
100% complete

Completed

< back to module

Modules > Module 23 – Python Programming 3 > Section 23.5 – UDP Sockets

UDP Client

Creating a UDP socket is similar to the TCP socket we created in the previous section.

import socket

client_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

client_socket.sendto("UDP is connectionless...\n", ("127.0.0.1", 1337))

Once again, we need the socket library, and the socket object needs to be created, here called

client_socket . This time, we are using socket.SOCK_DGRAM as our second argument, which we

mentioned previously is for UDP.

Notice there is no connect() method: this is because UDP doesn't have connections. Remember from our

networking modules on UDP: with this protocol, we just send data and hope it gets to the other side. This is

also why we use a different method for sending, sendto() , which forces us to send the tuple containing the

IP address and port number along with every message. Because there is no connection, we have to specify

the destination every time.

Here's how it looks in practice.

In the terminal window above, we've used netcat to set up a server as before, but with the addition of -u

parameter in the command: nc -u -l 1337 because we want a UDP server. In the bottom terminal

window, we've run our example script, and we see the server gets the data we sent.

UDP Server

Setting up a UDP server is comparatively easier than setting up a TCP server.

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

server_socket.bind(("0.0.0.0", 1337))

while True:

 data, addr = serversocket.recvfrom(1024)

 print(data)

We create the UDB socket object, here called server_socket . Next, we bind to the UDP port 1337, listening

on any IP address assigned to this computer - it looks very similar to how we created the TCP server.

Again, we have an in!nite loop so we can keep sending stuff to the server and it will keep printing it. Then we

receive using the recvfrom() method, which takes a maximum number of bytes allowed to be sent: in this

case, 1024 bytes.

Notice we have passed two arguments to recvfrom() here? That's because it returns two values: data

which is the contents of the UDP packet, and and addr which is the address the packet came from. So if

you want to !re some packets back, you know where they should go.

Our bottom terminal window is our UDP server example above. The top window is using netcat to send UDP

packets: nc -u 127.0.0.1 1337 . We typed into netcat "Sending mah UDP packets!" and it was received by

the server, which printed it.

Exercise

In the Essentials VM, !re up the terminal and a code editor, and try your hand at creating a UDP client and a

UDP server. You won't be able to do this within the Essentials editor itself that you've seen throughout this

course, but you can do this within the VM environment we provided.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

UDP Sockets
Section 23.5

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/53/section/5
https://essentials.joincyberdiscovery.com/course/module/53
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/53/section/5
https://essentials.joincyberdiscovery.com/course/module/53

