Q.1. The stability of a covalent bond is related to its bond order, which can be defined as follows:

bond order = $\frac{1}{2}$ (number of bonding electrons – number of anti-bonding electrons)

The molecular orbital diagram for oxygen is shown. The anti-bonding orbitals are denoted by *.

The bond order for a molecule of oxygen is

- A 0
- B 1
- C 2
- D 3.

1

1

1

1

1

Q 2. The electronic spectra of molecules can be described in terms of the wavelength of maximum absorbance, λ_{max} .

The table below shows a number of compounds with their corresponding λ_{max} values.

Compound	λ_{max}/nm
1.	217
2.	227
3.	263
4.	352

- a) Compound 1 is buta-1,3-diene.
 Name compound 2.
- b) Draw the most likely structure for the compound with $\lambda_{max} = 291$ nm.
- c) The compounds shown have a system of alternating single and double bonds. What word is used to describe this type of system?
- d) From the information shown in the table draw a conclusion relating the energy difference between the HOMO and the LUMO as the number of alternating single and double bonds increases.
- e) β -carotene, $\lambda_{max} = 452$ nm gives the orange colour to carrots and has the structure

whereas α -carotene, $\lambda_{max} = 434$ nm is found in oranges and has the structure:

Explain why there is a difference in the lmax values for these two structures.

f) The pink colour of cooked salmon and lobster is due to astaxanthin which has the structure:

This molecule is optically active. Draw part of the molecule and circle one of the asymmetric carbon atoms responsible for this optical activity.

1

1

Q:3. Lycopene and β -carotene are coloured organic compounds found in ripened tomatoes. Both absorb light in the visible region. Lycopene is red and β -carotene is orange.

Which of the following statements is true about the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in lycopene and \(\beta\)-carotene?

- A β-Carotene has a higher energy gap between HOMO and LUMO than lycopene.
- **B** Lycopene has a higher energy gap between HOMO and LUMO than β-carotene.
- C β-Carotene has the same energy gap between HOMO and LUMO as lycopene.
- D The colour of β-carotene and lycopene is not affected by the energy gap between HOMO and LUMO.
- Q. 4. The blue colour of denim jeans comes from a dye known as indigo.

The synthesis of this dye involves a series of complex chemical reactions.

- a) What structural feature of indigo dye allows it to absorb light within the visible region of the electromagnetic spectrum?
- b) Why does a dye, such as indigo, appear blue when viewed in daylight?
- c) Draw a structural formula for the geometric isomer of indigo. 1
 (3)
- 5. What kind of molecular orbital $(\sigma, \sigma^*, \pi, \text{ or } \pi^*)$ is formed when the pairs of atomic orbitals shown below interact in the manner indicated?

