
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: kPFQpHTUjC

Completed

< back to module

Modules > Module 22 – Python Programming 2 > Section 22.6 – Functions

Skip straight to editor/terminal

Our tool box is nearly full of the basic tools we need to start building complex programs. Now that we can use

conditionals and loops as well as manipulate variables, lists and dictionaries we can start to see how nearly

anything is possible.

Functions are another tool in our toolbox, and an important one. Functions allow us to split our code apart into

smaller chunks that we can call on at any point in our program. This allows us to avoid repetition and make

our code more human-readable.

De!ning and calling functions

Let's start with a very simple function that says 'hello' to Agent J.

def greet_agent():

 print('Hello Agent J!')

greet_agent()

When we want to create a function we use the def keyword followed by what we want to name the function.

In this case, we've named our function greet_agent() . Now we use indentation to create the body of our

function: in this case, we want it to print the string "Hello Agent J!" when the function is called.

De!ning the function itself doesn't actually print the text 'Hello Agent J' to the screen. In order to execute the

code inside the function, we use a function call. To call a function, we write the name of the function, followed

by any necessary information in round brackets. In this case there isn't any needed additional information, so

we can just call the function with greet_agent() .

The code above will have the below output.

Hello Agent J!

It's important to remember that a function must be de!ned before it can be called. If we try to do things out

of order and call a function before we de!ne it, we'll get an error.

greet_agent()

def greet_agent():

 print('Hello Agent J!')

Running the above code will give us the following error.

$ python program.py

Traceback (most recent call last):

 File "program.py", line 1, in <module>

 greet_agent()

NameError: name 'greet_agent' is not defined

Function parameters

We can modify this function to allow us to greet any of our agents by using a function parameter. This lets us

pass information into our function at the time we call it, then have the function use that information within it

when it executes.

def greet_agent(letter):

 print('Hello Agent ' + letter + '!')

greet_agent('J')

greet_agent('M')

greet_agent('Q')

greet_agent('S')

In this example, we de!ne our function again, but this time we give it a parameter, letter . Think of

parameters like placeholders in our function: we use them in the body of our function where we'd like to be

able to control data at the time we call the function.

Here we've used our placeholder parameter letter inside our print method,

print('Hello Agent ' + letter + '!') .

Then, having declared and created our function, we call it 4 times: once each for each of our known agents.

Here's how our output looks:

Hello Agent J!

Hello Agent M!

Hello Agent Q!

Hello Agent S!

When we call a function that uses a parameter, the information we pass at the time we call it is called an

argument. So when we call greet_agent('J') the 'J' is the argument. In this case, the argument 'J'

is passed into the function greet_agent() and assigned to the parameter letter . The terms parameter

and argument are often used interchangeably: there are technical de!nitions, but if you're chatting casually

with other programmers don't be surprised if you hear arguments referred to as parameters and parameters

referred to as arguments.

We can declare as many parameters as we need when we de!ne our function. For example, here's a more

complex function that accepts 3 parameters and prints out a more complex output for our 4 agents.

def greet_agent(letter, total_cases, solved_cases):

 print('Hello Agent ' + letter + '!')

 print('\tYou have solved ' + str(solved_cases) + ' cases.')

 percent_solved = solved_cases * 100 / total_cases

 print('\tThat\'s ' + str(percent_solved) + '% of your total cases marked as solved,

great job!\n')

greet_agent('J', 11, 8)

greet_agent('M', 15, 12)

greet_agent('Q', 20, 12)

greet_agent('S', 20, 15)

This code gives us the below output.

Hello Agent J!

 You have solved 8 cases.

 That's 72% of your total cases marked as solved, great job!

Hello Agent M!

 You have solved 12 cases.

 That's 80% of your total cases marked as solved, great job!

Hello Agent Q!

 You have solved 12 cases.

 That's 60% of your total cases marked as solved, great job!

Hello Agent S!

 You have solved 15 cases.

 That's 75% of your total cases marked as solved, great job!

Notice here that when we call our function, we put our arguments in the same order as parameters were

declared in our function de!nition: this is using positional arguments. If we are using positional arguments

and don't get our order correct - say if we mix up the order of total_cases and solved_cases - then we

get some pretty strange output.

def greet_agent(letter, total_cases, solved_cases):

 print('Hello Agent ' + letter + '!')

 print('\tYou have solved ' + str(solved_cases) + ' cases.')

 percent_solved = solved_cases * 100 / total_cases

 print('\tThat\'s ' + str(percent_solved) + '% of your total cases marked as solved,

great job!\n')

greet_agent('J', 8, 11)

This will give us an incorrectly in"ated percent solved rate for Agent J in the below output.

Hello Agent J!

 You have solved 11 cases.

 That's 137% of your total cases marked as solved, great job!

