
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: HEXpr75Rwc

Completed

< back to module

Modules > Module 22 – Python Programming 2 > Section 22.3 – Conditionals

Skip straight to editor/terminal

The previous module gave us a solid foundation in how to manipulate data, create and manage different data

types, and how to store those bits of data to variables where we can use this data elsewhere in our program.

This module builds on that foundation and allows us to start making decisions about what to do with our data

and when to change it in more complex ways.

A conditional allows us to check if certain conditions are being met before we run certain parts of the

program. They're often referred to more casually as "if statements" or "if tests" and there's a very good reason

for that: in most every programming language conditionals usually start out with an "if", as in "if coffee is

available, then Agent J will have a coffee". Let's see our simple "if statement" coffee example in Python.

coffee_available = True

if coffee_available == True:

 print("Agent J will have coffee.")

In this example, since we've set the coffee_available variable to True , our test passes, so the program

prints out "Agent J will have coffee.". If we change the coffee_available variable to False and run the

program again, nothing will be printed to the screen: since the conditions of our if statement aren't met, the

code inside the if statement never runs.

Notice here when we write our if statement, we use a double equal sign (==) instead of a single equals sign.

The single one is reserved for assigning values to variables, like we did in line 1. So when we want to say X = Y

in a conditional if statement, we use the double equals syntax X == Y.

Note also the indention in our conditional if statement: the line print("Agent J will have coffee.") is

indented from the line above it. This indention structure is enforced by Python, and it's how Python knows

which code below the if statement is within it and which code is outside it.

If we try to run this code without indention, we get the following error:

Error(s), warning(s):

 File "program.py", line 4

 print("Agent J will have coffee.")

 ^

IndentationError: expected an indented block

We can see this inside vs outside structure more clearly when we run the following code, which includes 2

conditional statements one after the other, as well as some printed output outside the conditionals.

print("Agent J arrives at HQ in the morning.")

coffee_available = True

if coffee_available == True:

 print("Agent J will have coffee.")

print("In the afternoon, Agent J goes to the HQ cafe.")

coffee_available = False

if coffee_available == False:

 print("Agent J is shocked to discovery the cafe is out of coffee!")

print("Agent J goes home.")

In this example, when we run our program, we get the following output.

Agent J arrives at HQ in the morning.

Agent J will have coffee.

In the afternoon, Agent J goes to the HQ cafe.

Agent J is shocked to discovery the cafe is out of coffee!

Agent J goes home.

But what happens when we switch our coffee_available assignments around the other way, so that the

!rst one is False and the second one is True ?

print("Agent J arrives at HQ in the morning.")

coffee_available = False

if coffee_available == True:

 print("Agent J will have coffee.")

print("In the afternoon, Agent J goes to the HQ cafe.")

coffee_available = True

if coffee_available == False:

 print("Agent J is shocked to discovery the cafe is out of coffee!")

print("Agent J goes home.")

In this example, neither of the if statement conditions are met, so the print methods inside those statements

never run. But the print statements outside the conditions aren't affected, so they still output to the screen as

expected.

Agent J arrives at HQ in the morning.

In the afternoon, Agent J goes to the HQ cafe.

Agent J goes home.

At their heart, all if statements can be evaluated as either True or False . That doesn't mean we can only

test a boolean variable, but it does mean that when the test is run it must result in either a True or False

outcome.

So we can create tests to see if 2 strings are the same, for example.

drink_available = 'coffee'

if drink_available == 'coffee':

 print("Agent J will have coffee.")

This example checks to see if the drink_available variable contains a string that matches 'coffee'. If it is,

the statement evaluates to True and the print method inside the statement is executed. If the

drink_available variable doesn't match, everything inside the if statement is skipped over, so nothing

would be printed.

It's important to remember that case matters to computers! We may think of 'coffee', 'Coffee', and 'COFFEE' as

being all the same thing in everyday language, but to a computer all these strings are different. If we don't

know what kind of letter case we'll get, but we want our conditional to consider 'coffee' and 'COFFEE' as a

match, we need to tweak our code slightly.

drink_available = 'COFFEE'

if drink_available.lower() == 'coffee':

 print("Agent J will have coffee.")

Now we're transforming the value of drink_available to its lowercase version using the lower()

method, which takes a string and changes any uppercase letters it !nds within the string to their lowercase

counterparts. Now our 2 strings match, so the statement evaluates to True , and our sentence will print out.

Let's look at another example.

coffee_available = 4

coffee_needed = 4

if coffee_needed == coffee_available:

 print("There is enough coffee.")

Here we're comparing the values of 2 different variables, coffee_available and coffee_needed . If they

are the same, then we print the sentence There is enough coffee. and if there isn't, then we don't print

anything. In this example, 4 and 4 match, so the statement evaluates as true, printing out our sentence.

