrogen and iodine reacting together to form hydrogen iodide.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

(i) This reaction is thought to occur by initially breaking bonds in one of the reactants.
Explain, using bond enthalpies, which bond is more likely to break first during this reaction.
(ii) The graph shows the distribution of kinetic energies of reactant molecules in the gas mixture at $300^{\circ} \mathrm{C}$.

Add a second curve to the graph to show the distribution of kinetic energies at $400^{\circ} \mathrm{C}$.
(An additional graph, if required, can be found on Page 35)
2. (a) (continued)
(iii) The reaction to produce hydrogen iodide is exothermic.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

(A) State the effect of increasing temperature on the position of equilibrium.
(B) State why changing the pressure has no effect on this equilibrium reaction.
2. (a) (continued)
(iv) The potential energy diagram for the reaction between hydrogen and iodine is shown.

(A) State the term for the unstable arrangement of atoms.
(B) Calculate the enthalpy change, in kJ , for the forward reaction.
(C) Platinum can be used as a catalyst for this reaction.

State the effect that platinum would have on the activation energy for the reaction.
2. (continued)
(b) The reaction between iodide ions, $\mathrm{I}^{-}(\mathrm{aq})$, and persulfate ions, $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})$, is used to investigate the effect of changing concentration on rate of reaction. The relative rate of the reaction is determined by mixing the reactants in a beaker and recording the time taken for the mixture to change colour.
The results of the investigation are shown in the table.

Experiment	Concentration of $/(a q)$ $(m o l ~ l-1)$	Concentration of $\mathrm{S}_{2} \mathrm{O}_{8}^{2-(a q)}$ $\left(\mathrm{mol}^{-1}\right)$	Time (s)	Relative rate $\left(\mathrm{s}^{-1}\right)$
1	0.04	0.05	241	0.00415
2	0.06	0.05	180	0.00556
3	0.08	0.05		0.00819
4	0.1	0.05	103	0.00971

(i) The instructions state that a dry beaker must be used for each experiment.
Suggest a reason why the beaker should be dry.
(ii) Calculate the time, in seconds, for the reaction in experiment 3.
(iii) Explain why decreasing the concentration of iodide ions lowers the reaction rate.
3. The leaves of the rhubarb plant are considered poisonous because they contain high levels of oxalic acid.
Oxalic acid is a white, water-soluble solid. It is a dicarboxylic acid that has the structural formula shown.

Oxalic acid reacts with bases to form salts.
It can also be oxidised by strong oxidising agents to form carbon dioxide gas. The oxidation equation for oxalic acid is shown.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \rightarrow \quad 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}+2 \mathrm{H}^{+}
$$

Using your knowledge of chemistry, comment on how the mass of oxalic acid in a rhubarb leaf could be determined.
4. Pentyl butanoate is responsible for some of the flavour in apricots and strawberries.

(a) Hydrolysis of pentyl butanoate using sodium hydroxide produces an alcohol and the salt of the carboxylic acid.
(i) Name the alcohol that would be formed when pentyl butanoate is hydrolysed.
(ii) Draw a structural formula for the sodium salt of the carboxylic acid that would be formed.
(b) Fats and oils belong to the same class of compounds as pentyl butanoate.
(i) Name this class of compounds.
(ii) When a fat is hydrolysed using sodium hydroxide, sodium salts of fatty acids are produced.

State a use for sodium salts of fatty acids.
4. (b) (continued)
(iii) Hydrolysis of fats using hydrochloric acid produces fatty acids. Stearic acid is a fatty acid that can be made from hydrolysis of beef fat. It is a fuel sometimes found in fireworks.

During combustion, stearic acid $\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}\right)$ produces 623 kJ of energy per mole of CO_{2} produced.

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}+26 \mathrm{O}_{2} \rightarrow 18 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O} \\
& \quad \text { mass of } \\
& \text { one mole } \\
& \quad=284 \mathrm{~g}
\end{aligned}
$$

Calculate the energy released, in kJ , by combustion of 10 grams of stearic acid.
5. Sulfur dioxide is a colourless, toxic gas that is soluble in water and more dense than air.
(a) One laboratory method for preparation of sulfur dioxide gas involves adding dilute hydrochloric acid to solid sodium sulfite. The sulfur dioxide gas produced is dried by bubbling the gas through concentrated sulfuric acid. The sulfur dioxide gas can then be collected.

(i) Complete the diagram by drawing:
in the first box, apparatus suitable for drying the sulfur dioxide gas;
in the second box, apparatus suitable for collecting the gas.
(An additional diagram, if required, can be found on Page 35)
5. (a) (continued)
(ii) 0.40 g of sodium sulfite, $\mathrm{Na}_{2} \mathrm{SO}_{3}$, is reacted with $50 \mathrm{~cm}^{3}$ of dilute hydrochloric acid, concentration $1.0 \mathrm{moll}^{-1}$.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{~g}) \\
& \text { mass of } \\
& \text { one mole } \\
& =126 \cdot 1 \mathrm{~g}
\end{aligned}
$$

Show, by calculation, that sodium sulfite is the limiting reactant.
(b) Another reaction that produces sulfur dioxide gas involves combustion of carbon disulfide in the reaction shown.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction using the following information.

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-393 \cdot 5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{SO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-296 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}(\mathrm{s})+2 \mathrm{~S}(\mathrm{~s})$	\rightarrow	$\mathrm{CS}_{2}(\mathrm{l})$	$\Delta \mathrm{H}=+87 \cdot 9 \mathrm{~kJ} \mathrm{~mol}^{-1}$

5. (continued)

(c) The graph shows results for an experiment to determine the solubility of sulfur dioxide in water.

(i) Determine the solubility of sulfur dioxide, in gl^{-1}, in water at $10^{\circ} \mathrm{C}$.
(ii) Information about sulfur dioxide and carbon dioxide is shown in the table.
$\left.\begin{array}{|c|c|c|c|}\hline & \begin{array}{c}\text { Shape of } \\ \text { molecule }\end{array} & \begin{array}{c}\text { Electronegativity } \\ \text { difference } \\ \text { between elements }\end{array} & \begin{array}{c}\text { Solubility in } \\ \text { water at 25 } \\ (\mathrm{g} \mathrm{t}\end{array} \\ \hline-10\end{array}\right]$

Explain fully why carbon dioxide is much less soluble in water than sulfur dioxide is in water.
6. A student was carrying out an investigation into alcohols, aldehydes and ketones.
(a) The student was given three alcohols labelled as A, B and C. These alcohols were all isomers with the formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$.
(i) Draw a structural formula for the secondary alcohol with the formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$.
(ii) The student set up the following experiment.

Alcohol	Observation
A	Colour change
B	No change
C	Colour change

(A) Suggest why a water bath is an appropriate method of heating the reaction mixture.
(B) Describe the colour change that would have been observed with alcohols A and C.
(C) Alcohol B is not oxidised.

State the type of alcohol which cannot be oxidised by acidified dichromate solution.
6. (a) (continued)
(iii) The student set up a second experiment with alcohol A.

Hot copper(II) oxide is an oxidising agent.
(A) When alcohol $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)$ is oxidised the product turns the pH paper red.
Suggest a name for the product.
(B) Complete the ion-electron equation for the oxidation reaction.

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \quad \rightarrow \quad \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}
$$

6. (continued)

(b) The student found the following information about the boiling points of some aldehydes.

Aldehyde	Molecular formula	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	102
	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	130
	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	153
	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	95
	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	75
	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	119
	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	111

(i) Name the aldehyde that has a boiling point of $119^{\circ} \mathrm{C}$.
(ii) Predict the boiling point, in ${ }^{\circ} \mathrm{C}$, of the following molecule.

(iv) State what would be observed when an aldehyde is gently heated with Tollens' reagent.
(c) Ketones contain a carbonyl group.

Name the type of intermolecular interaction between ketone molecules.
7. Some people take iron tablets as a dietary supplement. Iron tablets may contain iron(II) sulfate.
(a) A student was investigating the iron(II) content of iron tablets. A work card gave the following instructions for preparing an iron tablet solution.

1.Add five iron tablets to about $50 \mathrm{~cm}^{3}$ of dilute sulfuric acid in a small beaker and stir to dissolve.
2.Transfer quantitatively to a $100 \mathrm{~cm}^{3}$ volumetric flask. 3. Make up the solution to the graduation mark on the volumetric flask. 4. Stopper the flask and then invert it to mix the solution.

To 'transfer quantitatively' means that all of the iron tablet solution must be transferred into the volumetric flask.

Describe how this is carried out in practice.
(b) The concentration of iron(II) ions $\left(\mathrm{Fe}^{2+}\right)$ in this iron tablet solution can be determined by a redox titration with permanganate $\left(\mathrm{MnO}_{4}^{-}\right)$solution.
$5 \mathrm{Fe}^{2+}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$
(i) Suggest why it is not necessary to add an indicator to this titration.
7. (b) (continued)
(ii) Suggest why the titration must be carried out under acidic conditions.
(iii) Three $25.0 \mathrm{~cm}^{3}$ samples of the iron tablet solution were titrated with a standard solution of $0.020 \mathrm{moll}^{-1}$ permanganate $\left(\mathrm{MnO}_{4}^{-}\right)$. The results are shown below.

Sample	Volume of permanganate $\left(\mathrm{cm}^{3}\right)$
1	$14 \cdot 9$
2	$14 \cdot 5$
3	$14 \cdot 6$

(A) State why the volume of permanganate used in the calculation was taken to be $14.55 \mathrm{~cm}^{3}$, although this is not the average of the three titres in the table.
(B) Calculate the concentration, in moll^{-1}, of iron(II) ions in the iron tablet solution.
$5 \mathrm{Fe}^{2+}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$
7. (b) (iii) (continued)
(C) State what is meant by the term standard solution.
(D) Name an appropriate piece of apparatus which could be used to measure $25.0 \mathrm{~cm}^{3}$ samples of iron tablet solution.
(c) In a different experiment, five iron tablets were found to contain 0.00126 moles of iron(II) ions.

Calculate the average mass, in mg , of iron present in one tablet.
(d) It is recommended an adult female takes in 14.8 mg of iron per day. 100 g of a breakfast cereal contains 12.0 mg of iron.
Calculate the percentage of the recommended daily amount of iron provided for an adult female by a 30 g serving.
8. Skin care products contain a mixture of polar covalent, non-polar covalent and ionic compounds. The compounds need to stay mixed within the product.
Skin care products also need to spread easily and remain on the skin for a period of time, as well as provide physical and chemical protection from the sun. In order to do this, skin care products contain a range of chemicals including water, fats and oils, antioxidants, minerals and sun block.

Using your knowledge of chemistry, explain the role of different chemicals in skin care products.
9. Dishwasher tablets contain chemicals which remove dirt from dishes.
(a) Dishwasher tablets include detergents. These molecules act like soaps to allow mixing of fat-soluble dirt and water.
(i) During the cleaning process, the detergent molecules combine with fat-soluble dirt.
A simplified diagram of a detergent molecule is shown.
covalent tail

Complete the diagram below to show how detergent molecules combine with fat-soluble dirt.

(An additional diagram, if required, can be found on Page 36)
(ii) State the term used to describe the non-polar, hydrocarbon tail of a detergent molecule.
9. (continued)
(b) Dishwasher tablets produce the bleach hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$. One action of this oxidising agent is to oxidise food.
(i) Suggest another action of the bleach produced by the dishwasher tablets.
(ii) Hydrogen peroxide decomposes to form water and oxygen.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\ell) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})
$$

A dishwasher tablet produces 0.051 g of hydrogen peroxide (mass of one mole $=34 \mathrm{~g}$).
Calculate the volume of oxygen that would be produced when 0.051 g of hydrogen peroxide decomposes.

Take the volume of 1 mole of oxygen gas to be 24 litres.
(c) Enzymes are commonly added to dishwasher tablets. These are used to break down proteins.
(i) The proteins are broken down into small, water-soluble molecules. Name the small, water-soluble molecules made when proteins are broken down completely.
9. (c) (continued)
(ii) The structure of a section of protein chain found in egg white is shown.

(A) Name the functional group circled.
(B) Draw a structural formula for one of the molecules that would be made when this section of egg white protein chain is completely broken down.
(iii) As part of the program in the dishwasher, the conditions in the dishwasher change so that the enzyme molecules no longer work because they change shape.
(A) State the term used to describe the change in shape of enzyme molecules.
(B) Suggest a change in conditions which would cause the enzyme molecules to change shape.
9. (continued)
(d) A bleach activator is frequently added to dishwasher tablets to speed up the bleaching reaction. One common bleach activator is TAED.
TAED could be produced in a process which involves a number of stages.
(i) The first stage in producing TAED is shown below.

