
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: tug4IGRRCh

Completed

< back to module

Modules > Module 23 – Python Programming 3 > Section 23.3 – Reading and Writing Files

Skip straight to editor/terminal

An extremely useful feature of Python in particular is how easily it lets us work with other types of !les, in

particular !les that contain text in various formats. Python is often the programming language of choice for

scientists and researchers, in part because of how easy it is to work with other !les.

Reading from a !le

Here's a code sample where we print out text stored in a separate !le, called !le.txt. This !le isn't a Python !le

(note the extension .txt instead of .py) but Python still lets us open up the !le and manipulate the contents.

with open('file.txt') as file:

 content = file.read()

 print(content)

This 3 lines of code shows how easy it is to read the content of a !le. We create a with block:

with open('file.txt') as file: which asks Python to open the !le in the same directory as our program,

which is called "!le.txt", and create an object for that !le which we have called - imaginatively - "!le". We didn't

have to call it that, we could have called it "unicorn" if we wanted, but since we like to use sensible names

when programming "!le" seemed appropriate.

Notice the indention for the next 2 lines? Because we have opened the !le with a with statement, anything

we want to do with the !le has to be part of the indented block. As soon as we go outside our indention, we

lose the !le: it will get closed automatically once the indented block is !nished executing.

Next, we use the read() method on the object file we created, which will go into the !le and get all the

content, which we assign to a variable called content .

Then, we print the value of content to the screen, which will be a copy of the content of the text !le.

Here's what the output looks like.

$ python program.py

Hello, I'm some text inside a file.

Files as user input

In a previous module, we talked about 2 different ways to get user input in Python: using the raw_input()

function, and by passing command line arguments and using sys.argv .

As you can see, !les are another way of incorporating user input into our program. As a result, we need to

treat reading !les with the same suspicion as we treat all forms of user input. As soon as we let it enter our

program, we must be very careful to keep it well-controlled and assume the person who created the !le

might be an attacker. Always be cautious when allowing user input of any kind into your program - and that

includes reading !les.

Writing !les

Python also let's us create new !les and write data into them. If we wanted to create a !le called "!le.txt" that

has the text "Hello, I'm some text inside a !le", how would we do it? It's very simple, and follows the same

pattern we used to read a !le, except we use the write() method instead of the read() method, and

need to pass one more argument to our open() function.

with open('newFile.txt', 'w') as file:

 file.write("Hello, I'm some text inside a file.")

Here, we've passed two arguments to open() function. The !rst, as before when we read the !le, is a

!lename. Except this time, it's the name of the new !le we want to write to. We also pass a w as a second

argument. This tells Python we want to "write" to the !le. More importantly, it tells Python we would like to

overwrite the content of the !le if it already exists. So if that "newFile.text" !le already exists and it has

important information in it... oops! It will be gone if we run this program, and overwritten with the text string

we speci!ed.

So what if we don't want to overwrite the !le contents, but rather just add our text to the bottom? We can

indicate that using a as our second argument instead of w , which stands for "append".

with open('file.txt') as file:

 content = file.read()

 print(content)

print('\n---\n')

with open('file.txt', 'a') as file:

 file.write("\nHello, I'm some text inside a file.")

with open('file.txt') as file:

 content = file.read()

 print(content)

Here, we've read the content of a !le and printed it out, then printed out a divider so we can see the content

of the !le before and after we append to it.

Next, we append some content to the !le, using a instead of w so we don't overwrite the content that's

already in the !le.

Finally, we read the !le after we've added our text to it, and print this content to the screen.

$ python program.py

Don't overwrite me, I'm important!

Don't overwrite me, I'm important!

Hello, I'm some text inside a file.

There are a few other options when we're reading and writing !les besides a and w . Here's the full list:

'r': Open the !le for reading only.

'r+': Open the !le for reading and writing. Any text written will overwrite the contents of the !le, starting
from the beginning of the !le.

'w': Create the !le if it doesn't exist. If it exists overwrite it and open for writing.

'w+': Create the !le if it doesn't exist. If it exists overwrite it and open for reading and writing.

'a': Open the !le for writing only (create it if it doesn't already exist). Anything written will be appended to
the end of the !le.

'a+': Open the !le for reading and writing (create it if it doesn't already exist). Anything written will be
appended to the end of the !le.

Time Remaining: 59 mins Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Reading and Writing Files
Section 23.3

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Create a program that accepts user

input and allows you to add places to a

text !le that you'd like to travel to. The

program should:

Create the !le and call it "travel-
bucket-list.txt" if it doesn't already
exist.

Ask you "Where would you like to
travel?" as a user prompt.

Add the answer you give it to the list
you've saved in your text !le.

Say "Great, I've added to your list!
Anywhere else?" and offer you an
input to add more.

Allow you to quit the program if you
type the word "quit" and say "Ok,
goodbye!" when it quits.

Save

 _____ __ ______ __
 / ___/_ __/ / ___ ____/ __/ /____ _____/ /_
/ /__/ // / _ \/ -_) __/\ \/ __/ _ `/ __/ __/
___/_, /_.__/__/_/ /___/__/_,_/_/ __/
 _/___/ __ _ __
 / __/__ ___ ___ ___ / /_(_)__ _/ /__
 / _/(_-<(_-</ -_) _ \/ __/ / _ `/ (_-<
/___/___/___/__/_//_/__/_/_,_/_/___/
tug4IGRRCh@597bec071599:~$

 1

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/53/section/3
https://essentials.joincyberdiscovery.com/course/module/53/section/3
https://essentials.joincyberdiscovery.com/course/module/53
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/53/section/3
https://essentials.joincyberdiscovery.com/course/module/53

