
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: QKcyPPGwOk

Completed

< back to module

Modules > Module 22 – Python Programming 2 > Section 22.9 – Classes and Objects

Skip straight to editor/terminal

There is a style of programming called object-oriented that uses a construct called a class to create a model

of a real-world thing, and then uses that as a kind of template to create objects from. When we create a class,

we de!ne the general way an object is constructed and how it behaves.

For example, if we think of a real world object like a car, there are some things all cars have in common. They

all have 4 wheels, doors, an engine, and a steering wheel. There are also some ways in which all cars behave

similarly: they can all move forwards and backwards, they can turn left and right, and they have horns that

make a noise in an emergency. If we were programming a game that needed to have lots of different cars in

it, an ef!cient way for us to do this would be to create a class to model all the necessary attributes of any

given car, and any actions all cars should be able to take.

In this section we aren't going to talk too much about the style of object-oriented programming speci!cally,

but for now let's make sure we know how to create a class, and how to create objects from them.

Creating an Agent class

Let's create a very simple class that models our agents. In previous sections and modules we've learned a lot

about our team of agents, so let's use some of that information to create our !rst class.

class Agent():

 name = ''

 hot_drink = ''

 def speak(self, speech):

 print(self.name + ' says: "' + speech + '"')

 def drink(self):

 print(self.name + ' drinks a cup of ' + self.hot_drink + '.')

Let's go through our class line by line.

We !rst start by declaring our class and giving it a name: class Agent(): . Everything that belongs to our

class will be indented.

Next, we create 2 variables which our class will need to work properly, but we don't assign them any values:

right now, both name and hot_drink are both set to be empty strings.

After that we create 2 functions, speak() and drink() . In a class, functions are called methods. The only

difference between a function and a method is that a method is part of a class, which means we need to call

it in a slightly different way, which we'll see in the next example.

As it stands now, our Agent() class captures a model of a person who:

Has a name

Has a hot drink preference

Can speak

Can drink their hot beverage

Now that we've created our class, how do we use it?

class Agent():

 name = ''

 hot_drink = ''

 def speak(self, speech):

 print(self.name + ' says: "' + speech + '"')

 def drink(self):

 print(self.name + ' drinks a cup of ' + self.hot_drink + '.')

agent_q = Agent()

agent_q.name = 'Agent Q'

agent_q.speak("Hi, I'm Agent Q!")

After we've de!ned our class, once we want to start making use of it, the !rst thing we do is instantiate our

class with agent_q = Agent() . Here, we create an object using our class as a model, and call that object

agent_q . This object is a little self-contained "thing" that has all the attributes and methods associated to it

that we de!ned in our class. As programmers, we would refer to this object as an instance of a class.

In the next line, we take our new object agent_q and set a value for the variable name that we left as an

empty string when we created the class: agent_q.name = 'Agent Q' . Notice our notation here: we use dot

notation to set the value of a class variable. Variables that are accessed on objects like this are called

attributes.

Finally, we use one of the methods we created in our class - again, we use dot notation to access it because

we are interacting with our object: agent_q.speak("Hi, I'm Agent Q!") .

Here is the output that's generated when we execute this code:

Agent Q says: "Hi, I'm Agent Q!"

Understanding self

Notice how we refer to the attributes we created in our class? When we want to use the name attribute

within one of our methods, we use self.name . Why do we do this? The self argument in the class refers

to itself - the object the class creates. By calling self.name and self.hot_drink within our methods,

we're telling the methods to look outside the method itself, but stay within the class when trying to !nd the

variables name and hot_drink . It's a way of determining scope: it tells Python to stay within the scope of

this class.

This is also why self is the !rst parameter of every method we de!ne inside our class: within a class, every

method needs to understand the entire class it's part of. In Python, we must declare self as the !rst

parameter of the methods in our class, otherwise the methods are unaware of the other methods and

attributes that are also available within the class. So def speak(self, speech) has 2 parameters: self ,

by default because all class methods have self , and a second one, speech , which we use within just this

method. Notice that when we refer to the speech parameter within the speak() method that we don't

use self ? That's because the scope of this variable is inside the method. By not using self here, Python

knows when running this code that it should only look for a variable or parameter called speech within this

method.

Any time you need to reference something inside the class but outside the method, you'll need self .

