Unit 1-Chemical Changes and Structure Revision Notes

Rates of reaction

The rate of reaction can be increased by:
increasing the concentration of a solution decreasing the particle size of a solid increasing the temperature adding a catalyst.

The average rate of reaction can be calculated from a graph of the change in mass or volume against time.

Measuring a change in mass

Average rate of reaction = change in mass change in time

Average rate over first $10 \mathrm{~s}=\underline{104.80-104.40}$	Average rate between 10 s and $20 \mathrm{~s}=\underline{104.40-104.20}$
10-0	20-10
$=\underline{0.40}$	$=\underline{0.20}$
10	10
$=0.04 \mathrm{gs}^{-1}$	$=0.02 \mathrm{gs}^{-1}$
Average rate over first $20 \mathrm{~s}=\underline{104.80-104.20}$	Average rate between 10 s and $50 \mathrm{~s}=\underline{104.40-104.08}$
20-0	50-10
$=\underline{0.60}$	$=\underline{0.32}$
20	40
$=0.03 \mathrm{gs}^{-1}$	$=0.008 \mathrm{gs}^{-1}$

Measuring a change in volume

Average rate of reaction = change in volume change in time

Average rate of reaction $=$	$\frac{65-0}{86-0}$
	$=\frac{65}{86}$
	$=\underline{0.76 \mathrm{~cm}^{3} \mathrm{~s}^{-1}}$

Interpreting a graph that follows the course of a reaction.
Gradient (or steepness) of line indicates rate
(the steeper the line the faster the rate).
The end of the reaction is marked by the line levelling out, quantity of product (or reactant) no longer changing.
Total volume of gas produced in example above $=$ $65 \mathrm{~cm}^{3}$

Note: Always give a positive value for rate.
Units for rate (from a graph) = unit for y-axis followed by unit for x-axis ${ }^{-1}$
or (from a table) = unit for recorded variable (dependent variable) followed by unit for time ${ }^{-1}$
In the examples shown above the rate of reaction decreases as the reaction progresses, this is due to a reduction in the concentration of the reactants as the reaction proceeds.

Note: if the gas being collected is insoluble in water then the apparatus in the diagram shown below can be used to show the change in volume with time.

Atomic structure and bonding related to properties of materials

Atomic structure

Atoms contain three types of subatomic particles.
e.g. a lithium atom
nucleus
$1^{\text {st }}$ energy level (can hold a maximum of 2 electrons).
$2^{\text {nd }}$ energy level (can hold a maximum of 8 electrons).

Electron arrangement $=2,1$

Particle		Mass
Charge		
neutron	1 amu	neutral
proton	1 amu	positive
electron	almost zero	negative

Atoms are neutral
number of protons = number of electrons

Nuclide notation

mass number $=$ number of protons + number of neutrons atomic number $=$ number of protons

Isotopes - atoms with the same number of protons but a different number of neutrons - atoms with the same atomic number but a different mass number
e.g. isotopes of chlorine

${ }_{17}^{35} \mathrm{Cl} 75 \%$
 ${ }_{17}^{37} \mathrm{Cl} 25 \%$

Relative atomic mass - the average mass of the isotopes present taking into account their relative proportions.
e.g. relative atomic mass of chlorine $=\frac{(35 \times 75)+(37 \times 25)}{100}$
$=\frac{2625+925}{100}$
$=\underline{3550}$
100
$=35.5 \mathrm{amu}$

Note: the relative atomic mass (RAM) of an element is closer to the mass of the most abundant isotope.

However, RAM for $\mathrm{Br}=80 \mathrm{amu}$
${ }^{79} \mathrm{Br} 50 \%$ and ${ }^{81} \mathrm{Br} 50 \%$

Electronic structure of the first twenty elements in the Periodic Table

Notes on Elements and the Periodic Table

Elements are arranged in order of increasing atomic number.
It is the electron arrangement of an atom that determines its chemical properties.
Isotopes have identical chemical properties because they have the same electron arrangement. Atoms of elements in the same group have the same number of electrons in their outer energy levels and as a result have similar chemical properties.
The elements in Group 0 (the Noble gases) are the most stable elements in the Periodic Table.
The Noble gases have full outer energy levels.

