
100% complete

Completed

< back to module

Modules > Module 21 – Python Programming 1 > Section 21.11 – Lists and Tuples

A list is exactly what it sounds like: a list of things stored in a particular order. It could be anything: the

numbers from 1 - 10, a list of animals, all the nail polish colours you could name... Here is a list of Agent M's

favourite Linux distributions:

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(fav_linux_distros)

If we print a list like we have above, we'll get the whole list returned to us like so:

['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

We probably won't !nd too much use for this list in this form: it will be more useful for us to be able to access

individual items within this list using its index position within the list.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(fav_linux_distros[0])

print(fav_linux_distros[1])

print(fav_linux_distros[2])

The above example will output:

Mint

Debian

Ubuntu

Note that when we want to access the very !rst item in the list, we use 0 instead of 1. This is true of most

programming languages: whenever you're counting "things" in computer code, we always start with 0. So if

we're looking for the !fth item in Agent M's Linux distributions list, we'd use fav_linux_distros[4] .

What happens if we try to use an index outside the number of items in the list?

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(fav_linux_distros[7])

Here we've asked for the item in the list at index 7 ... but we only have 6 items in the list. If nothing exists at

the index we've requested, we'll get a IndexError error back instead.

$ python program.py

Traceback (most recent call last):

 File "program.py", line 3, in <module>

 print(fav_linux_distros[7])

IndexError: list index out of range

Python also gives us a shortcut way of getting the very last item in a list.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(fav_linux_distros[-1])

By asking for an item at the index of -1, Python will always return the last item in the list. This is helpful

because we don't always know how long our list will be. This syntax extends to other negative index methods

as well, letting you count backward from the end of the list rather than forward from the front. Let's try it out.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(fav_linux_distros[4])

print(fav_linux_distros[-2])

This code will output:

Fedora

Fedora

When we pluck an item from a list like this, we also get its individual item type. In the Linux distributions

example we get a string, which we can then manipulate as a string using our various string manipulation

tools.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

top_fav_distro = fav_linux_distros[0]

print("Agent M's favourite Linux distro is " + top_fav_distro.upper() + "!")

This gives us a string where we've modi!ed an item from our list to appear in all uppercase, to best

communicate how much Agent M loves Mint.

Agent M's favourite Linux distro is MINT!

We can also get a quick count of the things in our list by using the len() function.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(len(fav_linux_distros))

This will print out 6 which is indeed the number of items in Agent M's list.

Mixed type lists

Python lets us create mixed-type lists, incorporating all different types of data into a single list.

misc = ['purple', 99, 3.14, False]

print(misc[0])

print(misc[1])

print(misc[2])

print(misc[3])

And the result:

purple

99

3.14

False

We can even put lists inside of other lists, like this:

misc = ['purple', 99, 3.14, False, ['apple', 'orange', 'pear']]

print(misc[0])

print(misc[1])

print(misc[2])

print(misc[3])

print(misc[4])

print(misc[4][0])

print(misc[4][1])

print(misc[4][2])

Which outputs as:

purple

99

3.14

False

['apple', 'orange', 'pear']

apple

orange

pear

Notice how we access the individual items "apple", "orange" and "pear" inside the inner list? The inner list is at

index 4 of the primary list, and "apple" is at index 0 of the inner list. So to get the !rst item inside the inner list,

we use misc[4][0] .

Modifying a list

What happens when Agent M wants to update the list of Linux distributions? How do we modify the list we

have with new information?

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

print(fav_linux_distros)

fav_linux_distros[0] = 'Elementary'

print(fav_linux_distros)

We've created a list and saved it to the variable fav_linux_distros , with Mint as the !rst item in the list.

Then we've changed the value of the !rst item to Elementary .

We've printed the list out before and after we've made the change so you can see what it looks like at both

stages. Only the !rst item in the list has changed: everything else remains the same.

['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

['Elementary', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

We can also modify a list by applying a sort to it. Agent M likes things to be nice and orderly, so let's sort this

list of Linux distros alphabetically.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

fav_linux_distros.sort()

print(fav_linux_distros)

As we hoped, this gives us:

['Arch', 'Debian', 'Fedora', 'Manjaro', 'Mint', 'Ubuntu']

And afterwards, if we want to frustrate Agent M we can always reverse this list.

fav_linux_distros = ['Mint', 'Debian', 'Ubuntu', 'Manjaro', 'Fedora', 'Arch']

fav_linux_distros.sort()

print(fav_linux_distros)

fav_linux_distros.reverse()

print(fav_linux_distros)

Our output from the above code would be:

['Arch', 'Debian', 'Fedora', 'Manjaro', 'Mint', 'Ubuntu']

['Ubuntu', 'Mint', 'Manjaro', 'Fedora', 'Debian', 'Arch']

Adding items to lists

There are a few different ways to add things to lists. Let's start by simply adding things onto the end of our list.

travel_bucket_list = ['Tokyo', 'Hawaii', 'London']

travel_bucket_list.append('New York')

travel_bucket_list.append('Berlin')

print(travel_bucket_list)

Here we use the append() method, which allows us to stick items onto the end of a list. When we print out

our list after appending our new items, we can indeed see they've been added.