Suggest a name for this type of reaction.
9. (d) (continued)
(ii) The final stage in the process producing TAED is shown below.

Draw a structural formula for TAED.
10. Essential oils from the lavender plant are used in aromatherapy.
(a) Gas chromatography can be used to separate and identify the organic compounds in lavender oils.
Chromatogram 1 - Lavender oil A

Peak	Component	Component peak area
1	1,8-cineole	7432
2	linalool	31909
3	camphor	7518
4	linalyl acetate	27504
5	geranyl acetate	3585
6	farnesene	1362
Total peak area		

The relative concentration of each component can be calculated using the following formula.

$$
\text { Relative concentration }=\frac{\text { Component peak area }}{\text { Total peak area }} \times 100(\%)
$$

(i) Calculate the relative concentration of linalool in lavender oil A.
10. (a) (continued)
(ii) Different varieties of lavender oils have different compositions.

Chromatogram 2 - Lavender oil B

Identify the component found in lavender oil A that is missing from lavender oil B.
(b) A brand of mouthwash contains the component 1,8-cineole at a concentration of 0.92 mg per cm^{3}. The cost of 1 kg of 1,8 -cineole is $£ 59 \cdot 10$.

Calculate the cost, in pence, of 1,8-cineole that is present in a $500 \mathrm{~cm}^{3}$ bottle of this brand of mouthwash.
10. (continued)
(c) The component molecules found in lavender oils are terpenes or terpenoids.
(i) A chiral carbon is a carbon atom attached to four different atoms or groups of atoms.
An example is shown below.

Chiral carbon atom

A molecule of the terpenoid linalool has a chiral carbon. Linalool has the following structure.

Circle the chiral carbon atom in the linalool structure.
(An additional diagram, if required, can be found on Page 36)
(ii) Farnesene is a terpene consisting of three isoprene units (2-methylbuta-1,3-diene) joined together.
Write the molecular formula of farnesene.

2017 Chemistry

Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

Marking instructions for each question

Section 1

Question	Answer	Max Mark
1.	A	1
2.	D	1
3.	C	1
4.	B	1
5.	D	1
6.	C	1
7.	B	1
8.	C	1
9.	A	1
10.	C	1
11.	B	1
12.	C	1
13.	B	1
14.	B	1
15.	C	1
16.	A	1
17.	D	1
18.	A	1
19.	D	1
20.	B	1

Section 2

Question		Answer	Max mark	Additional guidance
(c)	1 mark - Correctly identify that there are stronger/more (Van der Waals) forces between chlorine (molecules) than between the argon (atoms) 1 mark - Correctly identifying that	3		
	Chis mark can only be Chlorine molecules $\left(\mathrm{Cl}_{2}\right)$ have more electrons than argon atoms (Ar).	are mentioned as being broken.		

Question			Answer	Max mark	Additional guidance
2.	(a)	(i)	I-I bond is weaker/has a lower bond enthalpy value (so will break more easily) OR $\mathrm{I}_{2}\left(151 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ is less than H_{2} ($436 \mathrm{~kJ} \mathrm{~mol}^{-1}$), (so will break more easily).	1	lodine on its own is not acceptable.
		(ii)	Peak of curve should be further to the right and no higher than the original line.	1	
		(iii) (A)	Equilibrium will shift to the reactant side/left (hand side).	1	
		(iii) (B)	There are the same/equal volume/ number of moles/molecules (of gases) on each side (of the equation). OR Pressures of reactants and products are equal.	1	Ratios on their own, without an explanation, are not acceptable eg 1:1 or 2:2
		(iv) (A)	Activated complex	1	Accept activation complex or transition state.
		(iv) (B)	$-9 \cdot 6(\mathrm{~kJ})$ If candidate has calculated from graph values OR -9 (kJ) If candidate has calculated using bond enthalpies Answer must include the negative sign	1	No units required. No mark can be awarded for the correct answer if wrong unit is given. (wrong units would only be penalised once in any paper) $\mathrm{kJ} \mathrm{mol}^{-1}$ is acceptable in place of kJ
		(iv) (C)	Decrease/lower it	1	

Question		Answer	Max mark	Additional guidance	
	(b)	(i)	To keep the concentration (of the reactants) constant. OR Adding water will change/affect/ dilute/decrease the concentration (of the reactants) OR To keep the total volume constant.	1	
	(ii)	$122 \cdot 1$ (accept 122) (s)	1	No units required. No mark can be awarded for the correct answer if wrong unit is given. (wrong units would only be penalised once in any paper)	
(iii)	The number of (successful) collisions will decrease. OR Less chance of (successful) collisions OR The frequency of (successful) collisions will decrease.	$\mathbf{1}$	Any mention of time of collisions is unacceptable.		

Question		Answer	Max mark	Additional guidance
3.		This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The candidate has made some statement(s) at which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	$\mathbf{3}$	Zero marks should be awarded if: The student has demonstrated, at an appropriate level, no understanding, of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.
2 marks: The student has demonstrated, at an appropriate level, a reasonable understanding of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood.	3 marks: The maximum available mark would be awarded to a student who has demonstrated, at an appropriate level, a good understanding of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an 'excellent' answer or a complete' one.			

Question			Answer	Max mark	Additional guidance
5.	(a)	(i)	Diagram shows a workable method of bubbling through concentrated sulfuric acid. 1 mark Diagram for appropriate gas collection method i.e. using a gas syringe or upward displacement of air. 1 mark	2	
		(ii)	Calculating that 0.05 moles HCl would require 0.025 moles sodium sulfite and there are only 0.00317 moles of sodium sulfite OR Calculating that 0.00317 moles of sodium sulfite would require 0.00634 moles of HCl and there are 0.05 moles of HCl OR Calculating that $3 \cdot 15 \mathrm{~g}$ sodium sulfite would be needed to react with $50 \mathrm{~cm}^{3}$ hydrochloric acid and there are only 0.4 g of sodium sulfite OR Calculating that $6.3 \mathrm{~cm}^{3}$ of $(1 \mathrm{M}) \mathrm{HCl}$ would be needed to react with 0.4 g of sodium sulfite and there are 50 cm^{3} (1M) HCl	2	General marking principle (j) applies. Partial marking 1 mark awarded for correct arithmetical calculation of moles of $\mathrm{Na}_{2} \mathrm{SO}_{3}(=0.00317$ mol) AND $\mathrm{HCl}=0.05 \mathrm{~mol}$) OR 1 mark awarded for correct arithmetical calculation of moles of acid (0.05) and correct application of stoichiometry to either reactant. OR 1 mark awarded for correct arithmetical calculation of moles of sodium sulfite (0.00317) and correct application of stoichiometry to either reactant.

Question		Answer	Max mark	Additional guidance
(b)		- $1075\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Partial marks Treat as two concepts either would be acceptable for 1 mark Evidence of understanding of reversal for third equation only in order to achieve the target equation. Reversal of additional equations would be taken as cancelling OR evidence of understanding of multiplying for second equation by 2 in order to achieve the target equation. Multiplication of additional equations would be taken as cancelling.	2	If answer given is 1075 or +1075 , maximum of 1 mark can be awarded. No units required. Only 1 mark can be awarded for the correct answer if wrong unit is given. (wrong units would only be penalised once in any paper) kJ is acceptable in place of kJ mol^{-1}
(c)	(i)	163-167 inclusive (gl^{-1})	1	No units required. No mark can be awarded for correct answer if wrong unit is given. (wrong units would only be penalised once in any paper)
	(ii)	1 mark for carbon dioxide is non-polar due to its shape/dipoles cancelling out and sulfur dioxide is polar due to its shape/dipoles not cancelling out 1 mark for an explanation which links polarity of CO_{2} and SO_{2} molecules to the polarity of water	2	

Go to Topic Grid

Question			Answer	Max mark 1	Additional guidance
6.	(a)	(i)			Accept a correct shortened structural formula
		(ii) (A)	Reactants or products are flammable/could catch fire.	1	
		(ii) (B)	orange to green/ blue-green/blue	1	
		$\begin{aligned} & \text { (ii) } \\ & \text { (C) } \end{aligned}$	Tertiary	1	
		(iii) (A)	Butanoic acid OR (2-)methylpropanoic acid	1	
		(iii) (B)	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	1	Negative sign on electron not required. Positive sign on H^{+}required.
	(b)	(i)	2-methylpentanal	1	2-methylpentan-1-al is not acceptable.
		(ii)	Any temperature between 166 and $181\left({ }^{\circ} \mathrm{C}\right)$	1	No units required. No mark can be awarded if wrong unit is given. (wrong units would only be penalised once in any paper)
		(iii)	(More) branching lowers the boiling point (of isomeric aldehydes).	1	
		(iv)	Silver mirror/silver precipitate	1	Accept silver on its own
	(c)		(Permanent) dipole to (permanent) dipole	1	Accept London Dispersion Forces

Question		Answer	Max mark	Additional guidance	
7.	(a)		Rinse beaker and transfer the rinsings/washings to the flask	1	
	(b)	(i)	The reaction is self-indicating. OR Potassium permanganate can act as its own indicator. OR Reaction changes colour.	$\mathbf{1}$	
		(ii)	To provide H ${ }^{+}$ions for the reaction.	$\mathbf{1}$	
(iii)					
(A)	1 mark for any of the following - first titre is a rough (or approximate) result/practice first titre is not accurate/not reliable/rogue first titre is too far away from the others you take average of concordant/close results	$\mathbf{1}$			

Questi	Answer	Max mark	Additional guidance
(c)	14mg, $14.06 \mathrm{mg}, 0.01406 \mathrm{~g}$	1	No units required. No mark can be awarded for correct answer if wrong unit is given. (wrong units would only be penalised once in the paper)
(d)	$\begin{aligned} & 24 \%, 24 \cdot 3 \% \\ & \text { Partial marks } \\ & 1 \text { mark awarded for } \\ & 30 \mathrm{~g} \text { would contain } 3.6 \mathrm{mg} \\ & 1 \text { mark for } \\ & \frac{\text { any calculated mass }}{14.8} \times 100 \end{aligned}$	2	

Question		Answer	Max mark	Additional guidance
8.		This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The candidate has made some statement(s) at which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	$\mathbf{3}$	Zero marks should be awarded if: The student has demonstrated, at an appropriate level, no understanding, of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.
2 marks: The student has demonstrated, at an appropriate level, a reasonable understanding of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood.	3 marks: The maximum available mark would be awarded to a student who has demonstrated, at an appropriate level, a good understanding of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an 'excellent' answer or a complete' one.			

Question		Answer	Max mark	Additional guidance	
9.	(a)	(i)	A drawing similar to		
(b)	(i)	(i)			

Question	Answer	Max mark	Additional guidance
(ii)	$18 \mathrm{~cm}^{3} / 0.018$ litres with correct unit Partial marking 1 mark can be awarded for two of the three steps shown below correctly calculated: 1. number of moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ 2. mole ratio applied 3. calculated number of moles of O_{2} multiplied by 24 (24000) If processed by proportion $68 \mathrm{~g} \leftrightarrow \rightarrow 24 \mathrm{l}\left(24000 \mathrm{~cm}^{3}\right)$ 1 mark OR $0.051 \mathrm{~g} \leftrightarrow \rightarrow 0.036 \mathrm{l}\left(36 \mathrm{~cm}^{3}\right)$ 1 mark 1 mark for correct units.	3	If an incorrect volume is calculated but the units of volume used are appropriate to the calculation then 1 mark would be awarded for correct units. Accept L for litres

Question		Answer		Additional guidance
(c)	(i)	amino acids	1	
	(ii) (A)	Amide/amide link/peptide link	1	Amine/amino not acceptable
	(ii) (B)	Any of the shown amino acids:	1	

Question		Answer		Additional guidance
	(iii) (A)	Denaturing	1	
	(iii) (B)	Temperature increase/pH	1	Temperature on its own is not acceptable. High/higher/above optimum temperature are also accepted.
(d)	(i)	Condensation	1	
	(ii)		1	

Question			Answer		Additional guidance
10.	(a)	(i)	40•23/40-2/40 (\%)	1	
		(ii)	geranyl acetate/peak 5	1	
	(b)		$2 \cdot 7 p / 3 p$ Partial marking 1 mark can be awarded for Evidence of scaling up to $500 \mathrm{~cm}^{3}$ eg 460 mg of 1,8 -cineole OR Evidence for determining a correct cost for a calculated mass of 1,8-cineole eg 0.92 mg costs 0.00544 pence	2	
	(c)	(i)		1	
		(ii)	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{OR}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)_{3}$	1	

[END OF MARKING INSTRUCTIONS]

MONDAY, 21 MAY
9:00 AM - 11:30 AM

Instructions for the completion of Section 1 are given on page 02 of your question and answer booklet X713/76/01.

