Advanced Higher Unit 27

Kinetics

1. The reaction $A + 2B \rightarrow C$ has a rate law of the form

Rate =
$$k [A] [B]$$
.

If the reaction proceeds by a two step process, then the rate-determining step might be

- $A + B \rightarrow intermediate$
- $B + B \rightarrow intermediate$
- $C A + B \rightarrow C$
- D $B + AB \rightarrow C$.
- 2. Which is a correct statement about a catalyst?

For a chemical reaction it

- A does not alter the value of the rate constant
- B alters the value of the equilibrium constant
- C alters the mechanism
- D has no effect on the value of the activation energy.
- 3. The rate of a particular chemical reaction is first order with respect to each of two reactants. The units of k, the rate constant, for the reaction are
 - A $moll^{-1}s^{-1}$
 - B $l mol^{-1}s^{-1}$
 - $C = 1^2 \text{ mol}^{-2} \text{s}^{-2}$
 - D $mol^2 l^{-2} s^{-1}$.
- 4. The reaction expressed by the stoichiometric equation

$$Q + R \rightarrow X + Z$$

was found to be first order with respect to each of the reactants.

Which of the following statements is correct?

- A Overall, the reaction is first order.
- B If the initial concentrations of Q and R are halved, the rate of the reaction will be halved.
- C The rate of the reaction decreases as the reaction proceeds.
- D The rate of the reaction is independent of the concentration of either Q or of R.

For a given chemical change involving two reactants P and Q,

rate of reaction \propto [P] [Q].

If the equation representing the overall reaction is

$$P + 2O \rightarrow S + T$$

the mechanism could be

A
$$2Q \rightarrow R + S$$

fast

$$R + P \rightarrow T$$

slow

$$B P + Q \rightarrow R + S$$

slow

$$R + Q \rightarrow T$$

fast

$$C P \rightarrow R + S$$

fast

$$2Q + R \rightarrow T$$

slow

$$D P + Q \rightarrow R + S$$

fast

$$R + Q \rightarrow T$$

slow

The following data refer to initial reaction rates obtained for the reaction

$$X + Y + Z \rightarrow products$$

	RELATIVE CONCENTRATIONS		RELATIVE INITIAL RATE	
	[X]	[Y]	[Z]	INITIAL RATE
Expt. 1	1.0	1.0	1.0	0.3
Expt. 2	1.0	2.0	1.0	0.6
Expt. 3	2.0	2.0	1.0	1.2
Expt. 4	2.0	1.0	2.0	0.6

These data fit the rate equation

- A Rate = k[X]
- B Rate = k[X][Y]
- C Rate = $k[X][Y]^2$
- D Rate = k[X][Y][Z].

7. For the reaction A + B→C, the following data were obtained.

Experiment	Initial concentra- tion of A, mol l - 1	Initial concentra- tion of B-mol I ⁻¹	Initial rate of formation of C/mol l = 1 s = 1
1	0.050	0.050	0.015
2	0.050	0.100	0.060
3	0.100	0.100	0.060

The rate law for this reaction is

A rate =
$$k[A]^2$$

B rate =
$$k[A][B]$$

C rate =
$$k[B]^2$$

D rate =
$$k[A][B]^2$$

8 The reaction $A + 2B \rightarrow C$ has a rate law of the form

Rate =
$$k[A][B]$$

If the reaction proceeds by a two step process, then the rate determining step might be

$$A + B \rightarrow intermediate$$

$$C A + B \rightarrow C$$

D
$$B + AB \rightarrow C$$

9 The rate law for the reaction

$$2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$$

can be expressed as either

Rate of production of $N_2 = k'[H_2] [NO]^2$ or Rate of production of $H_2O = k''[H_2] [NO]^2$

Which of the following is true?

$$A \quad k' = k''$$

$$\mathbf{B} \quad \mathbf{k}' = 2\mathbf{k''}$$

$$C k'' = 2k'$$

D The order of the reaction is 4.

$$P + Q \rightarrow R$$

The rate equation for this reaction is Rate = $k[P][Q]^2$.

