
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: PIcgs4OQPX

Completed

< back to module

Modules > Module 22 – Python Programming 2 > Section 22.5 – While Loops

Skip straight to editor/terminal

In the previous section, we saw the for loop, which takes a collection of items and loops through them one by

one, executing the same block of code on each of those items, until it runs out of items.

But there's another kind of useful loop we can use: the while loop. Instead of giving the while loop a

predetermined set of things to work through, we give it a condition: as long as that condition is true, the while

loop will keep running.

The simplest kind of while loop usually contains some kind of counter, so let's have a look at this !rst.

counter = 1

while counter <= 3:

 print(counter)

 counter += 1

print('Loop complete!')

We start by creating the variable counter and assigning in the integer value of 1. Then we declare our while

loop, and give it the condition while counter <= 3 , which means the loop will run as long as the value of

the variable counter is less than or equal to 3. Inside our while loop, we print the counter value for our

reference, and then just before we leave our loop, we ask it to increment our counter variable by 1, which if

you remember is the same as saying counter = counter + 1 .

After this, we've reached the end of our while loop, so we start again by checking to see if the condition

counter <= 3 is still true. Our counter value is now 2, but since 2 is less than or equal to 3 our condition is

still true so our while loop runs the code block again.

Once again, at the end of the block we increment our counter again, so now it's 3, and we start again by

checking if our condition is still true. It is, because 3 = 3, so the code block within the loop runs a third time,

incrementing our counter to 4 at the end.

Now when we check our condition for the forth time, because we've incremented our counter variable to 4,

the condition counter <= 3 evaluates to False . Our while loop will only continue to run if the condition is

true, so now that it's false, our while loop closes and allows the computer to move on to the next block of

code outside the while loop, which is our printed statement "Loop complete!".

So our !nal output would be:

1

2

3

Loop complete!

Using a "ag to stop a while loop

The previous example is a simple one where we just want to run the while loop a certain number of times.

But programs can be complicated, with lots of different branching logic. There might be many different

conditions where we'd want our while loop to stop, depending on many different factors and considerations.

In these situations, it's often helpful to use a "ag to control your while loop.

Here's a slightly contrived example, but it gives you a reasonable idea how a "ag can work.

active = True

countdown = 3

while active == True:

 if countdown == 0:

 countdown = 'Go!'

 active = False

 else:

 print(countdown)

 countdown -= 1

print(countdown)

Let's walk through this code.

First, we set and assign 2 variables: active = True , which we'll use as our "ag to control the while loop, and

countdown = 3 which we'll use elsewhere in our code.

Next we create our while loop using while active == True which will force our while loop to keep running

over and over until the active variable is set to something other than True .

Inside our while loop, we have a conditional if statement. Here's where our countdown variable comes into

play. If our countdown variable is equal to 0, then we'll change its value to the string 'Go!' and set the

active "ag to False . Otherwise we follow the else pathway, where we'll print the current value of our

countdown variable !rst before we reassign its value to itself - 1. (This works like the += we saw in the

previous example, where we incremented the value of a variable by 1. This time we're decreasing the value of

a variable by 1 instead.)

If the countdown variable is equal to anything except 0, the while loop will keep running over and over,

printing the value of countdown then decreasing its value by 1 each time until it reaches 0. When it reaches

0, then we follow the other branch of our if statement, which sets our countdown variable to the string 'Go!'

and - most importantly - sets the active variable to False . This means, when the while loop checks

again... active does not equal True . Our while loop has !nished running, and we move outside the loop to

the last bit of code that needs to execute outside the loop, which is print(countdown) , outputting the !nal

end value of our countdown variable.

The output of this program is below.

3

2

1

Go!

Using break to exit a loop

The above example can be written slightly more ef!ciently using the break keyword. This keyword allows us

to immediately break out of a loop without executing any more code inside it, or requiring us to check the

condition. It's kind of like slamming down on the brakes in a car: stop this while loop immediately instead of

when this particular loop is complete.