Record your answers on the answer grid on page 03 of your question and answer booklet.
You may refer to the Chemistry Data Booklet for Higher and Advanced Higher.
Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

SECTION 1-20 marks
Attempt ALL questions

1. The potential energy diagram below refers to the reversible reaction involving reactants \mathbf{R} and products P .

What is the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reverse reaction?
A -40
B $\quad-10$
C +10
D +30
2. The relative rate of a reaction which reached completion in 1 minute 40 seconds is

A $\quad 0.010 \mathrm{~s}^{-1}$
B $0.714 \mathrm{~s}^{-1}$
C $0.010 \mathrm{~min}^{-1}$
D $\quad 0.714 \mathrm{~min}^{-1}$.
3.

Kinetic energy of molecules

Which of the following is the correct interpretation of the above energy distribution diagram for a reaction as the temperature decreases from T_{2} to T_{1} ?

	Activation energy $\left(E_{A}\right)$	Number of successful collisions
A	remains the same	increases
B	decreases	decreases
C	decreases	increases
D	remains the same	decreases

4. The table shows the first three ionisation energies of aluminium.

Ionisation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$		
First	Second	Third
578	1817	2745

Using this information, what is the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the following reaction?

$$
\mathrm{Al}^{+}(\mathrm{g}) \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+2 \mathrm{e}^{-}
$$

A 1817
B 2395
C 4562
D 5140
5. An element contains covalent bonding and London dispersion forces.

The element could be
A boron
B neon
C sodium
D sulfur.
6. Erythrose is a chemical that is known to kill cancer cells.

The two functional groups present in erythrose are
A carboxyl and ester
B carbonyl and ester
C carbonyl and hydroxyl
D carboxyl and hydroxyl.
7.

The name of the above compound is
A 2,2,3-trimethylbutanoic acid
B 2,3,3-trimethylbutanoic acid
C 1,1,2,2-tetramethylpropanoic acid
D 2,2,3,3-tetramethylpropanoic acid.
8. Which of the following is an isomer of pentan-3-ol?

A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
B $\mathrm{CH}_{3} \mathrm{CHCHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C $\mathrm{CH}_{3} \mathrm{CHCHCH}(\mathrm{OH}) \mathrm{CH}_{3}$
D $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
9. Oxidation of 4-methylpentan-2-ol to the corresponding ketone results in the alcohol

A losing 2 g per mole
B gaining 2 g per mole
C losing 16 g per mole
D gaining 16 g per mole.
10. Essential amino acids are defined as the amino acids which

A are necessary for building proteins
B humans must acquire through their diet
C plants cannot synthesise for themselves
D are produced when any protein is hydrolysed.
11. A mixture of carbon monoxide and hydrogen can be converted into water and a mixture of hydrocarbons.
$\mathrm{nCO}+(2 n+1) \mathrm{H}_{2} \rightarrow \mathrm{nH}_{2} \mathrm{O}+$ hydrocarbons
What is the general formula for the hydrocarbons produced?
A $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n-2}$
B $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
C $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+1}$
D $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
12. A mixture of sodium chloride and sodium sulfate is known to contain 0.6 mol of chloride ions and 0.2 mol of sulfate ions.
How many moles of sodium ions are present?
A 0.4
B 0.5
C 0.8
D $\quad 1.0$
13. Under the same conditions of temperature and pressure, which of the following gases would occupy the largest volume?

A 0.20 g of hydrogen
B $\quad 0.44 \mathrm{~g}$ of carbon dioxide
C 0.60 g of neon
D $\quad 0.80 \mathrm{~g}$ of argon
14. $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

What volume of gas, in cm^{3}, would be obtained by reaction between $100 \mathrm{~cm}^{3}$ of ammonia gas and excess copper(II) oxide?
All volumes are measured at atmospheric pressure and $20^{\circ} \mathrm{C}$.
A 50
B 100
C 200
D 400
15. $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$

The addition of which of the following substances would move the above equilibrium to the right?

A Hydrogen
B Hydrogen chloride
C Sodium chloride
D Sodium hydroxide
16. When $3 \cdot 6 \mathrm{~g}$ of butanal (mass of one mole $=72 \mathrm{~g}$) was burned, 124 kJ of energy was released. What is the enthalpy of combustion of butanal, in $\mathrm{kJ} \mathrm{mol}^{-1}$?

A $\quad-6 \cdot 2$
B $+6 \cdot 2$
C -2480
D +2480
17. Consider the reaction pathways shown below.

According to Hess's Law, the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for reaction X is
A +111
B -111
C -677
D +677 .
18. $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$

Which of the following ions could be used to oxidise sulfite ions to sulfate ions?
A $\quad \mathrm{Cr}^{3+}(\mathrm{aq})$
B $\mathrm{Al}^{3+}(\mathrm{aq})$
C $\mathrm{Fe}^{3+}(\mathrm{aq})$
D $\quad \mathrm{Sn}^{4+}(\mathrm{aq})$
19. During a redox reaction nitrate ions, NO_{3}^{-}, are converted to nitrogen monoxide, NO .

$$
\mathrm{NO}_{3}^{-} \quad \rightarrow \quad \mathrm{NO}
$$

Which line in the table correctly completes the ion-electron equation?

	Reactants	Products
A	$6 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	$3 \mathrm{H}_{2} \mathrm{O}$
B	$4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	$2 \mathrm{H}_{2} \mathrm{O}$
C	$6 \mathrm{H}^{+}$	$3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{e}^{-}$
D	$4 \mathrm{H}^{+}$	$2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-}$

20.

$$
\mathrm{ICl}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{ICl}_{3}(\mathrm{~s}) \quad \Delta H=-106 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which line in the table identifies correctly the changes that will cause the greatest increase in the proportion of solid in the above equilibrium mixture?

	Temperature	Pressure
A	decrease	decrease
B	decrease	increase
C	increase	decrease
D	increase	increase

[END OF SECTION 1. NOW ATTEMPT THE QUESTIONS IN SECTION 2 OF YOUR QUESTION AND ANSWER BOOKLET.]

SECTION 2 - 80 marks
 Attempt ALL questions

1. The elements of group 7 in the periodic table are known as the halogens.
(a) Going down group 7 the electronegativity of the halogens decreases.
(i) State what is meant by the term electronegativity.
(ii) Explain why electronegativity values decrease going down group 7.
(b) Explain fully why the boiling points of the halogens increase going down group 7.
In your answer you should name the intermolecular forces involved.
2. The elements sodium to argon form the third period of the periodic table.
(a) Explain the decrease in atom size going across the third period from sodium to argon.
(b) Elements in the third period of the periodic table form chlorides.

The structures of three of these chlorides are shown.

(i) Circle the structure of the molecule above that contains bonds with the lowest polarity.
(An additional diagram, if required, can be found on page 37).
(ii) Explain fully why, of these three chlorides, silicon tetrachloride is the most soluble in hexane.
2. (continued)
(c) Silicon tetrachloride can be used to make silicon nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$, a compound found in many cutting tools.
(i) Silicon nitride has a melting point of $1900^{\circ} \mathrm{C}$ and does not conduct electricity when molten.

Explain fully, in terms of structure and bonding, why silicon nitride has a high melting point.
(ii) An equation for the formation of silicon nitride is shown.

$3 \mathrm{SiCl}_{4}$	+	$16 \mathrm{NH}_{3}$	\rightarrow	$\mathrm{Si}_{3} \mathrm{~N}_{4}$	+	$12 \mathrm{NH}_{4} \mathrm{Cl}$
mass of		mass of		mass of		mass of
one mole		one mole		one mole		one mole
$=170 \cdot 1 \mathrm{~g}$		$=17.0 \mathrm{~g}$		$=140.3 \mathrm{~g}$		$=53.5 \mathrm{~g}$

Calculate the atom economy for the formation of silicon nitride.

2. (continued)

(d) Aluminium, another element in the third period, also forms a chloride. Aluminium chloride is prepared by reacting aluminium metal and chlorine gas.

Chlorine gas is produced by the reaction between hydrochloric acid and sodium hypochlorite. The chlorine is then passed over heated aluminium foil, forming aluminium chloride as a hot gas. The hot aluminium chloride gas and unreacted chlorine gas are passed into a flask where the aluminium chloride cools to a fine white powder.

For safety it is important that any unreacted chlorine gas can escape from the flask.
(i) Complete a labelled diagram to show an apparatus suitable for carrying out this preparation.

(ii) Explain why the aluminium foil needs to be heated at the start of the preparation, despite the reaction being highly exothermic.
3. Methyl benzoate is commonly added to perfumes as it has a pleasant smell.

A student carries out a reaction to produce methyl benzoate using the following apparatus.

(a) The reaction mixture needs to be heated.

Describe a safe method of heating a flammable mixture.
(b) Suggest a reason why there is a small test tube filled with cold water in the neck of the tube containing the reaction mixture.
3. (continued)
(c) The chemical reaction involved in the experiment is shown.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s})+\mathrm{CH}_{3} \mathrm{OH}(\ell) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}(\ell)+\mathrm{X}$ benzoic acid methyl benzoate mass of one mass of one mass of one mole $=122 \mathrm{~g} \quad$ mole $=32 \mathrm{~g} \quad$ mole $=136 \mathrm{~g}$
(i) Name product X .
(ii) In a laboratory experiment, a student used 5.0 g of benzoic acid and 2.5 g of methanol to produce methyl benzoate.
Explain why benzoic acid is the limiting reactant.
You must include calculations in your answer.
(iii) The student produced 3.1 g of methyl benzoate from 5.0 g of benzoic acid. Benzoic acid costs $£ 39 \cdot 80$ for 500 g .
Calculate the cost, in $£$, of the benzoic acid needed to make 100 g of methyl benzoate using the student's method.
4. 3-Methylbutanal is a compound that is found in low concentrations in many types of food. The structure of 3-methylbutanal is shown.

(a) Draw a structural formula for a ketone that is an isomer of 3-methylbutanal.
(b) Name a reagent which could be used to distinguish between 3-methylbutanal and a ketone.
(c) Name the strongest intermolecular force that occurs between 3-methylbutanal molecules.

4. (continued)
(d) 3-Methylbutanal is found in olive oil.

Explain fully what can happen to 3-methylbutanal that will cause the olive oil to develop an unpleasant taste.
(e) 3-Methylbutanal can be used as a reactant in the production of other compounds. One reaction scheme involving 3-methylbutanal is shown.

Step 2
3-methylbutanal
propanone

product A
(i) Explain why step 1 is described as a condensation reaction.
(ii) Give the systematic name for product A.
5. Many chemical compounds are related to each other by their structural features, the way they are made and how they are used.
Using your knowledge of chemistry, describe the relationships between fats, oils, detergents, soaps and emulsifiers.
6. Skin creams contain many different chemicals.
(a) Retinol (vitamin A) promotes cell regeneration.

One method of supplying retinol to the skin is by using a skin cream containing the compound retinyl palmitate.

Retinyl palmitate is absorbed into the skin and then broken down to form retinol.
(i) Name the type of reaction that occurs when retinyl palmitate is broken down to form retinol.
(ii) Write a molecular formula for retinol.
(b) Skin creams often contain vitamin E to prevent damage to the skin caused by free radicals.
(i) Describe how free radicals are formed.
6. (b) (continued)
(ii) Hydroxyl free radicals $(\cdot \mathrm{OH})$ can attack fatty acids present in cell membranes. One step in the chain reaction is shown below.
$\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{2}+\cdot \mathrm{OH} \quad \rightarrow \quad \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \cdot+\mathrm{H}_{2} \mathrm{O}$
State the name given to this step in the chain reaction.
(iii) The antioxidant vitamin E is a free radical scavenger.

State how free radical scavengers prevent further chain reactions.

6. (continued)

(c) Palmitoyl pentapeptide-4 is also used in skin creams.

(i) Circle a peptide link in the above structure.
(An additional diagram, if required, can be found on page 37).
(ii) Palmitoyl pentapeptide-4 is formed from palmitic acid and three different amino acids.

Molecule	Number of molecules used to form one molecule of palmitoyl pentapeptide-4
palmitic acid	1
threonine	2
serine	1
lysine	2

Draw a structural formula for the amino acid serine.
7. Terpenes consist of joined isoprene units (2-methylbuta-1,3-diene). They are classified by the number of isoprene units in the molecule.

Class of terpene	Number of isoprene units
hemiterpene	1
monoterpene	2
sesquiterpene	3
diterpene	4
triterpene	6

(a) Myrcene and humulene are terpenes present in hops which give beer its characteristic flavour and aroma.
(i) Circle an isoprene unit on the myrcene structure below.

(An additional diagram, if required, can be found on page 38).
(ii) Humulene has the molecular formula $\mathrm{C}_{15} \mathrm{H}_{24}$.