If the concentration of P and Q are both doubled, the rate will increase

A 2 times

B 4 times

C 6 times

D 8 times.

The following set of data was obtained for the kinetics of a reaction $A + B \rightarrow C$.

[A]/moll ⁻¹	[B]/mol1 ⁻¹	INITIAL RATE OF FORMATION OF C /moll ⁻¹ min ⁻¹
1.0	1.0	1.5
2.0	1.0	3.0
2.0	0.5	0.75

Which one of the following expresses the rate law for the reaction? The rate of formation of C is equal to

A k[A][B]

 $B k[A][B]^2$

 $C k[A]^2[B]$

 $D k[A]^2[B]^2$

Which is a correct statement about a catalyst?

For a chemical reaction, it

A does not alter the value of the activation energy

B alters the value of the equilibrium constant

C does not affect the mechanism

D alters the value of the rate constant.

The gas phase reaction $H_2 + I_2 \rightarrow 2HI$ is first order with respect to both reactants. If the concentrations of both H_2 and I_2 are doubled, the reaction rate will be changed by a factor of

A 0.5

B 2

C 3

D 4.

The following reaction is first order with respect to each of the reactants.

$$A + B \rightarrow C + D$$

Which of the following is correct?

A The rate of the reaction is independent of the concentration of either A or of B.

B The overall reaction is first order.

C If the initial concentrations of A and B are both doubled, the rate of the reaction will be doubled.

D As the reaction proceeds, its rate will decrease.

- 15 The order of a reaction
 - A will depend on the stoichiometry of the overall reaction
 - B is the sequence of steps in the mechanism
 - C can only be obtained by experiment
 - D controls the speed of the overall reaction.
 - We Two mechanisms have been proposed for the hydrolysis of 2-bromo-2-methylpropane.

One of these has only one step

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br^-$$

The other has two steps

$$(CH_3)_3CBr \to (CH_3)_3C^+ + Br^-$$
 (Slow)

$$(CH_3)_3C^+ + OH^- \rightarrow (CH_3)_3COH$$
 (Fast)

The reaction is observed to follow first order kinetics. The rate expression is

- A Rate = $k[(CH_3)_3CBr]$
- B Rate = $k[(CH_3)_3CBr][OH^-]$
- C Rate = $k[(CH_3)_3C^+]$
- D Rate = $k[(CH_3)_3C^+][OH^-]$.
- 17 The following data refer to initial reaction rates obtained with initial concentrations of reactants expressed in arbitrary but consistent units for the reaction

$$X + Y + Z \rightarrow Products.$$

	[X]	[Y]	[Z]	Initial Rate
Experiment 1	1.0	1.0	1.0	0.3
Experiment 2	1.0	2.0	1.0	0.6
Experiment 3	2.0	2.0	1.0	1.2
Experiment 4	2.0	1.0	2.0	0.6

These data fit the rate equation

- A Rate = k[X][Y][Z]
- B Rate = $k[X][Y]^2$
- C Rate = k[X][Y]
- D Rate = k[X].
- In the reaction X + 2Y → Products, the reaction occurs in two stages:

$$X + Y \xrightarrow{\text{slow}} Z$$

$$Z + Y \xrightarrow{\text{fast}} Products$$

Which one of the following statements is correct?

- A The rate of the reaction = $k[X][Y]^2$.
- B The overall order of reaction is 3.
- The order with respect to Y is 2.
- The reaction is first order for both X and Y.

- 14 The rate of a chemical reaction may not be expressed in terms of the
 - A equilibrium constant for the observed reaction
 - B rate at which the product concentration increases
 - C rate constant for the observed reaction
 - D rate at which the reactant concentration decreases.
- 20. Two colourless substances P and Q react to give a coloured substance R. The times (t) taken for various initial concentrations of P and Q to produce a certain colour intensity are as follows.