['Tokyo', 'Hawaii', 'London', 'New York', 'Berlin']

We can even start with an empty list.

travel_bucket_list = []

travel_bucket_list.append('Toronto')

travel_bucket_list.append('Barcelona')

travel_bucket_list.append('Dubai')

print(travel_bucket_list)

As expected, we've taken an empty list in line 1 and turned it into a list with 3 items by appending them one by

one.

['Toronto', 'Barcelona', 'Dubai']

We can also add items into an existing list at any position we want. Let's try adding a new item to the front of

our travel bucket list.

travel_bucket_list = ['Tokyo', 'Hawaii', 'London']

travel_bucket_list.insert(0, 'New York')

print(travel_bucket_list)

Now we've put New York to the front of our list, and bumped everything else down one. Our output shows us

our new list:

['New York', 'Tokyo', 'Hawaii', 'London']

Removing items from lists

Sometimes we want to remove an item from our list, for instance if we travelled to one of the places on our

travel bucket list. Let's remove 'London' from our list.

travel_bucket_list = ['Tokyo', 'Hawaii', 'London']

visited = travel_bucket_list.pop()

print(travel_bucket_list)

print(visited)

We can see how we've changed our list, and also that we've been able to "pop" London out of the list into the

variable visited so that we can continue to use it later in our program if we want.

['Tokyo', 'Hawaii']

London

The pop() method has taken the last item from the list and "popped" it off. If we wanted to remove a

different item from the list, we can use pop() with an index to specify which item we want popped out.

travel_bucket_list = ['Tokyo', 'Hawaii', 'London']

visited = travel_bucket_list.pop(1)

print("I recently went to " + visited)

print(travel_bucket_list)

This outputs:

I recently went to Hawaii

['Tokyo', 'London']

What if we don't know what the position is of the thing we want to remove? Perhaps we wrote our list a long

time ago, and can't remember what index position "Hawaii" is at. How do we remove Hawaii from our list

then? Voila:

travel_bucket_list = ['Tokyo', 'Hawaii', 'London']

travel_bucket_list.remove('Hawaii')

print(travel_bucket_list)

The remove() method will allow us to remove an item from our list without specifying an index. A very

handy method to remember. As expected, the above code gets us the following output:

['Tokyo', 'London']

Tuples

Tuples are very similar to lists, except for 1 important quality: they are immutable. "Immutable" means the

content items in the list can't be changed once they are set. This can sometimes be useful to a programmer if

we want to ensure a piece of data can't be changed. The use of a tuple forces us to copy the information and

modify that copy, leaving the original intact and unchanged.

Here's an example of how a tuple is declared and used.

stonehenge = ('51.1739726374', '-1.82237671048')

print('Stonehenge latitude: ' + stonehenge[0])

print('Stonehenge longitude: ' + stonehenge[1])

We've used a tuple for the coordinates of Stonehenge, since we don't want anyone to be able to change them:

they're immutable, because Stonehenge isn't going anywhere (at least not anytime soon). Notice how we've

used round brackets () instead of square brackets [] when we created our tuple? That's how Python

knows it's a tuple we want instead of a list.

We can access the individual items in our tuple exactly the same way we access items in a list. The output of

our code above is shown below.

Stonehenge latitude: 51.1739726374

Stonehenge longitude: -1.82237671048

What happens if we try to modify one of our values?

stonehenge = ('51.1739726374', '-1.82237671048')

stonehenge[0] = 'something else'

Here's the output we get when we try to run this code:

$ python program.py

Traceback (most recent call last):

 File "program.py", line 2, in <module>

 stonehenge[0] = 'something else'

TypeError: 'tuple' object does not support item assignment

Are lists just arrays?

If you're familiar with other high-level programming languages, you've probably played with a data structure

called an "array" before. A list looks an awful lot like an array, and for most use cases it will more or less act

like one. In this course, you can think of a "list" and an "array" as being the same thing.

However, there are some subtle differences in Python between a list and an actual array, which you can

import and use. We'll leave you to Google for the difference if you're interested to dig into the details.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Lists and Tuples
Section 21.11

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/51/section/11
https://essentials.joincyberdiscovery.com/course/module/51
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/51/section/11
https://essentials.joincyberdiscovery.com/course/module/51

