Unit 2-Nature's Chemistry Revision Notes

<u>Homologous series</u>: a group of compounds with the same general formula and similar chemical properties that show a gradual change in physical properties. Examples include the **alkanes**, **alkenes**, **cycloalkanes**, **alkanols** and **alkanoic acids**.

<u>Alkanes</u>

General formula: C_nH_{2n+2}

Name	Structural formula	Shortened structural formula	Molecular formula
methane	н н—с—н н	CH₄	CH4
ethane	н н н—с—с—н н н н	CH3CH3	C_2H_6
propane	н н н н с с с с н н н н	CH ₃ CH ₂ CH ₃	C₃H ₈
butane	н н н н н-с-с-с-с-н н н н	CH ₃ CH ₂ CH ₂ CH ₃	C_4H_{10}
pentane	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	C_5H_{12}
hexane	н н н н н н н с с с с с с с с н н н н н	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	C_6H_{14}
heptane	н н н н н н н н-с-с-с-с-с-с-с-н н н н н н н	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	C ₇ H ₁₆
octane	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂	C ₈ H ₁₈

Combustion: hydrocarbon + oxygen \rightarrow carbon dioxide + water, e.g.

propane + oxygen
$$\rightarrow$$
 carbon dioxide + water
 $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

National 5 Chemistry

<u>Alkenes</u>

General formula: C_nH_{2n}

Name	Structural formula	Shortened structural formula	Molecular formula
ethene	$\begin{matrix} H & H \\ c = c \\ H & H \\ H & H \end{matrix}$	CH ₂ =CH ₂	C_2H_4
propene	$ \begin{array}{c} H \\ I \\ c \\ c \\ H \end{array} $ $ \begin{array}{c} H \\ I \\ I \\ C \\ H \end{array} $ $ \begin{array}{c} H \\ I \\ I \\ H \end{array} $ $ \begin{array}{c} H \\ I \\ I \\ I \\ H \end{array} $ $ \begin{array}{c} H \\ I \\ I \\ I \\ H \end{array} $ $ \begin{array}{c} H \\ I \\ I$	CH ₃ CH=CH ₂	C₃H ₈
butene	$\begin{array}{c} H & H & H & H \\ I & I & I & I \\ c &= c - c - c - H \\ H & H & H \end{array}$	CH ₃ CH ₂ CH=CH ₂	C_4H_8
pentene	$ \begin{array}{c} H \\ I \\ I \\ c \\ c \\ I \\ I \\ H \\ H$	CH ₃ CH ₂ CH ₂ CH=CH ₂	C_5H_{10}
hexene	$ \begin{array}{c} H & H & H & H & H & H \\ I & - & - & - & - & - & - \\ C & - & - & - & - & - & - & - \\ C & - & - & - & - & - & - & - \\ H & H & H & H & H \\ H & H & H & H & H \end{array} $	CH ₃ CH ₂ CH ₂ CH ₂ CH=CH ₂	C_6H_{12}
heptene	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CH ₂	C ₇ H ₁₄
octene	н н н н н н н c=c-c-c-c-c-cсн 	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CH ₂	C ₈ H ₁₆

Alkenes are **unsaturated** hydrocarbons and can undergo **addition** reactions.

In this reaction bromine decolourises rapidly. This reaction is used as a test for unsaturation.

Hydrogenation - the addition of hydrogen, can convert alkenes into alkanes.

Cycloalkanes

General formula: C_nH_{2n}

Name	Structural formula	Shortened structural formula	Molecular formula
cyclopropane		H ₂ C CH ₂ CH ₂	C ₃ H ₈
cyclobutane	н н н—с — с — н н—с — с — н н н н	H ₂ C CH ₂ H ₂ C CH ₂	C₄H ₈
cyclopentane	H = C = C = H $H = C = C = H$ $H = H$	H ₂ C CH ₂ H ₂ C CH ₂	C_5H_{10}
cyclohexane		H ₂ C H ₂ C H ₂ C H ₂ C CH ₂ CH ₂	C ₆ H ₁₂
cycloheptane	H = C + H $H = C + H$ $H = C + H$ $H = C + H$ $H = H$ $H = H$	H_2C H_2C H_2C H_2C CH_2 H_2C CH_2	C ₇ H ₁₄

The fact that the cycloalkanes and the alkenes have the same general formula, C_nH_{2n} , allows us to conclude that cycloalkanes are isomers of the corresponding alkene with the same number of carbon atoms. For example;

Isomers: same molecular formula different structural formulae.