But what happens here:

coffee_available = "4"

coffee_needed = 4

if coffee_needed == coffee_available:

 print("There is enough coffee.")

We've set coffee_available to a string value of 4, and coffee_needed as an integer value of 4. They're

both 4 so we might expect the statement would evaluate to True , but when we run this program we !nd it

doesn't, nothing gets printed out, telling us our if statement evaluated to be False .

When comparing values, an if statement takes the type of the variable into account. If they're different types,

then they won't match in a conditional. It's important to keep this in mind when we're programming - in

particular with numbers - because often numbers can be stored somewhere as string data, but will need to

be evaluated as integers or "oats. This is where the int() and str() functions we saw in the last module

can come in very handy.

coffee_available = "4"

coffee_needed = 4

if coffee_needed == int(coffee_available):

 print("There is enough coffee.")

Now our conditional will evaluate to True and print our sentence for us, because we're turning our string

coffee_available value into an integer, so now they'll match.

Comparison operators

There are several different ways of comparing things in conditionals. These are called comparison operators

and they include:

Equal to ==

Not equal to !=

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Let's run a few examples to get a feel for how these different operators work.

if "string 1" == "string 1":

 print("These strings are equal.")

if "string 1" != "string_2":

 print("String 1 does not equal string 2.")

if 2 < 4:

 print("The first number is less than the second number.")

if 4 > 2:

 print("The first number is greater than the second number.")

if 4 <= 4:

 print("The first number is less than or equal to the second number.")

if 4 >= 4:

 print("The first number is greater than or equal to the second number.")

If we run this code, all 6 statements will print out to the screen because all 6 statements will evaluate to

True .

Conditionals and lists

Lists are an important kind of data while programming, and conditionals also allow us to check if a value is in

a list, or not in a list.

available_drinks = ['coffee', 'tea', 'water', 'orange juice']

if 'coffee' in available_drinks:

 print('You may have that drink.')

Here, we're using in within our if statement to see if a string exists in our available_drinks list. If we can

!nd an exact match somewhere in our list - in this example we can - then the statement evaluates to True

and our sentence will print. If, on the other hand, it can't !nd our string, then the statement evaluates to

False , the print method is skipped over, and nothing outputs to the screen.

We can also use not in to create a test that works in the opposite way.

available_drinks = ['coffee', 'tea', 'water', 'orange juice']

if 'apple juice' not in available_drinks:

 print('That drink is not available.')

Here, we're checking to see if apple juice isn't in our available_drinks list. If it's not found in the list,

then the statement evaluates to True and our sentence "That drink is not available" will print to the screen.

Checking multiple conditions

Let's revisit our original example code again.

coffee_available = True

if coffee_available == True:

 print("Agent J will have coffee.")

It doesn't seem quite fair to force Agent J to have coffee just because it's available, he might not want one, or

perhaps already has one.

We could do it like this, by nesting if statements:

coffee_available = True

has_coffee_already = False

if coffee_available == True:

 if has_coffee_already == False:

 print("Agent J will have coffee.")

In this example we've put one if statement inside the other. First, the if coffee_available == True check

will run. If this evaluates to True , then the inner if statement if has_coffee_already == False will run. If

this also evaluates to True then, !nally, our "Agent J will have coffee" sentence will print to the screen.

This works... but it's a bit untidy, and if we had to check 3 or 4 things it quickly becomes very dif!cult for us

humans to read and understand. There's an much nicer way to write this conditional without all that nesting.

coffee_available = True

has_coffee_already = False

if coffee_available == True and has_coffee_already == False:

 print("Agent J will have coffee.")

Here we're using the keyword and to connect our two conditions in a single if statement. If both

coffee_available equals True and has_coffee_already equals False , then print our sentence. If

neither check passes, or if only 1 of them does, don't print the sentence. Both must be true for our code inside

the if statement to execute.

We can also use the or keyword, which allows us to check if at at least one of our conditions are met. Let's

do a slightly different version of our coffee example.

had_coffee_already = False

is_tired = False

if had_coffee_already == False or is_tired == True:

 print("Agent J will have coffee.")

Let's walk through this example. We have 2 tests we need to run before we can decide if Agent J is going to

have coffee. The !rst thing to consider is whether or not he's already had his morning coffee: if he has, he

probably doesn't want another one. But then again, if he had a late night working on a particularly tricky case

and is feeling tired, he may want a second cup of coffee to help wake him up. So, in plain English: if Agent J

has not had coffee already or if Agent J is very tired, then he will have coffee.

In the example above, had_coffee_already is set to False , and is_tired is also set to False . Our

conditional only needs one of these to be set to False to succeed, so as soon as one of our conditions is met

our if statement passes and the code inside it will run.