The diatomic elements are Hydrogen $\left(\mathrm{H}_{2}\right)$, Nitrogen $\left(\mathrm{N}_{2}\right)$, Oxygen $\left(\mathrm{O}_{2}\right)$, Fluorine $\left(\mathrm{F}_{2}\right)$, Chlorine $\left(\mathrm{Cl}_{2}\right)$, Bromine $\left(\mathrm{Br}_{2}\right)$ and lodine $\left(\mathrm{I}_{2}\right)$ - HNOF and down.

An atom (or ion) with a full outer energy level is more stable than one which does not have a full outer energy level.

Covalent bonding

Atoms can achieve a stable electron arrangement by sharing outer electrons - forming a covalent bond.
e.g. hydrogen, H_{2}

Both Hydrogen atoms now have an electron arrangement of 2 (a full outer energy level like Helium).

More than one bond can be formed between atoms leading to double and triple covalent bonds.

Dot and cross diagram	Electron cloud diagram	Structural formula
Oxygen, O_{2}	Oxygen, O_{2}	Oxygen, O_{2} $\mathrm{O}=\mathrm{O}$
Nitrogen, N_{2}	Nitrogen, N_{2}	Nitrogen, N_{2} $\mathrm{N} \equiv \mathrm{~N}$

Covalent substances can form either discrete molecular or giant network structures.

Covalent molecular
Diagrams show how outer electrons are shared to form the covalent bond(s) in a molecule and the shape of simple two-element compounds.

Dot and cross diagram	Electron cloud diagram	Shape	Structural formula
Hydrogen fluoride		$H-F$ linear	$H-F$ Molecular formula: HF
Carbon dioxide		$\mathrm{O}=\mathrm{C}=\mathrm{O}$ linear	$\mathrm{O}=\mathrm{C}=\mathrm{O}$ Molecular formula: CO_{2}
Water		 bent	 Molecular formula: $\mathrm{H}_{2} \mathrm{O}$

Dot and cross diagram	Electron cloud diagram	Shape	Structural formula
		 bent	 Molecular formula: SCl_{2}
Ammonia		 trigonal pyramidal	 Molecular formula: NH_{3}
Phosphorus trichloride		 trigonal pyramidal	 Molecular formula: PCl_{3}

Dot and cross diagram	Electron cloud diagram	Shape	Structural formula
Methane		 tetrahedral	 Molecular formula: CH_{4}
		 tetrahedral	 Molecular formula: CCl_{4}

Bonding in covalent substances and the related trend in melting points

Covalent molecular

Covalent molecular substances have low melting points due to only weak forces of attraction between molecules being broken.

Covalent network

e.g. diamond

lons

Atoms can achieve a stable electron arrangement by losing or gaining electrons and forming ions.
e.g. a sodium atom, Na , with an electron arrangement of $2,8,1$ can lose an electron to become a
sodium ion, Na^{+}, with more stable electron arrangement of 2,8 .

This reaction can be shown as an ion-electron equation: $\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}$
and a chlorine atom, Cl , with an electron arrangement of 2,8,7 can gain an electron to become a chloride ion, Cl^{-}, with more stable electron arrangement of $2,8,8$.

Cl $2,8,7$

Cl- $2,8,8$

This reaction can be shown as an ion-electron equation: $\mathrm{Cl}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}$

The charge on an ion of an element in group 1 to 0 can be determined using the pattern in the table below.

Group	1	2	3	4	5	6	7	0
Charge on ion	+	$2+$	$3+$	not applicable	$3-$	$2-$	-	not applicable

Note: The charge on transition metal ions can vary and is given as roman numerals in the name,
e.g. in copper(II) chloride the copper ion has a $2+$ charge, Cu^{2+}.

Nuclide notation for ions

There is an imbalance in the number of positive protons and negative electrons within an ion, hence the charge.