Experiment	Initial concentration of $P mol\ l^{-1}$	Initial concentration of Q/mol l ⁻¹	t/s
1	0.05	0.05	46
2	0.05	0-10	23
3	0.10	0-05	46

The rate equation for this reaction is

- A Rate = k[P]
- B Rate = k[Q]
- C Rate = $k[Q]^2$
- D Rate = k[P][Q]
- The reaction between nitrogen monoxide (NO) and hydrogen to give nitrogen and water occurs by the following steps

$$2NO + H_2 \xrightarrow{\text{slow}} N_2 + H_2O_2$$

 $H_2O_2 + H_2 \xrightarrow{\text{fast}} 2H_2O$

The overall order of this reaction will be

- A 1
- B 2
- C 3
- D 4.

An investigation of the oxidation of bromide tons by bromate(V) ions in acid solution (all concentrations molar) according to

$$BrO_3^+ + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$$

involved the preparation and reaction of several mixtures of equal total volume.

Mixture	BrO ₃ -/cm ³	Br ⁻ /cm ³	H^+/cm^3	H_2O/cm^3	Relative Rate
(1)	10	50	60	80	1
(2)	10	100	60	30	2
(3)	10	50	120	20	4
(4)	20	50	60	70	4

If the rate = $k[BrO_3^-]^x[Br^-]^y[H^+]^z$, what values of x, y and z are consistent with experimental data?

	x	y	z
A	1	1	1
В	1	2	1
C	2	2	2 ·
D	2	1	2

23 A suggested mechanism for the reaction

$$2A + B \rightarrow A_2B$$

is a two-step process

$$A + B \rightarrow AB \text{ (slow)}$$

 $AB + A \rightarrow A_2B \text{ (fast)}$

This mechanism is consistent with the rate expression

A rate =
$$k[A]^2[B]$$

B rate =
$$k[A][B]$$

C rate =
$$k[A][AB]$$

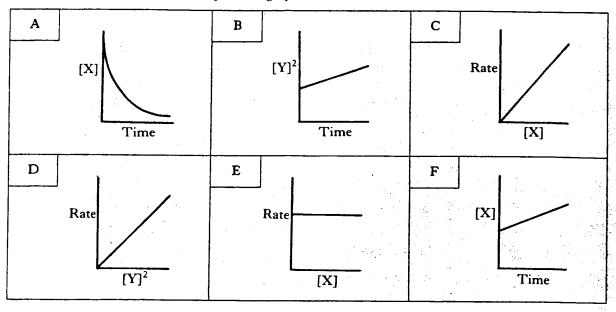
D rate =
$$k[AB]$$

24 For the reaction

$$(CH_3)_3CI(g) \rightarrow (CH_3)_2C = CH_2(g) + HI(g)$$

the rate =
$$k[(CH_3)_3CI]$$

If all concentrations are in mol 1⁻¹, the units of k will be


$$A s^{-1}$$

$$C = 1 \text{ mol}^{-1} \text{ s}^{-1}$$

$$D l^2 mol^{-2} s^{-1}$$

Various experiments are carried out to study the kinetics of the reaction $X + 2Y \rightarrow Products$.

The boxes in the grid below contain possible graphs of the results.

Identify

(a) the graph(s) which would be obtained if the overall rate expression was

Rate =
$$k[Y]^2$$
.

(b) the graph(s) which would be obtained if the mechanism for the reaction was

$$X + Y \rightarrow XY$$
 (slow)

$$XY + Y \rightarrow Products$$
 (fast).

the graph(s) which would be obtained from a zero order reaction.

Advanced Hogher Unit 2f - Kinetics

1	A	13 🧷
2	c	ily D
3	B	15 C
		16 A
-	C	17 C
	B	18 D
	В	iq A
	C	zo B
	A	31 C
·	A	25)
	D	23 B
	В	
12	\mathcal{O}	24 A