When we call our method speak() later on our agent_q object, notice that we skip right over the !rst

self argument and only add the second, in this case the text we want to pass as our speech argument?

Python is a bit picky: it wants us always add self as a !rst parameter when we declare the method, but

doesn't want us to add it as an argument: it does this for us automatically every time we call the method.

Creating multiple instances

The real power of classes and objects is the ability to create more than one at a time. Each one is like a copy of

the original empty class, and entirely independent of any other objects that we might have previously created

using this class as our model.

class Agent():

 name = ''

 hot_drink = ''

 def speak(self, speech):

 print(self.name + ' says: "' + speech + '"')

 def drink(self):

 print(self.name + ' drinks a cup of ' + self.hot_drink + '.')

agent_q = Agent()

agent_q.name = 'Agent Q'

agent_q.hot_drink = 'decaf coffee'

agent_m = Agent()

agent_m.name = 'Agent M'

agent_m.hot_drink = 'Earl Grey tea'

agent_q.speak("Hi, I'm Agent Q!")

agent_m.speak("Hi, nice to meet you. I'm Agent M.")

agent_q.drink()

agent_m.drink()

In this example, we've created 2 different objects using our class, 1 called agent_q and 1 called agent_m .

We've given each one an appropriate name attribute.

Then we get them to speak to each other using the speak() method. Notice that each object still knows its

own unique name attribute when the speak() method is run. Setting agent_m.name = 'Agent M'

doesn't affect how we've set agent_q.name . They're modifying different objects.

Agent Q says: "Hi, I'm Agent Q!"

Agent M says: "Hi, nice to meet you. I'm Agent M."

Agent Q drinks a cup of decaf coffee.

Agent M drinks a cup of Earl Grey tea.

Object constructors

Each time we created a new instance of our class Agent() above, we had to !rst assign its attributes. This is

a little bit tedious, so let's update our class and add an object constructor. This will let us both instantiate our

class and assign our key attributes all on 1 line.

class Agent():

 name = ''

 hot_drink = ''

 def __init__(self, name, hot_drink):

 self.name = name

 self.hot_drink = hot_drink

 def speak(self, speech):

 print(self.name + ' says: "' + speech + '"')

 def drink(self):

 print(self.name + ' drinks a cup of ' + self.hot_drink + '.')

agent_q = Agent('Agent Q', 'decaf coffee')

agent_m = Agent('Agent M', 'Earl Grey tea')

agent_q.speak("Hi, I'm Agent Q!")

agent_m.speak("Hi, nice to meet you. I'm Agent M.")

agent_q.drink()

agent_m.drink()

We've added a new method to our class, the constructor method. This method has a special name, and if we

use it, it should be the very !rst method we de!ne in our class. As its name "constructor" implies, it helps us

"construct" the class more quickly.

The constructor method uses a strange looking name: __init__() . That's 2 underscores, followed by 'init',

followed by 2 more underscores. This is to make sure this special method never con"icts with any other

method you might have in your class.

We give our __init__() method 3 parameters here. The !rst is self ... because self is always the !rst

parameter of a method, and this one follows that rule. Then we also give it name and hot_drink .

Inside this method, we use these parameters to set the attributes of the object: self.name = name and

self.hot_drink = hot_drink . Here's how we see some of our scope at work: self.name refers to the

variable outside our constructor method but inside the class, while name in this method refers to the

parameter. This is why self is important: it differentiates from the name inside the method and the

name inside the class.

Now, when we create an object, we also pass the values we want as attributes into the object as parameters.

The !rst thing that happens when we instantiate a class is that it is constructed, and so Python will run the

__init__() method automatically every time we create a new object, using the arguments we specify at

this time.

The output of this new revised code is exactly the same as the output of our previous version, but we've saved

some lines and created much nicer looking code.