Ionic compounds

Ionic compounds form a lattice structure of oppositely charged ions in the solid state e.g. sodium chloride

Ionic compounds have high melting points because strong ionic bonds must be broken in order to break down the lattice. The lattice can also be broken down by being dissolved.

Conduction of electricity

For a substance to conduct electricity it must contain charged particles that are free to move. Covalent substances do not contain charged particles therefore do not conduct.
Ionic compounds conduct electricity, only when molten or in solution due to the breakdown of the lattice resulting in the ions being free to move. Ionic compounds do not conduct electricity when solid because the ions are not free to move. They are held in a lattice.

Simple experiments to measure electrical conductivity

Formulae and reaction quantities

The formulae of most elements are given by their symbol (e.g. silicon, si).
The formulae of the diatomic elements (HNOF and down) are given by their symbol followed by a subscript two (e.g. bromine, Br_{2}).

Diatomic molecules are molecules which contain two atoms (e.g. hydrogen fluoride, HF).
The formula of a covalent molecular substance gives the number of atoms present in the molecule.
The formula of a covalent network or ionic compound gives the simplest ratio of atoms or ions in the substance.

Cross-valency method

The formulae for substances containing two elements can be worked out using the cross-valency method.

The valencies for elements in group 1-0 are given in the table below.

Group	1	2	3	4	5	6	7	0
Valency	1	2	3	4	3	2	1	not applicable

Formula for silicon hydride;

Symbols	$\mathrm{Si} \quad \mathrm{H}$
Valencies	4
Formula ratio	
Formula	SiH_{4}

Formula for silicon sulfide;

When possible, cancel down to the simplest ratio e.g. the formula for silicon sulphide is SiO_{2} not $\mathrm{Si}_{2} \mathrm{O}_{4}$.

Formula for calcium sulfide;

Symbols	Ca
Valencies	
Formula ratio	2
Simplify ratio	1 1
Formula	CaS

Where the compound is ionic the charges on the ions can be added e.g. $\mathrm{Ca}^{2+} \mathrm{S}^{2-}$

Formula for aluminium oxide;

Symbols	
Valencies	2
Formula ratio	2

When showing the charges a bracket is used where there is more than one of a particular ion e.g. $\left(\mathrm{Al}^{3+}\right)_{2}\left(\mathrm{O}^{2-}\right)_{3}$

Formulae of compounds which have prefixes in their name

If the name of the compound contains a prefix we do not use the cross-valency method. We use the prefix to write the formula.

Prefix	mono	di	tri	tetra	penta	hexa
Number of atoms or ions	1	2	3	4	5	6

e.g. silicon dioxide, SiO_{2} or dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$.

Note: if part of the name has no prefix it is assumed that only 1 atom or ion of this type is present.

Formulae of compounds containing transition metal ions

The charge on transition metal ions can vary and is given as roman numerals within the name of the compound.

Roman numeral	I	II	III	IV	V	VI
Number	1	2	3	4	5	6

e.g. iron(III) oxide, $\left(\mathrm{Fe}^{3+}\right)_{2}\left(\mathrm{O}^{2-}\right)_{3}$

Formulae of compounds with ions which contain more than one kind of atom

The formulae for these ions can be found in a table on page 8 of the National 5 Chemistry Data Booklet © Scottish Qualifications Authority 2013, which has been reproduced below.

Formulae of Selected lons containing more than one kind of Atom

one positive		one negative		two negative		three negative	
Ion	Formula	Ion	Formula	Ion	Formula	Ion	Formula
ammonium	NH_{4}^{+}	ethanoate hydrogencarbonate hydrogensulfate hydrogensulfite hydroxide nitrate permanganate	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COO}^{-} \\ & \mathrm{HCO}_{3}^{-} \\ & \mathrm{HSO}_{4}^{-} \\ & \mathrm{HSO}_{3}^{-} \\ & \mathrm{OH}^{-} \\ & \mathrm{NO}_{3}^{-} \\ & \mathrm{MnO}_{4}^{-} \end{aligned}$	carbonate chromate dichromate sulfate sulfite thiosulfate	$\begin{aligned} & \mathrm{CO}_{3}^{2-} \\ & \mathrm{CrO}_{4}^{2-} \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ & \mathrm{SO}_{4}^{2-} \\ & \mathrm{SO}_{3}^{2-} \\ & \mathrm{S}_{2} \mathrm{O}_{3}^{2-} \end{aligned}$	phosphate	$\mathrm{PO}_{4}{ }^{3-}$