We can also use keyword arguments in our function call, where we directly associate a value to a particular

parameter. This lets us mix up our order because we're being clear about which value we're assigning to

which parameter.

def greet_agent(letter, total_cases, solved_cases):

 print('Hello Agent ' + letter + '!')

 print('\tYou have solved ' + str(solved_cases) + ' cases.')

 percent_solved = solved_cases * 100 / total_cases

 print('\tThat\'s ' + str(percent_solved) + '% of your total cases marked as solved,

great job!\n')

greet_agent(letter='J', solved_cases=8, total_cases=11)

This will give us our expected output and the correct percent solved number for Agent J.

Hello Agent J!

 You have solved 8 cases.

 That's 72% of your total cases marked as solved, great job!

Default parameter values

Sometimes when de!ning functions, it's useful to set default values for some or all of our parameters. If there

is a frequently used value as an argument, it can make sense to set it as a default assumed value to make

your function calls simpler to use.

Both Agent S and Agent Q have 20 total cases: it turns out that's the largest number of cases any agent can

get assigned in a month. Knowing that, and assuming enough agents regularly reach the 20 cases to make it

worthwhile, we might want to modify our function to include a default value for the total_cases

parameter.

def greet_agent(letter, solved_cases, total_cases=20):

 print('Hello Agent ' + letter + '!')

 print('\tYou have solved ' + str(solved_cases) + ' cases.')

 percent_solved = solved_cases * 100 / total_cases

 print('\tThat\'s ' + str(percent_solved) + '% of your total cases marked as solved,

great job!\n')

greet_agent('S', 15)

This code will generate the expected output below.

Hello Agent S!

 You have solved 15 cases.

 That's 75% of your total cases marked as solved, great job!

Notice in the function de!nition for greet_agent() in the above example that we swapped the

solved_cases and total_cases parameters around? That's because if we have a mixture of parameters

with default values and some without, you must have the parameters with default values at the end of the

list.

Why? Because then we can use positional arguments when we call our function. If we didn't organize our

parameters this way, then the computer wouldn't know when to use the default values and when not to.

Single Responsibility Principle

The most useful thing about functions is you can call them anywhere, even inside other functions. This allows

us to break our code apart into smaller, more readable and reusable chunks.

A good rule of thumb for functions is they should only do 1 thing. This makes them much more reusable, and

- when we get to testing our functions - much easier to test. This is called the Single Responsibility Principle.

Let's revise our code to use a series of smaller functions called by one primary function. When we rewrite or

revise our code to do the exact same thing in a different (and hopefully better) way, we call it refactoring our

code. So let's refactor our previous code to break it up into smaller functions, each with a single responsibility.

def greet_agent(letter):

 print('Hello Agent ' + letter + '!')

def solved_case_rate(total_cases, solved_cases):

 percent_solved = solved_cases * 100 / total_cases

 print('\tYou have solved ' + str(solved_cases) + ' cases.')

 print('\tThat\'s ' + str(percent_solved) + '% of your total cases marked as solved,

great job!\n')

def agent_status(letter, total_cases, solved_cases):

 greet_agent(letter)

 solved_case_rate(total_cases, solved_cases)

agent_status(letter='J', total_cases=11, solved_cases=8)

agent_status(letter='M', total_cases=15, solved_cases=12)

agent_status(letter='Q', total_cases=20, solved_cases=12)

agent_status(letter='S', total_cases=20, solved_cases=15)

Here we have 3 functions. The !rst is greet_agent() , a function which takes a single parameter, letter ,

and prints out a nice greeting for our agent.

The second function is called solved_case_rate() and takes 2 parameters: total_cases and

solved_cases . This function's responsibility is to print out some text about our agent's current case load

status.

Finally, we have agent_status which takes 3 parameters: letter , total_cases , and solved_cases .

This function does nothing but call our other 2 functions in the correct order.

So when we call agent_status() for each individual agent, for each call 2 more function calls are generated

per agent, allow us to print out the information as before.

Return values

So far, we've had our functions use the print() method to create output directly, but we may not always

want this. Fortunately, instead of generating output, we can instead use return values to send information

from inside our function to the line where the function was called.

Here's a very simple example of how a return value works.

def addition(x, y):

 total = x + y

 return total

calculation = addition(31, 11)

print(calculation)

In the above example, we've created a function called addition() that takes 2 parameters. It adds these

parameters together and saves that value in a variable called total , and then it returns the value assigned

to total .

When we call the function later, passing in 31 and 11, our function dutifully does the arithmetic and returns the

total - in this case 42 - which we store in the variable calculation . Finally, we print out the value stored in

calculation .