Name the class of terpene to which humulene belongs.
7. (continued)
(b) (i) Squalene, a triterpene, is included in some flu vaccines to enhance the body's immune response. A single dose of flu vaccine contains 10.69 mg of squalene.

Calculate the mass of squalene required to produce a batch of 500000 doses of flu vaccine.

Your answer must be given in kg.
(ii) Squalane is a fully saturated hydrocarbon used in skin moisturising cream.

Squalane can be made by the reaction of squalene with hydrogen.

squalene

State the number of moles of hydrogen needed to fully saturate one mole of squalene to produce one mole of squalane.
7. (continued)
(c) The monoterpene limonene, found in lemon oil, can be converted into the alcohol, terpineol.

(i) Name the type of reaction taking place.
(ii) When terpineol is heated with copper(II) oxide, no reaction takes place.
Explain why no reaction takes place.

* X 713760121 *

8. The alkynes are a homologous family of hydrocarbons.
(a) The simplest member of the family is ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$, used in welding torches.

Ethyne can be produced from ethane.

Using bond enthalpies and mean bond enthalpies from the data book, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction.
(b) Hess's Law can be used to calculate the enthalpy change for reactions that do not normally take place, such as the formation of propyne from its elements.

$$
3 \mathrm{C}(\mathrm{~s}) \quad+\quad 2 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{~g})
$$

Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction using the following information.

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$	$\rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta H=-394 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$	$\rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta H=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
$\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$3 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	$\Delta H=-1939 \mathrm{~kJ} \mathrm{~mol}^{-1}$

8. (continued)
(c) Propyne, $\mathrm{C}_{3} \mathrm{H}_{4}(1$ mole $=40 \mathrm{~g})$, has been suggested as a possible rocket fuel.
(i) The enthalpy of combustion of propyne is $-1939 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Calculate the energy released, in kJ , when 1 kg of propyne is burned completely.
(ii) The mass of air required to burn 1 g of fuel can be calculated using the relationship shown.

Mass of air, in $\mathrm{g}=4.3 \times$ mass of oxygen, in g , for complete combustion of 1 g of fuel

Calculate the mass of air, in g , required to burn 1 g of propyne.

$$
\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 3 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

8. (c) (continued)
(iii) The table shows the mass of air required to burn 1 g of different fuels.

Fuel	Mass of 1 mole (g)	Mass of air required to burn 1 g
ethane	30	$16 \cdot 1$
propane	44	$15 \cdot 6$
methanol	32	6.5
ethanol	46	9.0

Suggest why methanol and ethanol, compared to the other fuels, require less air to burn 1 g .
9. Ethane-1,2-diol can be made from ethene.
(a) The flow chart of an industrial process to produce ethane-1,2-diol is shown.

(i) Industrial processes are designed to maximise profit.

Using the flowchart, suggest two ways to maximise profit in this industrial process.
9. (a) (continued)
(ii) Name the process used in Separator 2 to separate ethane-1,2-diol from the larger liquid by-products.
(b) Explain fully why ethane-1,2-diol is more viscous than propan-1-ol.
(c) Draw a structural formula for a diol that contains three carbon atoms.
9. (continued)
(d) Ethane-1,2-diol has been found to be harmful to animals. Treatment for affected animals involves using a 20% ethanol solution.
(i) The 20% ethanol solution is prepared by accurately measuring $20 \mathrm{~cm}^{3}$ of ethanol and then making up to exactly $100 \mathrm{~cm}^{3}$ with water.

Describe the procedure which should be used to prepare $100 \mathrm{~cm}^{3}$ of the 20% ethanol solution.
(ii) An affected animal must be treated with 9 doses of 20% ethanol solution. Each dose contains $5 \mathrm{~cm}^{3}$ of the ethanol solution for every kilogram body mass of the animal.
Calculate the total volume, in cm^{3}, of the 20% ethanol solution needed to treat a 3.5 kg animal.
9. (d) (continued)
(iii) Ethane-1,2-diol is harmful because it is oxidised in the body to form glycolic acid.

glycolic acid
(A) Draw a structural formula for another possible product of oxidation of ethane-1,2-diol.
(B) Glycolic acid can be neutralised by sodium hydroxide to form sodium glycolate.
Give a formula for sodium glycolate.
10. The molar volume (in units of litres per mole) is the same for all gases at the same temperature and pressure.
Using your knowledge of chemistry, suggest how the molar volume of gases could be measured and compared. Any suitable chemicals and apparatus can be used. Some suggested chemicals and apparatus are given below.

Chemicals	Apparatus
hydrochloric acid	gas syringe
zinc	measuring cylinder
magnesium	delivery tube
calcium	stoppers
water	$500 \mathrm{~cm}^{3}$ flask
sodium carbonate	vacuum pump
calcium carbonate	balance
cylinder of nitrogen	cork ring
cylinder of hydrogen	burette
cylinder of carbon dioxide	filter funnel

10. (continued)

[Turn over

11. Iodine is required for a healthy diet. Food grown in certain parts of the world is low in iodine. To prevent iodine deficiency in people's diets, table salt can be 'iodised' by the addition of very small quantities of potassium iodide, KI.
The number of moles of iodide in a sample of salt can be determined by the following procedure.

Step 1

Prepare a standard salt solution by dissolving an accurately weighed sample of iodised salt $(50.0 \mathrm{~g})$ in water to give a final volume of $250 \mathrm{~cm}^{3}$.

Step 2

Transfer $50 \mathrm{~cm}^{3}$ of salt solution to a conical flask and add excess bromine solution to convert the iodide ions to iodine.

Step 3

Titrate the iodine $\left(\mathrm{I}_{2}\right)$ released with sodium thiosulfate solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$.
(a) Describe a procedure to accurately weigh out a 50.0 g sample of iodised table salt.
(b) The overall equation for the reaction of bromine solution with iodide ions is shown.
$21^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})$
Write the ion-electron equation for the oxidation reaction.
11. (continued)
(c) Three samples were prepared as described in step 2. Each sample was titrated with $0.0010 \mathrm{moll}^{-1}$ sodium thiosulfate solution.

The results are shown below.

Sample	Volume of sodium thiosulfate $\left(\mathrm{cm}^{3}\right)$
1	$10 \cdot 0$
2	9.4
3	9.6

(i) Calculate the average volume, in cm^{3}, of sodium thiosulfate solution that should be used to determine the number of moles of iodine released.
(ii) Calculate the number of moles of iodine released from $50 \mathrm{~cm}^{3}$ of the standard salt solution.
$\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{aq})$
12. Many modern antiseptics are based on phenol. The table shows the germ-killing power of some phenol compounds.
(a)
Compound
12. (a) (continued)
(i) Suggest two ways in which structural features increase germ-killing power of phenol compounds.
(ii) The names of the phenol compounds in the table are derived from their structures using the following rules.
Phenol is used as the parent name for the compound.

1. The -OH functional group is assigned as being on carbon 1 of the ring.
2. The ring can be numbered clockwise or anticlockwise to assign numbers to the other atoms or groups. The numbers should be assigned so that the lowest possible numbers are used.
3. If two or more identical atoms or groups are present, use one of the prefixes di, tri or tetra.
4. The names of the atoms or groups attached to the ring are listed alphabetically (ignoring the prefixes for alphabetical purposes).

Using these rules, name this molecule.

12. (continued)
(b) There are different methods of producing phenol.
(i) In the early 1900 s, phenol was produced by the following reaction.
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$ benzene phenol
mass of mass of one mole one mole $=78.0 \mathrm{~g} \quad=94.0 \mathrm{~g}$

Calculate the mass of phenol, in kg , produced from 117 kg of benzene if the percentage yield is 90%.
(ii) Phenol is now usually produced by the Cumene Process.

Name the other product, \mathbf{X}, formed in the Cumene Process.

2018 Chemistry

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2018
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

Marking Instructions for each question

Section 1

Question	Answer	Mark
1.	B	1
2.	A	1
3.	D	1
4.	C	1
5.	D	1
6.	C	1
7.	A	1
8.	D	1
9.	A	1
10.	B	1
11.	D	1
12.	D	1
13.	A	1
14.	A	1
15.	D	1
16.	C	1
17.	B	1
18.	C	1
19.	B	1
20	B	1

Section 2

Question		Expected response	Max mark	Additional guidance	
1.	(a)	(i)	Electronegativity is the measure of attraction an atom/nucleus has for the electrons in a bond/shared electrons.	1	
(ii)	(More shells) so increased shielding/more shielding. OR (b)	Covalent radius increases/atom size increases/more shells so attraction of the nucleus/protons for the (outer/shared) electrons decreases.	(Intermolecular) forces/bonds increase (going down the group).	$\mathbf{3}$	Use of VdW is acceptable for first mark.
		(1) Mention of increasing/stronger intramolecular/covalent/ionic/ metallic bonds - cancels the first mark.			
LDFs are the forces (broken) between the molecules.	(1)				

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
2.	(a)		Increasing number of protons (in the nucleus). OR Increasing/greater/stronger/higher nuclear charge.	1	Mention must be made of nuclear charge or number of protons. Increased nuclear pull is not accepted on its own. Increased attraction of the electron for the nucleus is not an acceptable answer.
	(b)	(i)	Sulfur chloride should be circled.	1	Accept other indications of correct structure, eg tick, arrow. Do not accept circling of single atoms or bond in SCl_{2} molecule on its own.
		(ii)	Silicon tetrachloride and hexane are non-polar. Silicon tetrachloride is non-polar due to its shape/dipoles/polarities cancelling out.	2	Like dissolves like on its own - zero marks - answer must mention polarity.

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
2.	(c)	(i)	Silicon nitride is a (covalent) network. (Strong) covalent bonds are broken. (1)	2	'Covalent lattice' is acceptable, but 'lattice' on its own is not. Mention of silicon is cancelling for the first mark. Covalent network molecule is cancelling.
		(ii)	17•934/17.93/17.9/18 (\%) Partial mark for correct use of atom economy relationship without correct use of stoichiometry (working must be shown). Partial marks Correct working with no correct answer given. $\left\{\begin{array}{l} \frac{140 \cdot 3}{(3 \times 170 \cdot 1)+(16 \times 17 \cdot 0)} \times 100 \\ \frac{140 \cdot 3}{510 \cdot 3+272 \cdot 0} \times 100 \\ \frac{140 \cdot 3}{782 \cdot 3} \times 100 \end{array}\right.$ Incorrect use of stoichiometry. $\begin{aligned} & \frac{140 \cdot 3}{170 \cdot 1+17 \cdot 0} \times 100=74 \cdot 99 \\ & \frac{140 \cdot 3}{3 \times 170 \cdot 1+17 \cdot 0} \times 100=26 \cdot 6 \\ & \frac{140 \cdot 3}{170 \cdot 1+16 \times 17 \cdot 0} \times 100=31 \cdot 7 \end{aligned}$ Answer and working must be shown.	2	No units required. Only 1 mark can be awarded for the correct answer if wrong unit is given. (Wrong units would only be penalised once in any paper).

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
2.	(d)	(i)	Diagram shows a workable method for the passing of chlorine gas over heated aluminium. Aluminium must be labelled and there must be an indication of heat. Heated aluminium accepted. Diagram allows aluminium chloride to be collected in a flask as a solid and chlorine gas to escape.	2	Labels must be correct.
		(ii)	To provide (initial) activation energy/(sufficient) energy to form activated (activation) complex.	1	Accept activation energy is high.

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
3.	(a)		Heating mantle or hot plate OR (hot) water bath.	1	Any mention of a naked flame would result in the loss of a mark.
	(b)		Condense reactants or products/acts as a condenser/to prevent escape of (volatile/gaseous) reactants or products/to prevent the escape of gas(es).	1	Accept correct description of condensation.
	(c)	(i)	Water	1	Accept formula $\mathrm{H}_{2} \mathrm{O}$
		(ii)	Correctly calculates number of moles of: Benzoic acid $=0.041$ Methanol $=0.078$. OR Working out that 1.31 g of methanol would be needed to react with 5 g of benzoic acid. OR Working out that 9.53 g of benzoic acid would be needed to react with 2.5 g of methanol. Statement demonstrating understanding of limiting reactant eg there are less moles of benzoic acid therefore it is the limiting reactant. OR There are more moles of methanol therefore it is in excess. OR 0.078 moles of methanol would require 0.078 moles of benzoic acid.	2	

Go to Topic Grid

Question		Expected response	Max mark	Additional guidance	
3.	(c)	(iii)	(£)12•84 Partial Marks Mass benzoic acid $=161 \cdot 3(\mathrm{~g})$. OR Cost to make 3•1g of methyl benzoate $=(\mathrm{f}) 0 \cdot 398$. OR Evidence of a calculated mass of benzoic acid $\times 7 \cdot 96$ or 8 (p).	2	Accept 1284 p. Do not accept '1284' on its own; correct units are required. Allow follow through from an initial arithmetic error (for 1 mark).