Isomers have different properties, e.g. propene decolourises bromine solution, cyclopropane does not.

Systematic names

Structural formulae can be drawn and molecular formulae written from systematic names and vice versa.

Rules

- 1. Identify and name the longest chain of carbon atoms.
- 2. Identify the branch and name it according to the number of carbon atoms in the branch.
- 3. Number the branch so that it has the lowest possible number.

3-methylheptane CH₃CH₂CH(CH₃)CH₂CH₂CH₂CH₃

- 4. Alkenes are named by numbering the carbon atoms from the end that gives the carbon of the double bond the lowest number.
- 5. Where there are branches, the double bond takes priority over the branch.

Alcohols

Functional group: hydroxyl group (-OH)

Alkanols: homologous series of alcohols

General formula: $C_nH_{2n+1}OH$

Name	Structural formula	Shortened structural formula	Molecular formula
methanol	н н—с—о—н н	СН₃ОН	СН₃ОН
ethanol	н н один н-с-с-о-н н н	CH ₃ CH ₂ OH	C₂H₅OH
propanol	н н н н—о—с —с — с — н н н н	CH ₃ CH ₂ CH ₂ OH	C₃H7OH
butanol	н н н н н — с — с — с — с — о — н н н н н	CH ₃ CH ₂ CH ₂ CH ₂ OH	C₄H₃OH
pentanol	н н н н н н-с-с-с-с-с-о-н 	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	C₅H ₁₁ OH
hexanol	н н н н н н н — с — с — с — с — с — о — н н н н н н	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH	C₀H₁₃OH
heptanol	н н н н н н н - c - c - c - c - c - c	CH ₃ CH ₂ OH	C7H15OH

Isomers

e.g. butanol

Alcohols are effective solvents, highly flammable, and burn with very clean flames resulting in their use as fuels.

Carboxylic acids

Functional group: carboxyl group (-COOH)

Alkanoic acids: homologous series of carboxylic acids

General formula: C_nH_{2n+1}COOH

Name	Structural formula	Shortened structural formula	Molecular formula
methanoic acid	о II н — с — о — н	нсоон	нсоон
ethanoic acid	н-с-с ^о о-н	CH₃COOH	CH₃COOH
propanoic acid		CH₃CH₂COOH	C₂H₅COOH
butanoic acid		CH ₃ CH ₂ CH ₂ COOH	C₃H7COOH
pentanoic acid	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH₃CH₂CH₂CH₂COOH	C₄H₃COOH
hexanoic acid	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ COOH	C ₅ H ₁₁ COOH
heptanoic acid	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ COOH	C ₆ H ₁₃ COOH

Vinegar is a solution of ethanoic acid.

Vinegar is used in household cleaning products designed to remove limescale (a build up of insoluble carbonates on plumbing fixtures) and as a preservative in the food industry.

<u>Esters</u>

An ester can be made by reacting a carboxylic acid with an alcohol.

Esters are used in food flavouring, industrial solvents, fragrances and materials.

Energy from fuels

Alkanes and alcohols can be used as fuels.

Combustion reactions are **exothermic** reactions.

Exothermic reactions release heat energy to the surroundings. **Endothermic** reactions take in heat energy from the surroundings.

Calculations based on equations

When a substance is combusted the reaction can be represented using a balanced formulae equation. The quantities of reactants and products in these reactions can be calculated.

E.g. Calculate the mass of oxygen required to burn 50g of butan-1-ol.

C ₄ H ₉ OH	H(I)	+	6O ₂ (g)	\rightarrow	4CO ₂ (g)	+	5H ₂ O(I)
1mol		reacts with	6mol				
74g	-		→ 192g				
50g	-		→ 50 x 192				
			74				
			= 130g				

Energy calculations

Different fuels provide different quantities of energy and this can be measured experimentally and calculated using $E_h = cm\Delta T$.