It's important to note that the code inside an if statement that contains an or like this will run as soon as

one condition is met. It won't bother to check the others, because it doesn't matter what they are. This can

leave our code with some hidden errors if we're not diligent. Let's see how.

Consider this example:

had_coffee_already = False

is_tired = False

if nope == True or had_coffee_already == False:

 print("Agent J will have coffee.")

What happens when we run this? We get an error.

Traceback (most recent call last):

 File "program.py", line 4, in <module>

 if nope == True or had_coffee_already == False:

NameError: name 'nope' is not defined

We get this error because we tried to check the value of a variable we haven't yet created, nope . Obviously

we can't check the value of a variable if it doesn't exist.

But what happens if we reverse the order of the checks in this example? Let's !nd out.

had_coffee_already = False

is_tired = False

if had_coffee_already == False or nope == True:

 print("Agent J will have coffee.")

And, to our surprise, even though we still haven't created the variable nope anywhere, our program runs

and we get:

Agent J will have coffee.

This is because the computer is trying to be ef!cient: it will do the absolute minimum work it needs to in

order to get to the next step. In this case, if the !rst condition checks out, then it doesn't matter what the

second one is because the condition only needs one to pass. So the computer immediately jumps from the

!rst check passing to executing the code inside the if statement.

Our code still has an error in it, and if the !rst check fails, then our error message will return because the

computer is forced to also test if nope == True .

Order of precedence

Now let's examine how we can use combinations of and and or in our conditionals to create more

complex if statements. We'll keep building out our coffee example to try and consider all the relevant factors.

Let's examine the different checks we want to use to evaluate whether or not Agent J gets a coffee at the HQ

cafe. Here's what we want our program to do:

The cafe has to have coffee available for him to have. If there is no coffee, then it doesn't really matter
what the other tests are, because even if they pass there's no coffee to provide.

Agent J has have either not already had his morning coffee or is tired enough to want a second coffee.
Either being true is enough to convince Agent J he wants coffee.

Now that we understand what we want to create, let's write this up in code.

coffee_available = True

had_coffee_already = False

is_tired = False

if coffee_available == True and had_coffee_already == False or is_tired == True:

 print("Agent J will have coffee.")

When we run this code we get what we expect, the output "Agent J will have coffee". Either

had_coffee_already is False or is_tired is True , while at the same time we must always have

coffee_available be True . Our variables are set in a way that should allow this conditional the pass -

which it does.

Let's do one more scenario. We're going to start by assuming HQ always has plenty of coffee and never runs

out. But in addition to whether or not Agent J has already had coffee or is tired, he also needs to consider

how much time he has to wait for coffee. The cafe is pretty popular, and sometimes the line is long: if he's in a

hurry, he may not have time to wait no matter how much he wants coffee.

So in this situation, we need to consider:

Combination A: the line must be short or Agent J must have lots of time to wait.

Combination B: he must not yet have had coffee or he must be tired.

In order for our check to pass, we need one check from combination A and one check from combination B to

pass.

Combination A

line_is_short = True

in_hurry = True

Combination B

had_coffee_already = False

is_tired = False

if line_is_short == True or in_hurry == False and had_coffee_already == False or

is_tired == True:

 print("Agent J will have coffee.")

This seems to work. We'd expect to get our sentence printed out in this case - line_is_short is True and

had_coffee_already is False , which satis!es our needs. But it's always good to check our code with a

variety of inputs to see if it works as we expect in all situations. What happens if we change

had_coffee_already to True ? We'd expect no sentence to be printed out in this case, because is_tired

is False which means both checks in Combination B would fail, so we want our if statement to fail.

But that's not what happens!

Combination A

line_is_short = True

in_hurry = True

Combination B

had_coffee_already = True

is_tired = False

if line_is_short == True or in_hurry == False and had_coffee_already == False or

is_tired == True:

 print("Agent J will have coffee.")

This code will also print out the sentence, even though we don't want it to. What's going on here?

All these and's and or's are confusing our computer. It's not executing them in the way we expect. In situations

like this where there are and's and or's mixed together, there are rules about which are evaluated !rst. An

and is always executed before an or .

So in our check above, this is what's happening, in order:

in_hurry == False and had_coffee_already == False is evaluated. This evaluates to False .

line_is_short == True or (False) or is_tired == True is evaluated. Since we now only have 2 or's,
only 1 has to pass before the entire check is considered to have passed. Since line_is_short == True

passes, the checks immediately stop at that point and the computer moves on to execute what is inside
the if statement.

But that's not what we want! We've found a bug in our program: now it's time to squash it.