As we can see from all the examples of ionic formulae given above, when writing these formulae we must ensure that the negative and positive charges balance and the compound is electrically neutral.
e.g. sodium carbonate, $\left(\mathrm{Na}^{+}\right)_{2} \mathrm{CO}_{3}{ }^{2-}$ - the sodium ion has 1 positive charge, the carbonate ion has $\mathbf{2}$ negative charges,
therefore two sodium ions are needed to balance the charge on one carbonate ion.
or calcium nitrate, $\mathrm{Ca}^{2+}\left(\mathrm{NO}_{3}^{-}\right)_{2}$ where two nitrate ions are needed to balance the charge on one calcium ion.

Chemical equations

A chemical equation can be used to describe a reaction, showing the chemicals which react (reactants) and the chemicals which are produced (products).

e.g.

State symbols - solid (s), liquid (I), gas (g) and water based (aqueous) solution (aq).

Balancing equations

During a chemical reaction no atoms are lost or gained. A balanced equation shows the same number and type of atoms on each side of the equation.

The number of atoms of each type is not balanced.
By placing a 2 in front of the water the total number of Hs and Os on the right hand side is altered and the hydrogen atoms are now balanced.
By placing a 2 in front of the oxygen the total number of Os on the left hand side is altered and the equation is now balanced.

Gram formula mass

The gram formula mass (GFM) of any substance can be calculated using the chemical formula and relative atomic masses of its constituent elements.

Relative atomic masses of elements can be found on page 7 of the National 5 Chemistry Data Booklet.

$$
\text { e.g. GFM of methane, } \mathrm{CH}_{4}, ~ \begin{aligned}
\text { GFM } & =(1 \times \mathrm{C})+(4 \times \mathrm{H}) \\
& =(1 \times 12)+(4 \times 1) \\
& =12+4 \\
& =\underline{\underline{16 g}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { GFM of water, } \mathrm{H}_{2} \mathrm{O} \\
& \begin{aligned}
\text { GFM } & =(2 \times \mathrm{H})+(1 \times \mathrm{O}) \\
& =(2 \times 1)+(1 \times 16) \\
& =2+16 \\
& =\underline{\underline{18 \mathrm{~g}}}
\end{aligned}
\end{aligned}
$$

Moles

The gram formula mass is defined as the mass of one mole of a substance.
A balanced equation gives the molar ratio of the reactants and products.

Relationship between number of moles and mass

\mathbf{n} = number of moles
$\mathbf{m}=$ mass, in grams, \mathbf{g}
GFM = gram formula mass, \mathbf{g}

Calculate the mass of 2.5 moles of magnesium chloride.

$$
\begin{array}{rlrl}
\mathrm{m} & =\mathrm{n} \times \mathrm{GFM} & \text { GFM of } \mathrm{MgCl}_{2} & =(1 \times \mathrm{Mg})+(2 \times \mathrm{Cl}) \\
& =2.5 \times 95.5 \\
& =\underline{\underline{238.75 \mathrm{~g}}} & & =24.5+71.5)+(2 \times 35.5) \\
& & =\underline{95.5 \mathrm{~g}}
\end{array}
$$

Calculate the number of moles present in 69 g of potassium carbonate.

$$
\begin{array}{rlrl}
\mathrm{n} & =\frac{\mathrm{m}}{\mathrm{GFM}} & \mathrm{GFM} \text { of } & \left(\mathrm{K}^{+}\right)_{2} \mathrm{CO}_{3}{ }^{2-} \\
& =\underline{69} & & (2 \times \mathrm{K})+(1 \times \mathrm{C})+(3 \times \mathrm{O}) \\
& =(2 \times 39)+(1 \times 12)+(3 \times 16) \\
& =\underline{\underline{0.5 \mathrm{~g}}} & & =78+12+48 \\
& & =\underline{138 \mathrm{~g}}
\end{array}
$$

