
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: NDwVJQDP4A

Completed

< back to module

Modules > Module 22 – Python Programming 2 > Section 22.4 – For Loops

Skip straight to editor/terminal

In the previous module, we learned about lists and dictionaries, including how to add, remove, and generally

modify the information in them. But so far we've done it very slowly, one item at a time. If we had a very long

list we'd end up having to write a lot of repetitive code if we needed to update everything at once.

Loops are another tool that let us manage lists and dictionaries more ef!ciently, with just a few lines of code.

We can run the same operation on multiple items in a list.

Looping through a list

Let's have another look at Agent M's favourite Linux distributions again.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(fav_linux_distros[0])

print(fav_linux_distros[1])

print(fav_linux_distros[2])

In order to print out each item in the list before, we had to put in a new print(fav_linux_distros[0]) .

We'd need 6 in all to print out the entire list, and if Agent M added or removed one later we'd have to manually

modify our code. This is a perfect use case for a for loop.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

for distro in fav_linux_distros:

 print(distro)

And our output:

Mint

Debian

Ubuntu

Manjaro

Fedora

Arch

Let's break our for loop down to make sure we understand how it's working.

First, we create our list of Linux distributions as normal in line 1. In line 3, we de!ne our for loop:

for distro in fav_linux_distros: . This line is asking for an item to be pulled from the list

fav_linux_distros and assigned to the variable distro for use within our for loop. On line 4, we're now

inside the loop - notice the indention! - and we have asked for the item stored in the variable distro we

created to be printed to the screen. The computer will go through the list, one by one, and follow the

instructions we've given it for each item.

It might help to think of it like this, in plain English: for every distribution in the list of Linux distributions, print

the distribution's name.

As you can see, loops allow us to work with lists in a powerful and very ef!cient way. They don't care how

many items are in a list, or if you've added some or removed some. They take the list as it is, and do

something over and over for each item until it runs out of items. Handy!

A for loop can contain as many lines of code as you like. As with our if statements, the level of indention is

how Python understands what code belongs inside the for loop and what code belongs outside the for loop.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print('Here is Agent M\'s list of favourite Linux distributions.\n')

for distro in fav_linux_distros:

 print(distro)

 print('\t' + distro + ' is an excellent Linux distribution.')

 print('\tWouldn\'t you agree that ' + distro + ' is an excellent distro?')

print('\nThose are Agent M\'s top ' + str(len(fav_linux_distros)) + ' Linux

distributions.')

Here we have a multi-line for loop example, where some our print statements are inside the loop - so they

get repeated for each item in the list - while other print statements are outside the list, so they only print

once.

Here's the output this code generates:

Here is Agent M's list of favourite Linux distributions.

Mint

 Mint is an excellent Linux distribution.

 Wouldn't you agree that Mint is an excellent distro?

Debian

 Debian is an excellent Linux distribution.

 Wouldn't you agree that Debian is an excellent distro?

Ubuntu

 Ubuntu is an excellent Linux distribution.

 Wouldn't you agree that Ubuntu is an excellent distro?

Manjaro

 Manjaro is an excellent Linux distribution.

 Wouldn't you agree that Manjaro is an excellent distro?

Fedora

 Fedora is an excellent Linux distribution.

 Wouldn't you agree that Fedora is an excellent distro?

Arch

 Arch is an excellent Linux distribution.

 Wouldn't you agree that Arch is an excellent distro?

Those are Agent M's top 6 Linux distributions.

The range() function in for loops

For loops can be useful to us even if we don't have a pre-existing list to loop through. The range() function

allows us to create a temporary 'list' of numbers within a speci!ed range, which we can then loop through

similar to a normal for loop.

Let's take a look at a simple use of the range() function in a for loop by creating a simple counting program.

for counter in range(1,5):

 print(counter)

This code will create the following printed output.

1

2

3

4

Hmm... that seems strange. Our range() function looks like it should count from 1 to 5, but it stops at 4. Why

is this?

The range() function starts counting at the !rst value you specify, in this case the 1. It will run the !rst loop,

then when it hits the end it will increment that value by 1. If that newly incremented value is the second one

speci!ed in the range() function - in this case 5 - then it will stop without running the code within the loop.

