
100% complete

Completed

< back to module

Modules > Module 23 – Python Programming 3 > Section 23.6 – Threads

Normally when you run a program a single process is created, which is the code running in memory. The

problem is, by default, the program can then only do one thing at a time.

Let's revisit our TCP socket server example from a previous section.

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind(("0.0.0.0", 1337))

server_socket.listen(10)

while True:

 conn, addr = server_socket.accept()

 conn.send("Do you want to play a game?\n")

 received = conn.recv(1024)

 print(received)

server_socket.close()

Before anyone connects to the server, the code will be waiting to accept a connection on line 8,

conn, addr = server_socket.accept() . Once anyone connects to it, the code will be waiting on line 10 at

received = conn.recv(1024) to accept input from the computer that connected to it. The recv()

method is blocking, which means that the program halts at this point and won't proceed until it receives data

and is able to execute this step.

If connection A has been made, but no response has been received, and meanwhile connection B tries to

initiate a connect... connection B won't be able to proceed, because our code is executing on 10 with

connection A. Our while loop can't restart because it hasn't completed.

Check it out in the example below.

In the !rst terminal, we run our TCP server.

In the second terminal, we connect to the TCP server on port 1337, and we get the message "Do you want to

play a game?" as usual, but we don't type anything. So the server is now executing line 10, waiting for the !rst

user to type something.

In the third terminal, we try to connect again to the TCP server on port 1337, but we can't because the TCP

server is still stuck on line 10, waiting for a response from the second terminal window user before the loop

can complete and restart, allowing it to receive another connection.

Making programs multi-threaded

This is the kind of problem that threads can solve. If we use threads in our program, we are making our

program multi-threaded. By using threads, we can tell our program to create a separate process for a chunk

of code that the processor will execute independently from the main body of code.

Let's !x our TCP server to make it multi-threaded.

import socket

import thread

Thread handler

def handler(client_sock, address):

 client_sock.send("Do you want to play a game?\n")

 data = client_sock.recv(1024)

 print(repr(address) + " said: " + data)

 client_sock.close()

 print(repr(address) + " connection ended.")

Set up our server

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind(("0.0.0.0", 1337))

server_socket.listen(10)

Run the server with threads

while True:

 print("Server listening for connections...")

 client_sock, address = server_socket.accept()

 print("Connection from: " + repr(address))

 thread.start_new_thread(handler, (client_sock, address))

Let's go through this line by line.

In addition to importing our socket module, we also need to import the thread module, which is also part

of the Python standard library.

Next, we create the function handler() which accepts a socket object and an address as parameters. We

create this as a separate function because it needs to be able to execute separate from the main program in

order to be threaded.

Inside this function de!nition we have the code that sends our message "Do you want to play a game?" and

waits to receive a response. Notice this time we are also using the address variable to print out who we're

communicating with. We use the repr() function with the address variable, because the information

stored in address at this time will be a tuple. In order to print out the content of a tuple, we !rst have to

transform it into a string, which we can do with repr() .

Now to the main body of the program.

We create a socket object as before and hold it in our server_socket variable, bind it to 0.0.0.0 on port 1337,

then listen for connections. This is exactly the same as when we previously created a TCP server.

Next is our in!nite loop where we can accept a new connection. Here, as soon as a connection comes in, we

create a new thread using thread.start_new_thread() . This function accepts 2 parameters: our

handler() function name, and also a tuple, which contains the 2 variables we need to pass to our handler,

client_sock and address , which we received from accepting the connection.

That thread can now work independently from the rest of the program. With that thread created and the

connection "handed off" to our handler() function in its own thread, our while loop can now !nish, and

immediately re-start, awaiting the next connection.

Let's see it in action!

After running our example code in the top terminal window, the server was listening for new connections. In

the second window, we connected and received the message "Do you want to play a game?" and the server

was waiting for a response. Without providing a response, we connected in the bottom terminal window and

also received the message "Do you want to play a game?", which is already better than what we had before.

We then went to the second terminal window and sent back 'yes' to complete the connection, and in the

bottom terminal window, we typed 'no' to complete the connection.

Finally, we re-connected from both terminal windows at the same time and received the "Do you want to play

a game?" message on both without typing anything in response.

Our TCP server is now multi-threaded and can allow multiple people to connect to it at the same time.

This is just scratching the surface of threads. There are many more applications and many more restrictions

on threads, but it is an immense topic that even many university students struggle with. Unless you are

writing specialised or very advanced software, it is unlikely that you'll need to go deeper into threading than

this.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Threads
Section 23.6

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/53/section/6
https://essentials.joincyberdiscovery.com/course/module/53
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/53/section/6
https://essentials.joincyberdiscovery.com/course/module/53

