
100% complete

Completed

< back to module

Modules > Module 23 – Python Programming 3 > Section 23.4 – TCP Sockets

Sockets in Python

A socket allows us to make and receive network connections, which is a very useful thing for cyber security

practitioners to be able to do. In particular, it's great to be able to quickly create a little socket that sends

information or listens for speci!c information we can send to it.

TCP Client

Let's create a simple TCP connection using Python and the socket library.

import socket

client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client_socket.connect(('127.0.0.1', 1337))

client_socket.send("Do you want to play a game?\n")

received = client_socket.recv(1024)

print(received)

client_socket.close()

First, we import the socket library, which is part of Python's standard library.

Next, we create a socket object, which we've called client_socket here. When we construct the socket, we

pass 2 arguments: socket.AF_INET and socket.SOCK_STREAM .

The argument socket.AF_INET means this socket is going to use IPv4 and not IPv6 or, say, Bluetooth. For

IPv6 we would use socket.AF_INET6 . If you're interested in the other types, you can have a look through

the socket library documentation to learn more. For our uses, we typically just need an IPv4 socket, so we'll

stick with that one.

The second argument we use is socket.SOCK_STREAM , which is how we tell the socket to use the TCP

protocol and not the UDP protocol. If you wanted to make a UDP connection, you could use

socket.SOCK_DGRAM instead.

After we've created the kind of socket object we want to use, we initiate a connection with our socket using

the connect() method. Here we provide a tuple - remember tuples are similar to lists, but are immutable

(notice the double round brackets) - which contains the IP address and a port number to create our

connection.

Next, now that we have a connection, we use the send() method to send some data over the connection. In

this case, we send the string "Do you want to play a game?" as well as the newline character \n . We do this

because the send() method doesn't automatically add this newline character.

In order to receive information back from the connection, we use the recv() method, storing the return

value of this in the variable received . Notice we use the argument 1024 in our recv() method? This is

the maximum number of bytes we'll allow at once.

After receiving any incoming response data and storing it in the received variable, we then print this

content out so we can see what it is.

Finished with our socket, we close the connection using the close() method on our socket object. This

initiates the the TCP teardown process discussed in the Networking 2 module. If we don't close it like we have

done here, the socket will eventually close on its own due to a timeout, but this can take a long time. It's more

ef!cient to remember to close the socket.

Let's look at one in action.

Here, we've opened two terminal windows. In one, we've used a Linux tool called 'netcat' to create a server

listening on TCP port 1337: nc -l 1337 . In the other window, we've run our python script above.

When the Python script runs, it makes the connection and sends "Do you want to play a game?", which we

pick up with the netcat server we created in the top terminal. After seeing the message we were sent, in the

netcat window we type "Yeah!", and this was sent back to the Python script, which was received and

subsequently printed before the socket was closed.

TCP Server

Now that we know how to initiate a connection with TCP, let's look at receiving connections, which is

essentially what a server does.

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind(("0.0.0.0", 1337))

server_socket.listen(10)

while True:

 conn, addr = server_socket.accept()

 conn.send("Do you want to play a game?\n")

 received = conn.recv(1024)

 print(received)

server_socket.close()

Once again we need the socket library, and we also need to create a socket object: here we've called our

object server_socket . This time, we use the bind() method instead of the connect() method, which

allows our program to take ownership of the IP address and port number in the tuple we pass in as an

argument, if it's not being used by any other program. Here, we use 0.0.0.0 as the IP address to listen on,

which here is asking the program to listen on every IP address assigned to the computer it's running on.

Next, we use the listen() method, which does exactly what you expect: it allows the server to listen on the

port it has bound to.

The next part is interesting: here we've used an in!nite loop, on purpose. Here, it means that, once we have

sent and received information, it will start over. The server will be available for the next connection and will

never quit, unless we manually quit the server using the ctrl + c keys on our keyboard.

Within our in!nite loop, we use the accept() method to establish a connection with a client. When we

accept a new connection successfully, send the string "Do you want to play a game?\n" and then wait for a

reply. Once again we see the recv() method being used to receive a response and store that response in

the variable received which we then print to the screen.

After we've received that data and printed it out, the loop !nishes and re-starts, allowing us to wait for the

next connection request to come in.

Let's take a look at how this works in practice.

Here again we have two terminal windows. This time, the bottom window is our TCP server, which we ran

!rst. Then we used 'netcat' once again - this time to make a connection to our server instead of listening for a

connection, notice our command is slightly different here: nc 127.0.0.1 1337 .

Once the connection is made, the server immediately sends the query, "Do you want to play a game?" and

waits for our response. We type 'Nope!' and this is sent back to the server, which prints it out.

Exercise

In the Essentials VM, !re up the terminal and a code editor, and try your hand at creating a TCP client and a

TCP server. You won't be able to do this within the Essentials editor itself, but you can do this within the VM

environment we provided.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

TCP Sockets
Section 23.4

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/53/section/4
https://essentials.joincyberdiscovery.com/course/module/53
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/53/section/4
https://essentials.joincyberdiscovery.com/course/module/53