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
4.	(a)		Correctly drawn structure of pentan- 2-one, pentan-3-one or 3-methylbutanone.	1	Accept full or shortened structural formulae.
	(b)		Fehling's solution/Tollens' reagent/ acidified dichromate solution.	1	Accept Benedict's solution/Schiff's reagent.
	(c)		Permanent dipole-permanent dipole (interactions/attractions).	1	Allow permanent dipole-dipole interaction. Accept pd-pd i's.
	(d)		Will react with oxygen/undergo oxidation. Forming a carboxylic acid (which has unpleasant taste).	2	Rancid not acceptable on its own but is not cancelling. Acid not acceptable on its own.
	(e)	(i)	Because it has two molecules joining together with the loss of a small/water molecule.	1	Candidates must indicate joining together and loss.
		(ii)	6-methylheptan-2-one	1	General marking principle (p) applies.

Question		Expected response	Max mark	Additional guidance
5.		This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The candidate has made some statement(s) which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. 2 marks: The student has demonstrated, at an appropriate level, a reasonable understanding of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood. 3 marks: The maximum available mark would be awarded to a student who has demonstrated, at an appropriate level, a good understanding of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an 'excellent' answer or a 'complete' one.	3	Zero marks should be awarded if: The student has demonstrated, at an appropriate level, no understanding, of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
6.	(a)	(i)	(enzyme) hydrolysis	1	
		(ii)	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{OH} \\ & \mathrm{OR} \\ & \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O} \end{aligned}$	1	
	(b)	(i)	Bond breaking by UV (light) or example of initiation reaction (equation or diagram). eg chlorine splitting to give two free radicals is accepted, provided UV is shown.	1	UV on its own is not accepted. Bond breaking on its own is not accepted.
		(ii)	propagation	1	
		(iii)	Can react with free radicals forming stable molecules/free radicals (and prevent chain reactions). OR Donates electron(s). OR Acting as a reducing agent. OR Provide electrons to pair with an unpaired electron.	1	
	(c)	(i)	Circle any peptide link (CONH).	1	 Minimum acceptable structure identified.
		(ii)		1	Shortened structural formula accepted.

Question			Expected response	Max mark	Additional guidance
7.	(a)	(i)		1	0 marks awarded for
		(ii)	Sesquiterpene	1	

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
7.	(b)	(i)	5•345/5.35/5.3(kg) Partial marking Mass of squalene $\begin{align*} & =10.69 \times 500000 \\ & =5345000(\mathrm{mg}) \tag{1} \end{align*}$ OR For incorrectly calculating mass in mg but correctly converting to kg. (1) OR For incorrectly calculating mass of squalene but correctly multiplying this by 500000 . OR Conversion of 10.69 mg to kg ie 10.69×10^{-6}.	2	Answer must be in kg to access both marks, 5345 g would be awarded 1 mark only.
		(ii)	6/six (moles)	1	
	(c)	(i)	Addition OR hydration.	1	Oxidation is not accepted.
		(ii)	(terpineol) is a tertiary alcohol (and cannot be oxidised).	1	'cannot be oxidised' on its own is awarded zero marks.

Question		Expected response	Max mark	Additional guidance
8.	(a)	$286\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Partial mark 1 mark Evidence of the use of all the correct bond enthalpies (or correct multiples thereof) (412, 348, 838, 436 (ignore signs)). OR If only three values are retrieved, the candidate recognises that bond breaking is endothermic and bond formation is exothermic and correctly manipulates the bond enthalpy values they have used to give their answer.	2	-286 (kJ mol ${ }^{-1}$) 1 mark No units required. Only 1 mark can be awarded for the correct answer if wrong unit is given. (Wrong units would only be penalised once in any paper). kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ (KJ or Kj or $\mathrm{KJ} \mathrm{mol}^{-1}$ or $\mathrm{Kj} \mathrm{mol}^{-1}$ accepted). If fewer than three bond enthalpy values are retrieved then zero marks can be awarded.
	(b)	$\begin{aligned} & (+) 185\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & {[(-1182)+(-572)+(+1939)]} \\ & =(+) 185\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ Partial marks Treat as two concepts. Either would be acceptable for 1 mark. Evidence of understanding of reversal of third enthalpy value ie +1939 or 1939 must be seen. The other two enthalpy values (regardless of value) must be negative, or this partial mark cannot be awarded. OR Evidence of understanding of multiplying the first enthalpy value by 3 and the second enthalpy value by 2 . Ignore the enthalpy signs associated with these numbers ie any combination of $3(\pm 394) \text { and } 2(\pm 286)$ OR $\pm 1182 \text { and } \pm 572$ Multiplication of the third enthalpy value by any factor is taken as cancelling of this partial mark.	2	If answer given is -185 , maximum of 1 mark can be awarded. No units required. Only 1 mark can be awarded for the correct answer if wrong unit is given. (wrong units would only be penalised once in any paper) kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ (KJ or Kj or $\mathrm{KJ} \mathrm{mol}^{-1}$ or $\mathrm{Kj} \mathrm{mol}^{-1}$ accepted).

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
8.	(c)	(i)	48475 (kJ)	1	$-48475(\mathrm{~kJ})$ is accepted. No units required. Zero marks can be awarded for the correct answer if wrong unit is given. $\mathrm{kJ} \mathrm{mol}^{-1}$ is not an acceptable unit in this question. (Wrong units would only be penalised once in any paper).
		(ii)	$13 \cdot 76 / 13 \cdot 8 / 14(\mathrm{~g})$ Partial mark-1 mark Mass of oxygen required $=3 \cdot 2(\mathrm{~g})$ OR $550 \cdot 4(\mathrm{~g})$	2	Accept correctly calculated answer in mg or kg , providing units are shown with answer. This is obtained from an incorrect mass of oxygen $(4 \times 32=128)$ being calculated.
		(iii)	Methanol and ethanol contain oxygen in their structure, (so less additional oxygen is required).	1	Contains hydroxyl (groups) not sufficient on its own. Contains -OH is not considered sufficient on its own.

Question			Expected response	Max mark	Additional guidance
9.	(a)	(i)	1 mark each for any two of the following points. - recycle (waste) gases - use catalyst - low/reduce energy requirements - reactors are run at low temperatures/the temperatures in the reactors is lowered - inexpensive feedstocks - selling/using by-products	2	Recycle by-products is not accepted.
		(ii)	(fractional) distillation	1	Evaporation followed by condensation or a correct description of distillation are accepted.
	(b)		Propan-1-ol has fewer hydroxyl groups than ethane-1,2-diol / ethane-1,2-diol has more hydroxyl groups/propan-1-ol has 1 hydroxyl group and ethane-1,2-diol has 2. Weaker/fewer hydrogen bonds between propan-1-ol molecules. OR Stronger/more hydrogen bonds between ethane-1,2-diol molecules.	2	"It", if given in answer is taken to refer to ethane-1,2-diol.

Question			Expected response	Max mark	Additional guidance
9.	(c)		Structure of propane-1,2-diol or propane-1,3-diol or propane-1,1-diol or propane-2,2-diol.	1	With structures involving an - OH group, no mark can be awarded if the ' 0 ' is not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$.
	(d)	(i)	Pipette (used to measure $20 \mathrm{~cm}^{3}$ of ethanol.) Statement of use of volumetric/ standard flask to make up to / fill to the mark/ to $100 \mathrm{~cm}^{3}$.	2	Not acceptable to use burette.
		(ii)	157.5(cm ${ }^{3}$)	1	No units required. No mark can be awarded for the correct answer if wrong unit is given. (Wrong units would only be penalised once in any paper).

Question			Expected response	Max mark	Additional guidance
9.	(d)	(iii) (A)	 OR OR OR	1	Accept correct shortened structural formula. With structures involving an - OH group, no mark can be awarded if the ' 0 ' is not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$. General marking instruction (l) is suspended here.
		(iii) (B)	Correct molecular formula $\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)$ OR shortened structural formula $\left(\mathrm{HOCH}_{2} \mathrm{COONa}\right)$ OR any full structural formula which shows the correct salt.	1	Structures showing covalent bonds between Na and glycolate are not accepted. Charges are not required but if shown must both be shown and correct.

Question		Expected response	Max mark	Additional guidance
10.		This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The candidate has made some statement(s) which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. 2 marks: The student has demonstrated, at an appropriate level, a reasonable understanding of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood. 3 marks: The maximum available mark would be awarded to a student who has demonstrated, at an appropriate level, a good understanding of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an 'excellent' answer or a 'complete’ one.	3	Zero marks should be awarded if: The student has demonstrated, at an appropriate level, no understanding, of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
11.	(a)		Correct description of weighing by difference. OR Correct description of use of the Tare function.	1	'weighing by difference' on its own is accepted.
	(b)		$2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{e}^{-}$ OR $2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-}$	1	State symbols not required. Negative sign on electron not required.
	(c)	(i)	9.5(cm ${ }^{3}$)	1	No units required but no mark is awarded if wrong unit is given. (Wrong units would only be penalised once in any paper).
		(ii)	4.75×10^{-6} moles Partial mark for correct use of mole ratio. OR Determination of number of moles without using the mole ratio.	2	Allow follow through from c (i).

Go to Topic Grid

Question		Expected response	Max mark	Additional guidance	
12.	(a)	(i)		More/adding chlorine(s). (1) More/adding carbon(s). OR Adding an alkyl/hydrocarbon chain/group. OR Longer/bigger carbon/hydrocarbon/ alkyl (chain/group).	(1)

[END OF MARKING INSTRUCTIONS]

X813/76/12

Paper 1 - Multiple choice

FRIDAY, 10 MAY
9:00 AM - 9:40 AM

Total marks - 25
Attempt ALL questions.
You may use a calculator.
Instructions for the completion of Paper 1 are given on page 02 of your answer booklet X813/76/02.
Record your answers on the answer grid on page 03 of your answer booklet.
You may refer to the Chemistry Data Booklet for Higher and Advanced Higher.
Space for rough work is provided at the end of this booklet.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Total marks - 25

Attempt ALL questions

1. Hydrogen will form a non-polar covalent bond with an element that has an electronegativity value of

A 0.9
B 1.5
C 2.2
D 2.5 .
2. Which of the following is a polar molecule?

A CCl_{4}
B NH_{3}
C CO_{2}
D CH_{4}
3. Which of the following is most likely to act as a reducing agent?

A CO
B MnO_{4}^{-}
C $\mathrm{H}_{2} \mathrm{O}_{2}$
D $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
4. The following reactions take place when nitric acid is added to zinc.

$$
\begin{aligned}
\mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} & \rightarrow \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
\mathrm{Zn}(\mathrm{~s}) & \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}
\end{aligned}
$$

How many moles of $\mathrm{Zn}(\mathrm{s})$ are oxidised by one mole of $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$?
A 0.67
B $\quad 1.0$
C 1.5
D 2.0
5. Which of the following compounds is a tertiary alcohol?

A 2,2-dimethylpropan-1-ol
B 2-methylbutan-2-ol
C pentan-3-ol
D 3-methylbutan-2-ol
6. Molecule \mathbf{X} has the structure

Which of the following could be produced by partial hydrolysis of X ?

A

B

C

D

7. A compound with molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ could be

A pentyl ethanoate
B hexan-2-one
C 3-methylpentan-2-ol
D hexanoic acid.
8. Compound X reacted with hot copper(II) oxide and the resulting product did not give a colour change when heated with Fehling's solution.
Compound X could be
A pentan-1-ol
B pentan-2-ol
C pentan-3-one
D pentanoic acid.
9. The structure of pivalic acid is shown.

Which of the following is the correct systematic name of pivalic acid?
A pentanoic acid
B 2,2,2-trimethylethanoic acid
C 2-ethylpropanoic acid
D 2,2-dimethylpropanoic acid
10. The table shows four compounds that contribute to the aroma of spices.

Which compound is not derived from a terpene?

	Structural formula	Molecular formula
A		$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$
B		$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$
C		$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$
D		$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$

11. Which reaction can be classified as reduction?

A methanol \rightarrow methanoic acid
B propanal \rightarrow propanoic acid
C butan-2-one \rightarrow butan-2-ol
D propan-2-ol \rightarrow propanone
12. A secondary amine has two carbon atoms directly bonded to the nitrogen atom. Which of the following is a secondary amine?

A

B

C

D

13. The number of moles of ions in 1 mol of copper(II) phosphate is

A 1
B 2
C 3
D 5 .
14. Which of the following gas samples has the same volume as 4.0 g of methane, CH_{4} ? (All volumes are measured at the same temperature and pressure.)