Relationship between number of moles, volume and concentration

$\mathbf{n}=$ number of moles
v = volume, in litres, I

$$
\mathbf{c}=\text { concentration, in moles per litre }, \text { moll }^{-1}
$$

Note: volumes given in cm^{3} must be converted to

$$
\text { litres }\left(1 \mathrm{~cm}^{3}=0.001 \mathrm{I}, \frac{\mathrm{~cm}^{3}}{1000}=\text { litres }\right)
$$

Calculate the number of moles present in $200 \mathrm{~cm}^{3}$ of a $1.5 \mathrm{moll}^{-1}$ solution of glucose.

$$
\begin{aligned}
\mathrm{n} & =v \times c \quad v=200 \mathrm{~cm}^{3}=\frac{200}{1000}=\underline{0.21} \\
& =0.2 \times 1.5 \\
& =0.3 \text { moles }
\end{aligned}
$$

Calculate the concentration of a $500 \mathrm{~cm}^{3}$ solution of 5.85 g of NaCl .

$$
\begin{aligned}
& \mathrm{c}=\frac{\mathrm{n}}{\mathrm{v}} \\
& \mathrm{n}=\frac{\mathrm{m}}{\mathrm{GFM}}=\frac{5.85}{58.5}=\underline{0.1 \mathrm{moles}} \\
& =\frac{0.1}{0.5} \\
& =\underline{0.2 \mathrm{moll}^{-1}} \\
& \text { GFM of } \mathrm{NaCl}=(1 \times \mathrm{Na})+(1 \times \mathrm{Cl}) \\
& =(1 \times 23)+(1 \times 35.5) \\
& =23+35.5 \\
& =58.5 \mathrm{~g}
\end{aligned}
$$

$$
v=\frac{500}{1000}=\underline{0.51}
$$

Calculate the volume of $1.5 \mathrm{moll}^{-1}$ glucose solution which would contain 0.3 moles.

$$
\begin{aligned}
v & =\frac{n}{c} \\
& =\frac{0.3}{1.5} \\
& =0.21 \\
& =200 \mathrm{~cm}^{3}
\end{aligned}
$$

What mass of calcium hydroxide is required to produce $500 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moll}^{-1}$ calcium hydroxide solution?
$\mathrm{m}=\mathrm{nx}$ GFM
$=0.05 \times 74$
$=3.7 \mathrm{~g}$

$$
\begin{array}{rlrl}
\mathrm{n} & =v \times c & v=\frac{500}{1000}=\underline{0.51} \\
& =0.5 \times 0.1 & \\
& =\underline{0.05 \text { moles }} &
\end{array}
$$

$$
\begin{aligned}
\mathrm{GFM} \text { of } \mathrm{Ca}^{2+}\left(\mathrm{OH}^{-}\right)_{2} & =(1 \times \mathrm{Ca})+(2 \times \mathrm{O})+(2 \times \mathrm{H}) \\
& =(1 \times 40)+(2 \times 16)+(2 \times 1) \\
& =40+32+2 \\
& =\underline{74 \mathrm{~g}}
\end{aligned}
$$

Calculations based on balanced equations

Calculate the mass of hydrogen produced when 4.9 g of magnesium reacts with an excess of dilute sulphuric acid.

Rust, iron(III) oxide, that forms on cars can be treated using rust remover which contains phosphoric acid. When painted on, rust remover changes iron(III) oxide into iron(III) phosphate. Calculate the mass of iron(III) oxide that will be removed by $250 \mathrm{~cm}^{3}$ of $2 \mathrm{moll}^{-1}$ phosphoric acid.

Acids and bases

The pH scale

pH is related to the concentration of hydrogen and hydroxide ions in pure water, acids and alkalis.