Modifying object attribute values

Let's add a few more attributes and methods to our class.

class Agent():

 name = ''

 hot_drink = ''

 cases_total = 0

 cases_solved = 0

 def __init__(self, name, hot_drink, cases_total, cases_solved):

 self.name = name

 self.hot_drink = hot_drink

 self.cases_total = cases_total

 self.cases_solved = cases_solved

 def speak(self, speech):

 print(self.name + ' says: "' + speech + '"')

 def drink(self):

 print(self.name + ' drinks a cup of ' + self.hot_drink + '.')

 def get_total_cases(self):

 print(self.name + ' has a total of ' + str(self.cases_total) + ' cases.')

 def add_new_case(self, number):

 self.cases_total += number

 if (number > 1):

 print(self.name + ' has been given ' + str(number) + ' new cases.')

 else:

 print(self.name + ' has been given ' + str(number) + ' new case.')

 def get_solved_cases(self):

 print(self.name + ' has solved ' + str(self.cases_solved) + ' cases.')

 def solve_case(self, number):

 self.cases_solved += number

 if (number > 1):

 print(self.name + ' has solved ' + str(number) + ' cases, wow!')

 else:

 print(self.name + ' has solved a case, great job!')

agent_q = Agent('Agent Q', 'decaf coffee', 20, 12)

agent_q.speak("Hi, I'm Agent Q!")

agent_q.get_total_cases()

agent_q.add_new_case(2)

agent_q.get_total_cases()

agent_q.get_solved_cases()

agent_q.solve_case(1)

agent_q.get_solved_cases()

In this example, we've added 2 new attributes: cases_total and cases_solved . We've also updated our

constructor to automatically set those attribute values when we construct the object.

We've also added a few new methods to work with these new attributes. We can now request some stats

about Agent Q's total and solved cases using get_total_cases() and get_solved_cases() .

We've also created 2 more methods that let us update attributes of our object. Now when Agent Q gets

assigned a new case, or solves a case, we can simply call add_new_case() or solve_case() on our

agent_q object, and these attributes will get updated.

Time Remaining: 59 mins Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Classes and Objects
Section 22.9

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Create a game that uses 2 classes:

Hero() and Monster() .

The hero:

Has a weapon that does an amount
of damage

Has an amount of health

Can attack with their weapon and
cause damage

Can lose health if attacked

Will die if they have 0 health

Has 1 healing potion that they can
drink to get back 5 health, but the
potion can only be used once.

The monster:

Has an attack strength and can do an
amount of damage

Has an amount of health

Can roar

Can attack and cause damage

Can lose health if attacked

Will automatically run away if it gets
down to 1 health remaining

Step 2

Once you have your classes and objects

working, create constructors for each

one so you can build them anytime you

want with damage strength and starting

health points that you choose.

Step 3

Allow your program to accept user input

so you can specify the stats of your

hero, then have the program randomly

assign values to the monster and have

them !ght, trading attacks back and

forth, until the hero dies or the monster

runs away.

Save

 _____ __ ______ __
 / ___/_ __/ / ___ ____/ __/ /____ _____/ /_
/ /__/ // / _ \/ -_) __/\ \/ __/ _ `/ __/ __/
___/_, /_.__/__/_/ /___/__/_,_/_/ __/
 _/___/ __ _ __
 / __/__ ___ ___ ___ / /_(_)__ _/ /__
 / _/(_-<(_-</ -_) _ \/ __/ / _ `/ (_-<
/___/___/___/__/_//_/__/_/_,_/_/___/
QKcyPPGwOk@8cf9f6fa3c97:~$

classclass Hero():
 defdef __init__(self, weapon_damage, health, used_potion):
 self.weapon_damage = weapon_damage
 self.health = health
 self.used_potion = used_potion

 defdef attack(self, monster_health):
 monster_health -= self.weapon_damage
 print(("Hero attacked monster for {0} health, Monster Current Health: {1}").format(self.weapon_damage, monster_health
 returnreturn monster_health

 defdef use_potion(self):
 self.health += 5
 print(("Hero restored 5 health, Hero Current Health: {0}").format(self.health))
 self.used_potion = TrueTrue

classclass Monster():
 defdef __init__(self, attack_damage, health):
 self.attack_damage = attack_damage
 self.health = health

 defdef attack(self, hero_health):
 hero_health -= self.attack_damage
 print(("Hero attacked monster for {0} health, Monster Current Health: {1}").format(self.weapon_damage, monster_health
 returnreturn hero_health

 defdef roar(self):
 print("ROAR!")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/52/section/9
https://essentials.joincyberdiscovery.com/course/module/52/section/9
https://essentials.joincyberdiscovery.com/course/module/52
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/52/section/9
https://essentials.joincyberdiscovery.com/course/module/52