So if we want our program to count to 5, we instead need to specify a range of 1 to 6, so that our loop will run

through the 5th iteration and stop when it hits 6.

for counter in range(1,6):

 print(counter)

The range() function is useful for doing more than just counting numbers. Agent S likes to be able to

visualize progress of the forensic team's solved case statistics. Let's build a little progress bar to help Agent S

see how the team is doing.

total_cases = 10

total_solved = 7

total_unsolved = total_cases - total_solved

for x in range(1,total_unsolved+1):

 print('| |')

for x in range(1,total_solved+1):

 print('|X|')

This code will generate us a nice little thermometer-style progress bar so Agent S can see the team's progress

at a glance. Notice we've had to add 1 to our total_unsolved and total_solved variable values in our

range() function, like in our previous example where we wanted to count to 5 but had to use

range(1,6) .

| |

| |

| |

|X|

|X|

|X|

|X|

|X|

|X|

|X|

Any time we want to get an updated status thermometer, all we have to change is the values of the

total_cases and total_solved variables. Nice!

Looping through a dictionary

We can also loop through a dictionary. Because a dictionary stores information in a variety of ways, we have

several different techniques to loop through the content of a dictionary and its key-value pairs.

Let's start with the simplest loop: all we want to do is loop through every key-value pair in the dictionary and

print out what we !nd, creating a nice list of everything we have stored in our dictionary.

user_profile = {

 'name': 'Agent M',

 'fav_distro': 'Mint',

 'fav_drink': 'Tea'

 }

for key, value in user_profile.items():

 print('Key: ' + key)

 print('Value: ' + value + '\n')

Our for loop has a few different components here than it did when we were looping through a list. In our

for key, value in user_profile.items(): opening statement, we create 2 variables, key and value ,

which the loop will assign the key and value to for each item it !nds in our dictionary. We've named them

key and value here in this example for clarity, but you can name them anything you want: 'label' and

'contents', 'x' and 'y', 'beeble' and 'brox', etc. We then give the loop the name of the dictionary we'd like it to loop

through, in this case user_profile . Finally, we include the method items() with our dictionary, which

tells the loop to return a list of key-value pairs.

The above code gets us the following output:

Key: fav_drink

Value: Tea

Key: name

Value: Agent M

Key: fav_distro

Value: Mint

Note our output isn't in the same order that we originally stored them in the dictionary. That's because

dictionaries are by default orderless as far as Python is concerned: it doesn't care what order the stored items

are in, because it !nds information using the key.

Let's look at another quick example.

fav_distros = {

 'q': 'Mint',

 'j': 'Kali',

 'm': 'Ubuntu',

 's': 'Elementary'

 }

for agent, distro in fav_distros.items():

 print('Agent ' + agent.upper() + ': ' + distro)

And our output:

Agent Q: Mint

Agent S: Elementary

Agent J: Kali

Agent M: Ubuntu

We can modify our dictionary loop to tailor it to our particular needs. For example, maybe we just want to

know which distributions have been called out as favourites in our dictionary, and we don't particularly care

who each favourite belongs to.

fav_distros = {

 'q': 'Mint',

 'j': 'Kali',

 'm': 'Ubuntu',

 's': 'Elementary'

 }

for distro in fav_distros.values():

 print(distro)

Here we use the values() method in our for loop, so we only need to create 1 variable distro because

we are only asking the computer to grab the values it !nds for each key, and to not worry about what the key

is.

We can also "ip this around and ask Python to give us just the keys. I bet you can guess what this method will

look like now that you've seen how we ask for just the values.

fav_distros = {

 'q': 'Mint',

 'j': 'Kali',

 'm': 'Ubuntu',

 's': 'Elementary'

 }

for agent in fav_distros.keys():

 print(agent)

The output of the above code is below. Remember, dictionaries are orderless so the order our for loop runs

through the dictionary isn't necessarily the order in which we originally de!ned it.

q

s

j

m

Nested loops

We can of course also get combinations of dictionaries and lists inside each other, so sometimes we'll want to

loop through a list or dictionary, and if the values we get back are also sets of data, we might want to loop

through those too.