The relationship between pH and concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions can be explored by carrying out a dilution experiment. The table below summaries what can be observed and calculated from one such experiment in which repeated ten-fold dilution of a solution of $1 \mathrm{moll}^{-1}$ hydrochloric acid was carried out.

DILUTION TOWARDS pH 7

Colour of Universal indicator								
$[\mathrm{HCl}(\mathrm{aq})]$ in moll	1	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
$\left[\mathrm{H}^{-1}(\mathrm{aq})\right]$ in moll	1×10^{-1}	1×10^{-1}	1×10^{-2}	1×10^{-3}	1×10^{-4}	1×10^{-5}	1×10^{-6}	1×10^{-7}
pH	0	1	2	3	4	5	6	7

From the table above, we can see that there is a relationship between pH and the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions.

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1 \times 10^{-\mathrm{pH}}
$$

The pH is a measure of the hydrogen ion concentration.

Water is neutral and has a pH of 7 .

A very small proportion of water molecules will dissociate into an equal number of hydrogen and hydroxide ions.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

In water,

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=1 \times 10^{-7}
$$

The results of a repeated ten-fold dilution of a solution of $1 \mathrm{moll}^{-1}$ sodium hydroxide solution are shown in the table below.

DILUTION TOWARDS pH 7

Colour of Universal indicator								
$[\mathrm{NaOH}(\mathrm{aq})]$ in moll^{-1}	0.0000001	0.000001	0.00001	0.0001	0.001	0.01	0.1	1
$\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ in moll	1×10^{-7}	1×10^{-6}	1×10^{-5}	1×10^{-4}	1×10^{-3}	1×10^{-2}	1×10^{-1}	1×10^{0}
pH	7	8	9	10	11	12	13	14
$\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ in moll^{-1}	1×10^{-7}	1×10^{-8}	1×10^{-9}	1×10^{-10}	1×10^{-11}	1×10^{-12}	1×10^{-13}	1×10^{-14}

A neutral solution has an equal concentration of hydrogen and hydroxide ions.

A solution with a greater concentration of hydrogen ions than hydroxide ions is an acid

A solution with a greater concentration of hydroxide ions than hydrogen ions is an alkali.

The effect of dilution of an acid or alkali with water is related to the concentrations of hydrogen and hydroxide ions.

Formation of acids

Acids are formed when soluble non-metal oxides dissolve in water and increase the hydrogen ion concentration.
e.g.
\(\left.$$
\begin{array}{cccc}\text { sulfur dioxide } & + \text { water } \\
\mathrm{SO}_{2}(\mathrm{~g})\end{array}
$$+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \begin{array}{c}sulfurous acid

2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{3}(\mathrm{aq})\end{array}\right]\)\begin{tabular}{c}
carbonic acid

carbon dioxide

$\mathrm{CO}_{2}(\mathrm{~g})$

$+\mathrm{water}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow$

$2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}(\mathrm{aq})$
\end{tabular}

Formation of alkalis

Alkalis are formed when soluble metal-oxides dissolve in water and increase hydroxide ion concentration.
e.g.

Formulae of common acids and alkalis

Acid	Formula without charge	Formula showing ions
hydrochloric acid	$\mathrm{HCl}_{(\mathrm{aq})}$	$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
nitric acid	$\mathrm{HNO}_{3}(\mathrm{aq})$	$\left.\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{3}-\mathrm{aq}\right)$
sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	$2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$

Alkalis	Formula without charge	Formula showing ions
lithium hydroxide	$\mathrm{LiOH}(\mathrm{aq})$	$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
potassium hydroxide	$\mathrm{KOH}(\mathrm{aq})$	$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
ammonium hydroxide	$\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$	$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Neutralisation reactions

A base is a substance that neutralises an acid.