A $\quad 1.0 \mathrm{~g}$ of helium
B $\quad 1.0 \mathrm{~g}$ of hydrogen
C 3.5 g of nitrogen
D $35 \cdot 5 \mathrm{~g}$ of chlorine
15. Magnesium carbonate reacts with nitric acid.
$\mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
0.05 mol of magnesium carbonate was added to a solution containing 0.06 mol of nitric acid. Which of the following statements is true?

A $\quad 0.05 \mathrm{~mol}$ of carbon dioxide is produced
B $\quad 0.06 \mathrm{~mol}$ of magnesium nitrate is produced
C Magnesium carbonate is in excess by 0.02 mol
D Nitric acid is in excess by 0.01 mol
16. In which of the following diagrams does the dotted line represent a permanent dipole-permanent dipole interaction between propanone molecules?
A

B

C

17. Iron can be produced from iron(III) oxide.

$$
\begin{gathered}
2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\
\mathrm{GFM}=159.6 \mathrm{~g}
\end{gathered}+\begin{gathered}
3 \mathrm{C}(\mathrm{~s}) \\
\mathrm{GFM}=12 \cdot 0 \mathrm{~g}
\end{gathered} \underset{\mathrm{GFM}=55 \cdot 8 \mathrm{~g}}{4 \mathrm{Fe}(\mathrm{~s})} \quad+\begin{gathered}
3 \mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{GFM}=44.0 \mathrm{~g}
\end{gathered}
$$

The atom economy for the production of iron is
A 69.9%
B $62 \cdot 8 \%$
C 58.2%
D 32.5%.
18. $100 \mathrm{~cm}^{3}$ of propane is mixed with $600 \mathrm{~cm}^{3}$ of oxygen and the mixture is ignited.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

At the end of the reaction, the total volume of gas would be
A $300 \mathrm{~cm}^{3}$
B $400 \mathrm{~cm}^{3}$
C $700 \mathrm{~cm}^{3}$
D $\quad 800 \mathrm{~cm}^{3}$.
19. A two-step reaction is shown below.

The first step gave a yield of 60% and the second step a yield of 90%.
The overall yield would be
A 30%
B 54%
C 67%
D 150%.
20. The volume of hydrogen gas given off against time when an excess of zinc lumps is added to $100 \mathrm{~cm}^{3}$ of $1 \mathrm{moll}^{-1}$ hydrochloric acid is shown.

Which of the following graphs would show the volume of hydrogen gas given off when an excess of zinc powder was added to $50 \mathrm{~cm}^{3}$ of $1 \mathrm{moll}^{-1}$ hydrochloric acid?

A

B

C

D

21. Consider the reaction pathway shown below.

According to Hess's Law
A $\quad b=a-c-d$
B $\quad b=a+c+d$
C $b=d-c+a$
D $b=d+c-a$.
22. Which of the following is not a factor that affects the rate of a reaction?

A Activation energy
B Kinetic energies of reactant molecules
C Concentration of reactants
D Enthalpy change of reaction
23. In which of the following reactions would the yield of product be increased by lowering the pressure?

A $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
B $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
C $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
D $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
24. The graph shows the distribution of kinetic energies for a reaction involving two gases.

Which graph would show the effect of increasing temperature?
A

B

C

D

25. Alkenes react with ozone, O_{3}, to form ozonides which can be decomposed to give carbonyl compounds.

Which of the following alkenes would produce a mixture of ethanal and propanone?

A $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
B $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
$\mathrm{C} \quad \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}$
D

[END OF QUESTION PAPER]

Total marks - 95

Attempt ALL questions

1. Sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, can be used to investigate the effect of reaction conditions on the rate of reaction.
(a) Sodium thiosulfate solution reacts with hydrochloric acid to form a precipitate of solid sulfur. By placing the reaction mixture in a conical flask over a cross and recording the time taken for the cross to disappear, the effect of changing the reaction conditions can be investigated.

(i) The equation for the reaction is
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$
Balance the equation.
2. (a) (continued)
(ii) In one set of experiments, the effect of varying the concentration of sodium thiosulfate was investigated.

Experiment	Volume of $0 \cdot 15 \mathrm{moll}^{-1}$ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(\mathrm{~cm}^{3}\right)$	Volume of water $\left(\mathrm{cm}^{3}\right)$	Rate $\left(\mathrm{s}^{-1}\right)$
A	50	0	0.0454
B	40		0.0370
C	30		0.0285
D	20		0.0169
E	10	40	0.0063

(A) Complete the table to show the volumes of water that would have been used to vary the concentration of sodium thiosulfate.
(B) Calculate the time, in seconds, for the cross to disappear in experiment C.

1. (a) (continued)
(iii) The reaction can also be used to investigate the effect of changing temperature on the rate of reaction.

The results from an investigation are shown in the graph below.

Use the graph to determine the temperature rise, in ${ }^{\circ} \mathrm{C}$, required to double the rate of the reaction.
(b) Collision theory states that for particles to react they must first collide with each other.

State two conditions necessary for the collisions to result in the formation of products.

1. (continued)
(c) Sodium thiosulfate also reacts with iron(III) nitrate.

The potential energy diagram below shows the change in potential energy during the reaction carried out without a catalyst.

(i) Draw an X on the potential energy diagram above to show where the activated complex is formed.
(An additional diagram, if required, can be found on page 41).
(ii) Cu^{2+} ions catalyse the reaction.

Add a dotted line to the diagram to show the change in potential energy with the catalyst.
(An additional diagram, if required, can be found on page 41).
2. 2019 is the 150th anniversary of the periodic table's creation by Dmitri Mendeleev. The patterns identified by Mendeleev form the basis of the modern periodic table. The major periodic trends include ionisation energy and covalent radius.
(a) The first ionisation energies of elements with atomic number 1 to 20 are shown in the graph.

(i) Explain why the first ionisation energy shows an increase going from lithium to neon.
(ii) Explain why the first ionisation energy of potassium is less than the first ionisation energy of lithium.
2. (continued)
(b) A graph showing the ionisation energies for nitrogen is shown.

(i) Write the equation for the second ionisation energy of nitrogen.
(ii) Explain fully the increase between the 5th and 6th ionisation energies of nitrogen.

* X 813760107 *

2. (continued)
(c) Ionic radius is a measure of the size of an ion.

Explain fully why the ionic radius of phosphorus is greater than the ionic radius of aluminium.
2. (continued)
(d) The structure of an ionic compound consists of a giant lattice of oppositely charged ions. The arrangement of ions is determined by the 'radius ratio' of the ions involved.

$$
\text { radius ratio }=\frac{\text { radius of positive ion }}{\text { radius of negative ion }}
$$

By using the table of ionic radii on page 17 of the data booklet, predict whether the structure of barium oxide, BaO , is similar to caesium chloride or sodium chloride.

Your answer must include a calculated radius ratio.
3. The melting point of non-metal elements depends on structure and bonding. Using your knowledge of chemistry, comment on this statement.
4. Cider is made from apples in a process that involves crushing and pressing the apples, converting the sugars into alcohol, maturing and bottling.
(a) Brewers add yeast, which contains a mixture of enzymes to convert the sugars in the apples into alcohol and carbon dioxide.
(i) State what is meant by the term enzyme.
(ii) The \% mass of alcohol in the cider can be calculated using the formula

$$
\% \text { mass of alcohol }=\frac{\text { mass of alcohol }}{\text { mass of cider }} \times 100
$$

A $50.0 \mathrm{~cm}^{3}$ sample of cider was found to contain 3.05 g of alcohol. $1.0 \mathrm{~cm}^{3}$ of the cider weighed 1.36 g .
Calculate the \% mass of alcohol in the cider.
(b) During the maturing process malic acid is converted to lactic acid and another product.

(i) Name compound X .
4. (b) (continued)
(ii) The maturing process in cider samples can be monitored using thin layer chromatography.
Samples of lactic acid, malic acid and ciders A, B, C, and D are spotted on a silica plate and the solvent allowed to travel up the plate. The chromatogram obtained is shown below.

Number	Sample applied	Distance moved by spot(s) (cm)
1	lactic acid	$8 \cdot 2$
2	malic acid	$4 \cdot 1$
3	cider A	$4 \cdot 1,8 \cdot 2$
4	cider B	$8 \cdot 2$
5	cider C	$4 \cdot 1$
6	cider D	$4 \cdot 1,8 \cdot 2$

4. (b) (ii) (continued)

The retention factor, R_{f}, for a substance can be a useful method of identifying the substance.

$$
\mathrm{R}_{\mathrm{f}}=\frac{\text { distance moved by the substance }}{\text { distance moved by the solvent }}
$$

(A) Calculate the R_{f} value of malic acid.
(B) The maturing process is complete when all of the malic acid has been converted to lactic acid. The cider is now ready to be bottled.

Use the chromatogram to determine which cider is ready to be bottled.

4. (continued)

(c) Glycerol can be added to cider before bottling to produce a sweeter tasting cider.
State the systematic name for glycerol.
(d) Cider contains many naturally occurring compounds that affect taste and aroma.
(i) Procyanidin B2 provides a bitter taste to cider.

procyanidin B2
Explain fully why procyanidin B2 is water soluble.

4. (d) (continued)

(ii) Cider smells of apples because it contains ethyl 2-methylbutanoate.

ethyl 2-methylbutanoate
Name the carboxylic acid used to make ethyl 2-methylbutanoate.
(iii) Farnesene is a terpene responsible for the ripe apple aroma of cider.

Name the molecule on which terpenes are based.
(e) Ethanol in cider can be oxidised to ethanal, spoiling the aroma.

(i) Name the functional group circled in the ethanal molecule.
(ii) Further oxidation of ethanal can produce another product that spoils the flavour of cider.
Name this product.
5. The combustion reactions of methane and heptane can be studied in different ways.
(a) The combustion of methane produces carbon dioxide and water vapour when carried out at temperatures above $100^{\circ} \mathrm{C}$.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(i) Using bond enthalpies and mean bond enthalpies from the data booklet, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction.
(ii) Explain the difference between bond enthalpy and mean bond enthalpy.
5. (a) (continued)
(iii) Calculate the mass, in g, of carbon dioxide produced by combustion of $200 \mathrm{~cm}^{3}$ methane in excess oxygen.

Take the volume of 1 mole of methane gas to be 24 litres.
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$G F M=44.0 \mathrm{~g}$
5. (continued)
(b) The enthalpy of combustion of heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$, can be determined using a calorimeter.

The following results were obtained.

Mass of heptane burned (g)	$1 \cdot 1$
Mass of 1 mole of heptane (g)	$100 \cdot 0$
Volume of water used $\left(\mathrm{cm}^{3}\right)$	400
Initial temperature of water $\left({ }^{\circ} \mathrm{C}\right)$	26
Final temperature of water $\left({ }^{\circ} \mathrm{C}\right)$	49

(i) State the measurements required to calculate the mass of heptane burned in this experiment.
5. (b) (continued)
(ii) Calculate the enthalpy of combustion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for heptane from the experimental results given.
(iii) The theoretical value for the enthalpy of combustion of heptane is significantly higher than the experimental value.

Suggest why the experimental value is different to the theoretical value.
6. Thiols are compounds that contain an -SH functional group. They often have very strong, unpleasant odours.
(a) Ethanethiol is used to add a smell to gaseous fuels in order to give warnings of gas leaks.

ethanethiol
(i) A student used the boiling points of ethanethiol and propan-1-ol to compare the strength of intermolecular forces.

ethanethiol
boiling point $=35^{\circ} \mathrm{C}$

propan-1-ol
boiling point $=97^{\circ} \mathrm{C}$
(A) State the reason why propan-1-ol was a suitable alcohol to compare with ethanethiol.
(B) Explain why propan-1-ol has a higher boiling point than ethanethiol. Your answer should include the names of the intermolecular forces broken when each liquid boils.
6. (a) (continued)
(ii) Name the thiol that contains only one carbon atom.
(iii) The minimum concentration of ethanethiol in air that can be detected by humans is $2.7 \times 10^{-7} \mathrm{mg}$ per cm^{3} of air.

Calculate the minimum mass of ethanethiol that needs to be present in a room containing 43900 litres of air in order for it to be detected.
(b) 2-methyl-2-propanethiol is also used to add a smell to gaseous fuels.

2-methyl-2-propanethiol
(i) Suggest why 2-methyl-2-propanethiol is classified as a tertiary thiol.
6. (b) (continued)
(ii) Thiols can be made by the addition of hydrogen sulfide to alkenes. 2-methyl-2-propanethiol can be made by the addition reaction shown.