Here's our revised code using the break keyword.

countdown = 3

while True:

 if countdown == 0:

 countdown = 'Go!'

 break

 print(countdown)

 countdown -= 1

print(countdown)

Notice we don't use a "ag in this code: we simply write while True as our while loop condition. True is

always true, so this loop is set to run forever - a potential in!nite loop, which we'll talk about in greater detail

below. But in this loop, we use the break keyword in our if countdown == 0 conditional. As soon as this if

statement is true - as soon as countdown == 0 , we set the countdown variable to 'Go!' and then

immediately break out of the loop without executing the other code inside the loop or checking to see if the

while True condition is still true (which it is). This allows us to escape our loop.

In!nite loops

What happens if we create a loop like the one below?

counter = 1

while True:

 print(counter)

 counter += 1

This is an in!nite loop. Since there's no way to get out of this loop - no condition that can ever be anything

except true, and no break to get us out of the loop - this while loop will run... forever! (Or until your computer

crashes.) I tried running this on my machine, and before I cancelled it just a few seconds later my printed

counter had counted all the way up to 1080308!

Every programmer writes an occasional accidental in!nite loop once in a while. It's always good to know how

to cancel your program's execution manually in case you !nd yourself trapped in an in!nite loop. If you're

executing Python via the command line, like in the editors we provide below, you can use control-C to cancel

the execution. If you're using a local code editor to run your Python, you should know what your speci!c

editor or tool uses to cancel code execution.

Manipulating lists with while loops

After you've been programming for a while you'll !nd that while loops are useful in lots of different ways - it

would take us a long time to de!nitively go through all the many different ways we can use them.

But here are a couple of quick examples of ways we can use while loops to manipulate lists.

invited = ['Agent Q', 'Agent M', 'Agent J', 'Agent S', 'Agent M']

while 'Agent M' in invited:

 invited.remove('Agent M')

invited.append('Agent M')

Here we have a list of people invited to attend an important meeting, but we see Agent M has been

accidentally added twice.

This while loop !rst checks to see if the string Agent M can be found inside the list invited . As soon as it

!nds one, it removes it, then starts the while loop again. This repeats twice - because Agent M is listed twice

in this list - and then the third time the while loop runs the check, Agent M is no longer anywhere in the list, so

the loop is !nished.

Finally, since we do still want Agent M to come to our meeting, we add her back to the list, knowing now she'll

only be on there once.

Here's an example of how we can move our agents from one list to another after the meeting has happened,

taking them from the invited list and moving them automatically onto the attended list.

invited = ['Agent Q', 'Agent M', 'Agent J', 'Agent S']

attended = []

while invited:

 current_agent = invited.pop()

 print(current_agent + ' attended the meeting.')

 attended.append(current_agent)

print('Attended list: ' + str(attended))

Here, the while invited is checking to see if the invited list has anything in it. As long as it has at least 1

item in it, the while loop is true, so it will execute the code inside it. Once we've moved everyone from the

invited list to the attended list using the pop() and append() methods, the invited list is empty and so

our while loop check is false. This allows us to escape our loop and print out our !nal attendee list.

Time Remaining: Loading... Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

While Loops
Section 22.5

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Create a list of the top 3 places you

want to travel to. Then create a while

loop to print out that list neatly.

Step 2

Modify your list so it's a dictionary, and

for each place you want to visit add 3

reasons why. Then modify your

program so that you use both a while

loop and a for loop to print out the list of

places, and for each place, a list of the

reasons why you want to visit that place.

Step 3

Using a while loop, create a program

with a counter that starts at 1, then

takes that number and doubles it every

time the loop runs. This while loop

should keep going until the counter is

greater than or equal to 100,000,000.

Save

counter = 1
moves = 0

whilewhile counter <= 100000000:
 counter *= 2
 moves += 1

printprint(counter, moves)

1
2
3
4
5
6
7
8

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/52/section/5
https://essentials.joincyberdiscovery.com/course/module/52/section/5
https://essentials.joincyberdiscovery.com/course/module/52
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/52/section/5
https://essentials.joincyberdiscovery.com/course/module/52