acid	+	metal oxide	\longrightarrow	salt	+	water
e.g. Word equation: hydrochloric acid + sodium oxide \longrightarrow sodium chloride + water Formula equation: $\mathrm{HCl}(\mathrm{aq})$ + $\mathrm{NaO}(\mathrm{s})$ \longrightarrow $\mathrm{NaCl}(\mathrm{aq})$ + $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$						

| Ionic formula equation:
 $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ |
| :---: |$+\left(\mathrm{Na}^{+}\right)_{2} \mathrm{O}^{2-}(\mathrm{s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

| Balanced ionic equation:
 $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$ |
| :---: |$+\left(\mathrm{Na}^{+}\right)_{2} \mathrm{O}^{2-}(\mathrm{s}) \longrightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

acid	+	alkali	\longrightarrow		salt	+
water						
e.g.						
Word equation: nitric acid	+	potassium hydroxide	\longrightarrow			

| Formula equation:
 $\mathrm{HNO}_{3}(\mathrm{aq})$ | + | $\mathrm{KOH}(\mathrm{aq})$ |
| ---: | :--- | :--- | :--- | :--- |$\quad \longrightarrow \quad \mathrm{KNO}_{3}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Ionic formula equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
+

Balanced ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$$+\mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

The reacting species are determined by omission of spectator ions.					
$\left.\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NF}_{3}-\mathrm{aq}\right)$	+	K^{+}(aq) $+\mathrm{OH}^{-}(\mathrm{aq})$	K^{+}(aq) $+\mathrm{N} \sigma_{3}(\mathrm{aq})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
H^{+}	+	OH^{-}	$\mathrm{H}_{2} \mathrm{O}$		

acid	+	metal carbonate	\longrightarrow	salt	+	water	+	carbon doxide
e.g.								
Word equation: sulfuric acid	+	calcium carbonate	\longrightarrow	calcium sulfate	+	water	+	carbon dioxide

Ionic formula equation:
$2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

Balanced ionic equation:
$2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

The reacting species are determined by omission of spectator ions.							
$2 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{SO}_{4}^{-{ }^{-}}(\mathrm{aq})$	+	$\mathrm{Ca}^{32+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$	$\mathrm{Caz}^{\text {24 }}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{-2}(\mathrm{aq})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+	$\mathrm{CO}_{2}(\mathrm{~g})$
$2 \mathrm{H}^{+}$	+	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{H}_{2} \mathrm{O}$		+		

Remember: "Spectator ions are present but they don't take part in the action." These ions appear unchanged on both sides of the equation.

Naming the salt produced during neutralisation

As we can see from the examples above, the first part of the name of the salt comes from the positive ion within the base.

The second part of the name of the salt is derived from the acid.

Name of acid	Name of salt
hydrochloric acid chloride
nitric acid nitrate
sulfuric acid sulfate

Titration

Titration is an analytical technique used to determine the accurate volumes involved in chemical reactions such as neutralisation. An indicator is used to show the end-point of the reaction.
e.g.

	Rough titre	1st titre	2nd titre
Initial burette reading/cm	0.3	0.2	0.5
Final burette reading/cm	26.6	$25 \cdot 3$	25.4
Volume used/cm	26.3	25.1	24.9

Using the results in the table, calculate the concentration of the sodium hydroxide solution.

$\mathrm{HCl}(\mathrm{aq})+$	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}$ (I	$\mathrm{NaCl}(\mathrm{aq})$
1 mole $\longleftrightarrow 1$ mole		Aver	$=\underline{25.1+24.9}$
			2
$\mathrm{v}=25.0 \mathrm{~cm}^{3}$	$\mathrm{v}=10 \mathrm{~cm}^{3}$		$=25.0 \mathrm{~cm}^{3}$
$=\underline{0.0251}$	$=\underline{0.0101}$		
$\mathrm{c}=0.1 \mathrm{moll}^{-1}$			
$\mathrm{n}=\mathrm{vxc}$			
$=0.025 \times 0.1$			
$=0.0025$ moles			
0.0025 moles $\longleftrightarrow 0.0025$ moles			
$\mathrm{c}=\underline{\mathrm{n}}=\underline{0.0025}$			
v 0.010			
$=\underline{\underline{0.25 ~ m o l l}}{ }^{-1}$			