We can streamline this code even more by removing some of the work of storing information in the variables

total and calculation , which we don't really need here. If we want to be really concise, we can use the

below code to do exactly the same thing.

def addition(x, y):

 return x + y

print(addition(31, 11))

When using a return value, it's important to know that it will immediately end the function execution, similar

to how the break keyword works in a loop. For example, let's look at a variation of our code above.

def addition(x, y):

 return x + y

 print('You will never know I exist!')

print(addition(31, 11))

Here we've added a print() method to our function addition() ... but when we run it, it doesn't print out

the line 'You will never know I exist!'. That's because we have a return value above it. The function !nishes

running before it gets to print('You will never know I exist!') , so this line will never execute.

This can be helpful for us if a function includes an if statement or a loop, as it allows us to leave the function

execution early if certain conditions are met.

Let's create a program that determines whether or not Agent J has time to wait in line at the cafe for a coffee,

or if he has to skip his morning coffee in order to get to his !rst meeting of the day. The answer depends how

many people are in front of him, but also who is in front of him. Agent Q currently owes Agent J a favour, and

she'll let him swap places with her in the coffee line if he's in a hurry just this one time.

Determine if there is enough time to wait for coffee, given

the current people in line in front of Agent J.

def can_wait_for_coffee(minutes_available, people_in_line):

 estimated_wait_time = len(people_in_line) * 2

 if estimated_wait_time < minutes_available:

 return 'Yes, plenty of time.'

 else:

 return can_swap_with_agent_q(minutes_available, people_in_line)

Determine if Agent Q is in the line to swap with and, if so,

if she's far enough ahead in line to make a swap worthwhile

given the time available.

def can_swap_with_agent_q(minutes_available, people_in_line):

 if 'Agent Q' not in people_in_line:

 return 'Agent Q isn\'t in line... no coffee for Agent J today.'

 position_agent_q = people_in_line.index('Agent Q')

 wait_time_for_agent_q = (position_agent_q + 1) * 2

 if wait_time_for_agent_q < minutes_available:

 return 'Agent J can swap places with Agent Q and get his coffee.'

 else:

 return 'Not even Agent Q can save Agent J today... no coffee today.'

Ask our question

print('Does Agent J have enough time to get coffee this morning?')

Get our answer

people_in_line = ['Unknown Person A', 'Agent M', 'Agent Q', 'Unknown Person B']

print(can_wait_for_coffee(8, people_in_line))

We won't go through this example line by line - you should give it a try with the editor below with different

values and orders of values in the people_in_line list as well as a different number of minutes Agent J can

wait to make sure you understand what this program is doing and how it's doing it.

However, let's have a look at the can_swap_with_agent_q() function de!nition. Note here how we !rst do a

check to see if Agent Q isn't in the line: if 'Agent Q' not in people_in_line . If she's not found in the

people_in_line list, then we immediately return out of the function. There's no need to set

position_agent_q or wait_time_for_agent_q variables or run the following checks: she's not in the line,

so the rest of the function's logic isn't needed, so we exit the function immediately.

Another thing we should look at in this example is in the can_wait_for_coffee() function de!nition. Here,

we have an if statement that checks if the value of estimated_wait_time is less than the

minutes_available value Agent J has available to wait before he's late for his meeting. If this evaluates to

True , then we return a string. But if it doesn't... we return another function! (Technically, we return the

return value of another function. And if that function also returns a function, we return the return value of

that function... and on and on like a game of pass the potato.)

The ability to have functions return other functions, which can then also return other functions, and on and

on depending upon layers of logic gives you a glimpse of what's possible with programming. We take a series

of small pieces of logic and slowly build up a complex system, piece by piece.

Time Remaining: Loading... Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Functions
Section 22.6

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Create a program that will track what

Agent S likes in their hot drink from the

cafe. Try and split apart your program

into smaller functions.

Regular coffee, decaf coffee, lattes,
and "at whites always get 2 sugars.

Regular coffee and decafe coffee get
milk.

Earl Grey tea gets lemon and 1 sugar

Other types of black tea get milk and
1 sugar

Green tea doesn't get anything

Espresso doesn't get anything

Step 2

Modify your program to allow Agent S to

have a scone when they order any kind

of tea, and a muf!n when they order

any type of coffee.

Save

 _____ __ ______ __
 / ___/_ __/ / ___ ____/ __/ /____ _____/ /_
/ /__/ // / _ \/ -_) __/\ \/ __/ _ `/ __/ __/
___/_, /_.__/__/_/ /___/__/_,_/_/ __/
 _/___/ __ _ __
 / __/__ ___ ___ ___ / /_(_)__ _/ /__
 / _/(_-<(_-</ -_) _ \/ __/ / _ `/ (_-<
/___/___/___/__/_//_/__/_/_,_/_/___/
kPFQpHTUjC@2d64cb34e9eb:~$

 1

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/52/section/6
https://essentials.joincyberdiscovery.com/course/module/52/section/6
https://essentials.joincyberdiscovery.com/course/module/52
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/52/section/6
https://essentials.joincyberdiscovery.com/course/module/52