We can use round brackets () to give the computer clearer instructions on the order in which we want it to

execute the checks. This works the same way as round brackets in mathematics does: if we see them in an

equation, we always do what's inside them !rst. In Python, round brackets have a higher precedence than an

and and so anything inside them will be checked !rst.

Let's add some round brackets to our code.

Combination A

line_is_short = True

in_hurry = True

Combination B

had_coffee_already = True

is_tired = False

if (line_is_short == True or in_hurry == False) and (had_coffee_already == False or

is_tired == True):

 print("Agent J will have coffee.")

In this revised code, we're telling the computer in what order it should resolve our checks.

First it checks line_is_short == True or in_hurry == False which evaluates to True .

Second, it checks had_coffee_already == False or is_tired == True which evaluates to False .

Last, it evaluates True and False , which is the result of the !rst check and the result of the second. In
order for this last check to pass, both must be True . Since they aren't in this case, this last check fails.

Now our code is doing what we want it to in this situation: our sentence doesn't get printed because the check

doesn't pass. And if we try different combinations of values in our variables, we can see we get what we

expect in every combination. Success!

Expanding conditionals with 'else' and 'elif'

Currently, our Agent J coffee check program is printing out a sentence only if the if statement passes, and if it

fails we don't get any feedback. What we really want is to get different feedback depending on whether or not

our test passes or fails.

To do this, we can use an if-else block. This allows us to create a diverging path of instructions, depending on

the outcome of our check.

Let's go back to one of our simplest examples to see how this works.

coffee_available = True

if coffee_available == True:

 print("Agent J will have coffee.")

else:

 print("Sorry Agent J, our coffee has run out!")

Here we've created a case for when the check passes, and a case for when it fails. In this example, where

coffee_available = True then we'll get "Agent J will have coffee" printed to the screen. If we change line 1

to coffee_available = False , then our check fails and the computer moves to execute the code in the

else portion of our code, which means "Sorry Agent J, our coffee has run out!" gets printed to the screen

instead.

But what happens if we have more than 2 possible paths we want our program to be able to follow?

coffee_available = True

had_coffee_already = False

is_tired = False

if coffee_available == True and (had_coffee_already == False or is_tired == True):

 print("Agent J will have coffee.")

elif coffee_available == False:

 print("Sorry Agent J, our coffee has run out!")

else:

 print("Agent J doesn't want any more coffee.")

In this example, we have cases that cover any combination of values that might enter our conditional. We've

done this using an elif check, which allows us to have a second set of checks we run if the !rst checks fail.

And !nally, we !nish with an else that catches the other possible cases not caught by the if and elif

above.

It's important to remember when we construct if-elif chains that it will execute the condition in order, and

stop when it !nds a condition it meets. So if the !rst if check is true, then we get the "Agent J will have

coffee" statement printed, and the conditional is !nished executing: it won't also then check the elif . Think

of an if-elif chain as a valve: there can only be 1 path, and the computer will take the !rst path it !nds. In

complicated programs with if-elif chains that are a few elif's long, you can get bugs that have to do with how

you order your conditions.

Time Remaining: 59 mins Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Conditionals
Section 22.3

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Create a program that helps the cafe

staff remember which agent prefers

which beverage:

Agent J prefers coffee

Agent Q prefers decaf coffee

Agent S prefers coffee

Agent M prefers tea

Step 2

Because coffee is a popular drink, the

cafe sometimes runs out of regular

coffee. If this happens, Agent S will

drink decaf, but Agent J will have tea

instead.

Modify your program to take this into

account.

Save

 _____ __ ______ __
 / ___/_ __/ / ___ ____/ __/ /____ _____/ /_
/ /__/ // / _ \/ -_) __/\ \/ __/ _ `/ __/ __/
___/_, /_.__/__/_/ /___/__/_,_/_/ __/
 _/___/ __ _ __
 / __/__ ___ ___ ___ / /_(_)__ _/ /__
 / _/(_-<(_-</ -_) _ \/ __/ / _ `/ (_-<
/___/___/___/__/_//_/__/_/_,_/_/___/
HEXpr75Rwc@2255b7afe1ff:~$

coffee_in_stock = False

fav_drinks = {"A_J": "coffee", "A_Q": "decaf coffee", "A_S": "coffee", "A_M": "tea"}

printprint(fav_drinks)

ifif coffee_in_stock == False:
 fav_drinks["A_J"] = "tea"
 fav_drinks["A_S"] = "decaf coffee"

printprint(fav_drinks)

1
2
3
4
5
6
7
8
9
10
11

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/52/section/3
https://essentials.joincyberdiscovery.com/course/module/52/section/3
https://essentials.joincyberdiscovery.com/course/module/52
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/52/section/3
https://essentials.joincyberdiscovery.com/course/module/52