(A) Draw the structure for the other isomer formed in this addition reaction.
(B) A chemist obtained an 84% yield of 2-methyl-2-propanethiol after starting with 30.5 g of 2-methylpropene.
Calculate the mass, in g, of 2-methyl-2-propanethiol made by the chemist.
7. Esters can be synthetic or natural.
(a) The synthetic polyester PET, poly(ethylene terephthalate), has many ester links. PET can break down by a free radical reaction.

One of the steps involved in breaking down PET is shown.

(i) State the name for this step.
(ii) Name the component of sunlight that can cause plastics such as PET to break down.
(iii) Name the type of substance that can be added to plastics to prevent them breaking down in this way.
7. (continued)
(b) (i) Natural cyclic esters called lactones can be formed from hydroxycarboxylic acids.

5-hydroxypentanoic acid is a hydroxycarboxylic acid that when heated, with dilute acid, will form a cyclic ester.

Name product Y in this reaction.
(ii) Draw the structure for the cyclic compound formed when 4-hydroxypentanoic acid is heated with dilute acid.

4-hydroxypentanoic acid

7. (b) (continued)
(iii) Name the hydroxycarboxylic acid shown below.

8. Gelatin is a soluble protein that can be added to different food products.
(a) A structure for a section of a protein chain in gelatin is shown.

(i) State the number of amino acids that joined together to form the section of the protein chain shown.
(ii) Name the weakest van der Waals' force between water and gelatin molecules.
(b) A student was investigating the viscosity of different concentrations of gelatin solution.
(i) The student was asked to prepare a 2% gelatin solution, which is a solution that contains 2 g of gelatin per $100 \mathrm{~cm}^{3}$ of solution.
The student prepared this solution by adding $100 \mathrm{~cm}^{3}$ of distilled water into a volumetric flask, then adding 2 g of gelatin.
Describe how the student should have made up the solution.
8. (b) (continued)
(ii) The results obtained from the student's viscosity experiment are shown.

Concentration of gelatin solution (\%)	Viscosity (units)
2.0	1.0
4.0	2.0
6.0	4.0
8.0	7.0
10.0	

Predict the student's result for the viscosity, in units, of a 10.0% gelatin solution.
(c) Bromelain is a mixture of enzymes found in pineapple that aid digestion.
(i) Adding raw pineapple to gelatin results in the gelatin molecules being hydrolysed. The rate of hydrolysis is reduced if the pineapple is cooked.

Explain why the rate of hydrolysis is reduced.
(ii) Bromelain can be purchased as tablets that contain 500 mg of bromelain. The flesh from a pineapple contains 13.2 mg of bromelain per gram.
Calculate the mass, in g, of this pineapple that would be needed to provide 500 mg of bromelain.
9. Chlorine is used in the production of many other chemicals.
(a) Chlorine can be produced by the reaction of hydrogen chloride with air using the Deacon process.

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(i) Using the potential energy diagram, determine the activation energy, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the forward reaction.
(ii) Explain why increasing the temperature in the Deacon process results in less chlorine being produced.
9. (continued)
(b) One laboratory method for the preparation of chlorine gas involves adding concentrated hydrochloric acid to potassium permanganate. The chlorine gas produced also contains small amounts of hydrogen chloride gas. To remove the hydrogen chloride gas the gases are bubbled through water. Finally, insoluble chlorine gas is collected.

Complete a labelled diagram to show an apparatus suitable for carrying out this preparation.
(An additional diagram, if required, can be found on page 41)
9. (continued)
(c) Carbon tetrachloride, CCl_{4}, is prepared by the reaction of chlorine gas, Cl_{2}, with methane, CH_{4}.

$$
\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CCl}_{4}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{~g})
$$

Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction using the following information.

$$
\begin{array}{llll}
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{CH}_{4}(\mathrm{~g}) & \Delta H=-75 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{CCl}_{4}(\mathrm{~g}) & \Delta H=-98 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{HCl}(\mathrm{~g}) & \Delta H=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

10. A student investigated the purity of a sample of magnesium chloride, MgCl_{2}. The sample was dissolved in water and then an excess of silver nitrate, AgNO_{3}, was added to produce a precipitate of silver chloride, AgCl . The precipitate was collected, dried and weighed.

$$
\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

(a) The student prepared the magnesium chloride solution by dissolving 2.503 g of impure magnesium chloride in water.

Explain why the student should use distilled or deionised water, rather than tap water, when preparing the solution.
(b) (i) Complete the table to show the most appropriate piece of apparatus that could be used to measure the required volumes.

Measurement	Apparatus
$20 \cdot 0 \mathrm{~cm}^{3}$ (accurately)	
$35 \mathrm{~cm}^{3}$ (approximately)	

(ii) The steps required to collect, dry and weigh the precipitate are listed below. However, the steps are in the wrong order.
A. Weigh the precipitate and the filter paper
B. Wash the precipitate with water to remove any impurities
C. Filter the precipitate
D. Dry the precipitate in an oven
E. Weigh the filter paper

Complete the flow chart below to show the correct order of steps the student should carry out to collect, dry and weigh the precipitate.

(An additional diagram, if required, can be found on page 41)
10. (b) (continued)
(iii) $1 \cdot 393 \mathrm{~g}$ of silver chloride precipitate was produced from the magnesium chloride solution.

$$
\begin{array}{rl}
\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow & 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\
\mathrm{GFM}=95 \cdot 3 \mathrm{~g} & \mathrm{GFM}=143 \cdot 4 \mathrm{~g}
\end{array}
$$

Calculate the mass of magnesium chloride, in g, present in the magnesium chloride solution.
(c) The average mass of magnesium chloride in 2.503 g of the original impure sample was calculated to be $2 \cdot 403 \mathrm{~g}$.

Calculate the \% of magnesium chloride present in the original sample.
11. Differences in physical and chemical properties can be used to distinguish one compound from another.
The compounds extracted from orange juice include antioxidants, flavour molecules, essential oils, aroma molecules and coloured molecules.
Some examples of these are shown below.

 limonene fructose
 vitamin C

11. (continued)

Using your knowledge of chemistry, comment on how the differences in physical and chemical properties can be used to distinguish between the compounds extracted from orange juice.
12. The label from a bottle of pine fresh bleach cleaner is shown.

PINE FRESH BLEACH CLEANER

Formulated to kill germs and remove stains Ingredients: aqua, sodium hypochlorite, sodium hydroxide, less than 5\% anionic surfactants, non-ionic surfactants, soap, perfume

WARNING!

Do not use together with other products.
May release dangerous gases (chlorine)
DANGER
Keep out of reach of children
(a) Surfactant molecules are added to bleach cleaner to act as detergents, soaps or emulsifiers.
Information on three of the surfactants in the bleach cleaner is shown in the table.

Surfactant structure	Type of surfactant	Head group
Compound A	non-ionic	polar
	ionic	negatively charged

12. (a) (continued)
(i) Complete the table for compound B.
(ii) Compound C is a soap molecule.
(A) Soaps can be made from fats and oils.

Name the reaction used to make soaps from fats and oils.
(B) Soap molecules allow oil to mix with water.

Explain fully the cleaning action of compound C .
You may wish to use diagrams to illustrate your answers.
12. (a) (continued)
(iii) The structure of an emulsifier molecule is shown below.

State how emulsifiers are made from edible oils.
(b) Sodium hypochlorite, $\mathrm{Na}^{+} \mathrm{OCl}^{-}$, is the main active compound in bleach.

PINE FRESH BLEACH CLEANER

Formulated to kill germs

 and remove stainsIngredients:
aqua, sodium hypochlorite, sodium hydroxide, less than 5\% anionic surfactants, non-ionic surfactants, soap, perfume

WARNING!

Do not use together with other products. May release dangerous gases (chlorine)
DANGER
Keep out of reach of children

Sodium hypochlorite, $\mathrm{Na}^{+} \mathrm{OCl}^{-}$, is produced by reacting chlorine with sodium hydroxide solution.

$$
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Na}^{+} \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+} \mathrm{OCl}^{-}(\mathrm{aq})+\mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

(i) A chlorine molecule has a pure covalent bond.

Explain what is meant by a pure covalent bond.
12. (b) (continued)
(ii) When the chlorine is reacted with sodium hydroxide solution an excess of sodium hydroxide is used.

Suggest why an excess of sodium hydroxide is used.
(c) In the bleach cleaner an equilibrium exists.

$$
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OCl}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

The label warns that the bleach cleaner should not be used with other products as it may release chlorine gas.

Explain clearly why mixing the bleach with an acid would shift the equilibrium to the right, resulting in the release of chlorine gas from the bleach cleaner.
12. (continued)
(d) The concentration of hypochlorite, OCl^{-}, in bleach can be determined by a redox reaction that involves two steps.

Step 1

An excess of acidified potassium iodide is added to the bleach. This converts the iodide ions into iodine.

$$
\mathrm{OCl}^{-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

Step 2

The iodine produced in step 1 is titrated with sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{aq})
$$

(i) Write the ion-electron equation for the reduction reaction taking place in Step 1.
(ii) $\mathrm{A} 25 \mathrm{~cm}^{3}$ sample of a diluted bleach was transferred into a conical flask and excess acidified potassium iodide added. The iodine produced was titrated with $0.098 \mathrm{moll}^{-1} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, requiring an average volume of $9.0 \mathrm{~cm}^{3}$ to reach the end point.

Calculate the concentration, in moll^{-1}, of sodium hypochlorite in the diluted bleach.

2019 Chemistry

Higher - Paper 1 - Multiple choice

Finalised Marking Instructions

© Scottish Qualifications Authority 2019
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Marking instructions for each question

Question	Response	Mark
1.	C	1
2.	B	1
3.	A	1
4.	C	1
5.	B	1
6.	A	1
7.	D	1
8.	B	1
9.	D	1
10.	D	1
11.	C	1
12.	B	1
13.	D	1
14.	A	1
15.	C	1
16.	D	1
17.	B	1
18.	B	1
19.	B	1
20.	C	1
21.	A	1
22.	D	1
23.	C	1
24.	A	1
25.	D	1

[END OF MARKING INSTRUCTIONS]

Marking instructions for each question

Question		Expected response		Max mark	Additional guidance

Go to Topic Grid

Question		Expected response		Max mark	Additional guidance
1.	(c)	(i)	X shown at peak of curve	$\mathbf{1}$	Must be centred and within the y - axis. Clear indication of the correct position of the activated complex is accepted.
		(ii)			1

Question			Expected response	Max mark	Additional guidance
2.	(a)	(i)	Increasing/greater/stronger/larger nuclear charge (holds electrons more tightly) OR Increasing number of protons	1	Increased nuclear pull is not accepted on its own. Mention must be made of nuclear charge or number of protons. Increased attraction of the electron for the nucleus would be considered cancelling.
		(ii)	(More shells) so increased/more screening/shielding. OR Covalent radius increases/atom size increases/more shells so attraction of the nucleus/protons for the outer electron decreases.	1	'Shielding effect' by itself is not acceptable. If candidate says 'it' assume the candidate is talking about potassium.
	(b)	(i)	$\mathrm{N}^{+}(\mathrm{g}) \rightarrow \mathrm{N}^{2+}(\mathrm{g})+\mathrm{e}^{-}$	1	State symbols must be shown. Negative charge on the electron is not required.
		(ii)	The $6^{\text {th }}$ ionisation energy involves removing an electron from the shell which is inner/full (whole)/(more) stable/closer to the nucleus OR the $6^{\text {th }}$ electron is removed from the electron shell which is inner/full (whole)/(more) stable/closer to the nucleus. The $6^{\text {th }}$ electron is less shielded OR the $6^{\text {th }}$ electron is more strongly attracted to/pulled towards the nucleus.	2	Correct statements made about the 5th ionisation energy/electron can also be credited. Stating that the $6^{\text {th }}$ electron requires more energy than the $5^{\text {th }}$ electron is not sufficient on its own.
	(c)		Al forms $\mathrm{Al}^{3+} /$ loses electrons to form an ion and P forms $\mathrm{P}^{3-} /$ gains electrons to form an ion. Aluminium ion has one less energy level than phosphide/phosphorus ion. OR Phosphide/phosphorus ion has one more energy level than aluminium ion.	2	A diagram or electron arrangement of both ions would be sufficient to gain this first mark.

Go to Topic Grid

| Question | | Expected response | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| 2. (d) | (Radius ratio =) 0.96, (hence)
 caesium chloride (or correct
 formula). | 1 | Calculated value (of 0.96) or
 $135 / 140$ must be written for radius
 ratio required for mark. | |

Question		Expected response	Max mark	Additional guidance
3.	This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The student has made some statement(s) which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	3	Zero marks should be awarded if: The student has demonstrated no understanding of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.	
2 marks: The student has demonstrated a reasonable understanding, at an appropriate level, of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood.	3 marks: The maximum available mark would be awarded to a student who has demonstrated a good understanding, at an appropriate level, of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an "excellent" answer or a "complete" one.			