We're not going to go through each of the variations one-by-one, but let's look at one quick example of how

these loops can nest one inside the other in order to extract complex data ef!ciently.

Create our 4 agents as their own dictionaries.

agent_m = {

 'name': 'M',

 'distro': 'Ubuntu',

 'drink': 'Earl Grey Tea'

 }

agent_j = {

 'name': 'J',

 'distro': 'Kali',

 'drink': 'Espresso'

 }

agent_s = {

 'name': 'S',

 'distro': 'Elementary',

 'drink': 'Coffee'

 }

agent_q = {

 'name': 'Q',

 'distro': 'Kali',

 'drink': 'Decaf Coffee'

 }

Combine our agent dictionaries into a single list of agents.

agents = [agent_m, agent_j, agent_s, agent_q]

Loop through the list of agents so that we get the

dictionary belonging to each individual agent

for agent in agents:

 # For each individual agent, get each key-value pair and

 # print it to the screen

 for key, value in agent.items():

 print(key.title() + ': ' + value)

 # Add an extra return space for visual clarity:

 # note this is inside our first loop, but not the second one

 print('\n')

We've added some comments into this code so you can follow what it's doing. This code will produce the

following output.

Drink: Earl Grey Tea

Name: M

Distro: Ubuntu

Drink: Espresso

Name: J

Distro: Kali

Drink: Coffee

Name: S

Distro: Elementary

Drink: Decaf Coffee

Name: Q

Distro: Kali

Combining loops and conditionals

Our example above is ok, but still a bit untidy. Ideally we'd like the name of the agent at the top of each list.

Create our 4 agents as their own dictionaries.

agent_m = {

 'name': 'M',

 'distro': 'Ubuntu',

 'drink': 'Earl Grey Tea'

 }

agent_j = {

 'name': 'J',

 'distro': 'Kali',

 'drink': 'Espresso'

 }

agent_s = {

 'name': 'S',

 'distro': 'Elementary',

 'drink': 'Coffee'

 }

agent_q = {

 'name': 'Q',

 'distro': 'Kali',

 'drink': 'Decaf Coffee'

 }

Combine our agent dictionaries into a single list of agents.

agents = [agent_m, agent_j, agent_s, agent_q]

Loop through the list of agents so that we get the dictionary

belonging to each individual agent

for agent in agents:

 # Get the agent's name and print that to the screen

 print('Agent ' + agent['name'] + ':')

 # Loop through that agent's dictionary items

 for key, value in agent.items():

 # If the key isn't the agent's name, print the key and value

 if key != 'name':

 print('\t' + key.title() + ': ' + value)

 # Add an extra return space after an agent's info

 print('\n')

Here we've continue to use our 2 nested loops, but in the !rst loop we've printed out the agent name

speci!cally by calling for the key agent['name'] which allows us to print it to the screen like a header for

our list. In the second loop, because we've already printed the agent's name we don't need to see it again, so

we use a conditional if statement within this loop to exclude this key-value pair from being printed.

The code above creates the below output.

Agent M:

 Drink: Earl Grey Tea

 Distro: Ubuntu

Agent J:

 Drink: Espresso

 Distro: Kali

Agent S:

 Drink: Coffee

 Distro: Elementary

Agent Q:

 Drink: Decaf Coffee

 Distro: Kali

As you can see, we're starting to be able to do more complex things by combining our tools together. Here

we've incorporated lists, dictionaries, loops, and conditionals in just one way, but there are lots of ways that

these tools can work together. It's when we start combining our tools together that the potential power of

programming becomes more clear to us. With the right tools we can do basically anything!

Time Remaining: Loading... Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

For Loops
Section 22.4

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Using conditionals and loops, create a

program that prints out all the days of

the month you're in now, starting with

the 1st of the month, and prints out the

date and the day of the week in a tidy

list.

Step 2

Modify your program so it also prints

out an indented list of the regular

activities you do weekly, including

things like go to school, play sports, or

attend a guide group.

Save

Loading terminal...

 1

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/52/section/4
https://essentials.joincyberdiscovery.com/course/module/52/section/4
https://essentials.joincyberdiscovery.com/course/module/52
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/52/section/4
https://essentials.joincyberdiscovery.com/course/module/52