Go to Topic Grid

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
5.	(a)	(i)	$-694\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Bond breaking $(4 \times 412)+(2 \times 498)=2644$ Bond forming $[(2 \times 743)+(4 \times 463)]=-3338$ A single mark is available if either of the following operations is correctly executed Either The four relevant values for bond enthalpies of the $\mathrm{C}-\mathrm{H}, \mathrm{O}=\mathrm{O}, \mathrm{C}=\mathrm{O}$, and $\mathrm{O}-\mathrm{H}$ (or multiples thereof) are retrieved from the data booklet (412, 498, 743, 463 - ignore signs). OR If only three correct values are retrieved, the candidate recognises that bond breaking is endothermic and bond forming is exothermic and have correctly manipulated the bond enthalpies and multiples that they have used with working shown.	2	+694 would qualify for 1 mark No units required. Only 1 mark can be awarded for the correct answer if wrong unit is given. (wrong units would only be penalised once in any paper) kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ (KJ or Kj or $\mathrm{KJ} \mathrm{mol}^{-1}$ or $\mathrm{Kj} \mathrm{mol}^{-1}$ accepted). If less than three bond enthalpies are retrieved then no mark can be awarded.
		(ii)	Mean bond enthalpy must refer to an average energy and to a number of compounds and bond enthalpy must relate to one compound/diatomic molecule.	1	

Question			Expected response	Max mark	Additional guidance
5.	(a)	(iii)	$0 \cdot 367 / 0 \cdot 37 / 0 \cdot 4(\mathrm{~g})$ Partial marking $\begin{equation*} \mathrm{n}=\mathrm{V} / \mathrm{V}_{\mathrm{m}}=0.2 / 24=0.008333 . . \tag{1} \end{equation*}$ an incorrectly calculated number of moles based on gas volume $\times 44$ or by proportion $\begin{equation*} 24 l \rightarrow 44 \mathrm{~g} \tag{1} \end{equation*}$ Follow through from incorrect multiples of 24 l or 44 g	2	No units required. No mark can be awarded for correct answer if wrong unit is given (where no unit required, wrong units would only be penalised once in any paper). Working must be shown for incorrectly calculated number of moles based on gas volume.
	(b)	(i)	(Record the) mass/weight of the burner before and after (heating the water)	1	
		(ii)	$-3496\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (3 marks) If final answer is wrong a maximum of 2 marks for the following concepts may be awarded 1 mark for a demonstration of the correct use of the relationship $\mathrm{E}_{\mathrm{h}}=\mathrm{cm} \Delta \mathrm{T}$ as shown by ($4.18 \times$ (an order of magnitude of 4) $\times 23$) (ignore units for this mark). 1 mark for evidence of the knowledge that enthalpy of combustion relates to 1 mole, evidenced by the scaling up of a calculated value of energy released.	3	An answer of +3496 would gain 2 marks. No units required. A maximum of 2 marks can be awarded for correct answer if wrong unit is given (where no unit required, wrong units would only be penalised once in any paper). kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ (KJ or $\mathrm{Kj}^{\text {or }} \mathrm{KJ} \mathrm{mol}^{-1}$ or $\mathrm{Kj} \mathrm{mol}^{-1}$ accepted).
		(iii)	1 mark for any of the following - Loss of heat/energy to the surroundings - Incomplete combustion (of heptane/alkane) - Loss (of heptane/alkane) by evaporation - No lid on container - No stirring - Absorption of heat glass/beaker or copper can	1	'Not using a bomb calorimeter' on its own would not be awarded a mark. "Loss of heat" on its own is not sufficient but would not be cancelling.

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
6.	(a)	$\begin{aligned} & \text { (i) } \\ & \text { A } \end{aligned}$	Same number of electrons (34) OR same strength of London dispersion forces/LDFs	1	
		$\begin{array}{\|l} \hline \text { (i) } \tag{1}\\ \text { B } \end{array}$	Propan-1-ol has stronger intermolecular/Van der Waal's forces than ethanethiol or vice versa. OR The intermolecular forces in propan1 -ol take more energy to break than those in ethanethiol or vice versa.(1) 1 mark for identifying that the intermolecular forces in propan-1-ol are hydrogen bonds AND those in ethanethiol are permanent dipole permanent dipole interactions/ attractions.	2	If candidate says 'it/its' assume the candidate is talking about propan-1ol. Any mention of breaking covalent/ ionic/metallic bonds is cancelling. Accept London Dispersion Forces/ LDFs in place of permanent dipolepermanent dipole interactions.
		(ii)	methanethiol	1	Accept methanthiol

Go to Topic Grid

Question		Expected response	Max mark	Additional guidance
	(iii)	$11 \cdot 853 / 11 \cdot 85 / 11 \cdot 9 / 12 \mathrm{mg}$ - units required Correctly calculated mass of ethanethiol without units Appropriate units	2	If an incorrect mass is calculated but the units used are appropriate to the calculation then 1 mark would be awarded. If the candidate's working is unclear then the mark for units cannot be awarded.
(b)	(i)	SH group is on a carbon connected to 3 other carbons/SH group is opposite the branch in a chain. The SH group is attached to a carbon which has no hydrogens attached.	1	
	$\begin{array}{\|l} \text { (ii) } \\ \text { A } \end{array}$		1	
	$\begin{align*} & \text { (ii) } \tag{2}\\ & \hline \end{align*}$	$41 \cdot 2$ (g) OR correct calculation of Theoretical mass $=49.07(\mathrm{~g})$ Allow follow on from incorrect calculation of theoretical mass for 1 mark	2	Award 0 marks if candidate gives $25 \cdot 6$ grams (84% of reactant mass)

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
7.	(a)	(i)	propagation	1	
		(ii)	UV/ultraviolet	1	
		(iii)	Anti-oxidant/free radical scavenger/reducing agent/electron donor	1	
	(b)	(i)	Water/ $\mathrm{H}_{2} \mathrm{O}$	1	
		(ii)		1	
		(iii)	3-hydroxybutanoic acid	1	

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
8.	(a)	(i)	6	1	
		(ii)	London dispersion forces	1	Accept LDF
	(b)	(i)	dissolve the gelatin (in a small volume of water) transfer quantitatively/with rinsings/washings fill to the mark/line (of the volumetric flask)	3	
		(ii)	11-0/11	1	
	(c)	(i)	Bromelain/enzyme changes shape or denatured. Bromelain/enzyme hydrogen bonds broken.	1	
		(ii)	38/37-9/37-88 (g)	1	No units required. No mark can be awarded for correct answer if wrong unit is given (where no unit required, wrong units would only be penalised once in any paper).

Go to Topic Grid

| Question | | Expected response | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |$|$| 9. | (a) |
| :--- | :--- |

Go to Topic Grid

Quest	Expected response	Max mark	Additional guidance
(c)	-391 ($\mathrm{kJ} \mathrm{mol}^{-1}$) (2 marks) Partial marks Treat as two concepts. Either would be acceptable for 1 mark. Evidence of understanding of reversal of first enthalpy value. ie +75 must be seen. The other two enthalpy values (regardless of value) must be negative, or this partial mark cannot be awarded. OR Evidence of understanding of multiplying the third enthalpy value by $4(\pm 92)$. OR ± 368 Multiplication of any other enthalpy value by any factor is taken as cancelling of this partial mark.	2	Only one concept mark can be awarded if the final answer is incorrect. If answer given is +391 , maximum of 1 mark can be awarded. No units required. Only 1 mark can be awarded for the correct answer if wrong unit is given. (wrong units would only be penalised once in any paper) kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ (KJ or Kj or $\mathrm{KJ} \mathrm{mol}^{-1}$ or $\mathrm{Kj} \mathrm{mol}^{-1}$ accepted).

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
10.	(a)		Chloride ions/magnesium ions/metal ions/salts may be present in tap water or not present/less in deionised/distilled water.	1	"ions" on its own is not sufficient Accept chlorine but not chlorine ion(s). If ions are shown, charges must be correct.
	(b)	(i)	Measurement Apparatus $20 \cdot 0 \mathrm{~cm}^{3}$ (accurately) Pipette $35 \mathrm{~cm}^{3}$ Measuring cylinder 1 mark for each correct entry	2	
		(ii)	All correct for 1 mark	1	
		(iii)	0.463/0.46/0.5 (g) Partial marking (1 mark) 1 mark for knowledge of relationship between moles of silver chloride and magnesium chloride. This could be shown by a calculated number of moles of silver chloride correctly divided by 2 OR Incorrect mole ratio used but the relationship between moles and mass used correctly twice OR by proportion $95 \cdot 3 \leftrightarrow 286 \cdot 8(2 \times 143.4)$ OR Mole ratio not applied correctly but proportion used correctly	2	No units required. Only 1 mark can be awarded for correct answer if wrong unit is given (where no unit required, wrong units would only be penalised once in any paper).
		(c)	96/96.0 (\%)	1	

Question		Expected response	Max mark	Additional guidance
11.		This is an open ended question 1 mark: The student has demonstrated, at an appropriate level, a limited understanding of the chemistry involved. The student has made some statement(s) which is/are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	Zero marks should be awarded if: The student has demonstrated no understanding of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.	
2 marks: The student has demonstrated a reasonable understanding, at an appropriate level, of the chemistry involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood. 3 marks: The maximum available mark would be awarded to a student who has demonstrated a good understanding, at an appropriate level, of the chemistry involved. The student shows a good comprehension of the chemistry of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an "excellent" answer or a "complete" one.				

Go to Topic Grid

Question			Expected response	Max mark	Additional guidance
12	(a)	(i)	Ionic and positively charged Both needed	1	Accept positive/+ve/+
		$\begin{array}{\|l} \hline \text { (ii) } \\ \hline \text { i } \end{array}$	alkaline hydrolysis/saponification	1	Do not accept "hydrolysis" on its own. Hydrolysis with named strong alkali would be acceptable.
		$\begin{aligned} & \text { (ii) } \\ & \text { B } \end{aligned}$	(Compound C) has an ionic/hydrophilic part and a non polar/hydrophobic part (or alternative wording/diagram showing knowledge of these parts of the molecule) Correctly identifies the part of the molecule/head/COO dissolves in water/ is hydrophilic and the part of the molecule/tail/hydrocarbon chain dissolves in oil/hydrophobic. Agitation separates oil from the surface/cause small oil droplets to form OR The (negatively-charged) ball-like structures repel each other (and the oil or grease is kept suspended in the water) OR Soaps/compound C allow(s) emulsions to form or break(s) oil into micelles. Accept correct diagrams with annotations that show above.	3	
		(iii)	Reacting them (edible oils) with glycerol/ propan-1,2,3-triol/propane-1,2,3-triol/ 1,2,3-propanetriol/ $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$	1	

Go to Topic Grid

Question		Expected response	Max mark	Additional guidance	
12.	(b)	(i)	Both nuclei have the same attraction for the bonding electrons. OR Both atoms have same electronegativity/ or electronegativity values given OR Bonding electrons shared evenly.	$\mathbf{1}$	Diagram on its own not sufficient
(ii)	1 mark for any of the following -To ensure all chlorine is used up/to prevent chlorine being released - NaOH is the cheaper/less expensive reactant - To ensure that the bleach cleaner contains sodium hydroxide - Excess NaOH would neutralise any acid added to cleaner - Excess NaOH helps break up oil/grease	$\mathbf{1}$			
(c)	(Adding acid) adds/increases H^{+}(ions) (1) Rate of forward reaction is increased/ speeds up (by addition of acid)	$\mathbf{2}$	(1)		

Question			Expected response	Max mark	Additional guidance
12	(d)	(ii)	1.76×10^{-2} ($\mathrm{mol} \mathrm{l}^{-1}$) (3 marks) Partial marks can be awarded using a scheme of two "concept" marks, and one "arithmetic" mark 1 mark for knowledge of the relationship between moles, concentration and volume. This could be shown by one of the following steps: Calculation of moles thiosulfate solution eg $0.098 \times 0.009=0.000882$ OR calculation of concentration of iodine solution eg 0.000441/0.025 OR Insertion of correct pairings of values for concentration and volume in a valid titration formula 1 mark for knowledge of relationship between moles of thiosulfate and hypochlorite. This could be shown by one of the following steps: Calculation of moles hypochlorite from moles thiosulfate eg $0.000882 / 2=0.000441$ OR Insertion of correct stoichiometric values in a valid titration formula 1 mark is awarded for correct arithmetic through the calculation. This mark can only be awarded if both concept marks have been awarded.	3	No units required but only two marks can be awarded for correct answer if wrong unit is given. (wrong units would only be penalised once in the paper).

[END OF MARKING INSTRUCTIONS]

