
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: CUV7STBgao

Completed

< back to module

Modules > Module 21 – Python Programming 1 > Section 21.12 – Dictionaries

Skip straight to editor/terminal

A dictionary in Python is similar to a list in that it's a collection of "things" we can store together. Where it

differs from a list is the format in which that information is stored and retrieved.

If we wanted to represent Agent Q's closed and open case statistics, in a list we'd probably store it like this:

case_stats = [21, 12, 8]

print('Total cases: ' + str(case_stats[0]))

print('Solved cases: ' + str(case_stats[1]))

print('Unsolved cases: ' + str(case_stats[2]))

This code generates the following output:

Total cases: 21

Solved cases: 12

Unsolved cases: 8

This seems straightforward enough, but it's pretty fragile code. What if the list gets reordered or reversed? Or

if a new stat gets added into the list? Then we'd have to update all our print functions that call on a speci!c

index of our list for their data.

This is the kind of problem a dictionary is made for. It allows us to associate information together in helpful

pairs called "key-value pairs", which helps in making our data more understandable as well as making it easier

for us to get precisely the information we want from it without worrying about where it is in the list.

Using a dictionary, we'd represent the case statistics like this:

case_stats = {'total': 21, 'solved': 12, 'unsolved': 8}

Notice the difference between a list and a dictionary? The list uses square bracket notation [] whereas a

dictionary uses curly bracket notation {} . The dictionary also uses a "key: value" notation: 'total' ,

'solved' , and 'unsolved' are all keys, and 20 , 12 , and 8 are all values.

The format for dictionaries is always the same: key: value . In the example above, since our key is a string,

we've also wrapped our key in quotes (') while the values here are integers so they don't need quotes. Strings

are always in quotes, even in dictionaries.

You can also use an integer as the key and a string as the value: this is a completely valid dictionary as well,

though perhaps not as useful for us in this case (and we'll see why later in this section). But the below

example won't cause an error. Keys and values are pretty "exible parts of a dictionary.

case_stats = {21: 'total', 12: 'solved', 8: 'unsolved'}

So how do we get data from our dictionary into our output?

case_stats = {'total': 21, 'solved': 12, 'unsolved': 8}

print('Total cases: ' + str(case_stats['total']))

print('Solved cases: ' + str(case_stats['solved']))

print('Unsolved cases: ' + str(case_stats['unsolved']))

Instead of using the index number to !nd an item in our dictionary, we tell our output what key to look for,

and it will output the value it !nds associated with that key.

This is great, because now it doesn't matter what order our items are stored in: as long as it has the same key,

we'll always get the value we're looking for.

These kinds of data structures are used in a lot of programming languages, especially high-level ones.

Sometimes they go by different names: in PHP these are called "associative arrays", in Ruby they're known as

"hashes", and in Java they're known as "maps". But they all behave more or less the same, and follow a similar

structure of key-value pairing in the syntax.

Lists inside dictionaries

Like with lists, we can store different types of data within a dictionary. Let's add some more information to our

dictionary to describe Agent Q's case statistics and try out using a few more different data types.

case_stats = {'total': 21, 'solved': 12, 'unsolved': 8, 'month': 'June',

'percent_solved': 57.14, 'types': ['forensics', 'cryptography', 'web app']}

print('Month: ' + str(case_stats['month']))

print('Total cases: ' + str(case_stats['total']))

print('Solved cases: ' + str(case_stats['solved']))

print('Unsolved cases: ' + str(case_stats['unsolved']))

print('Percent solved: ' + str(case_stats['percent_solved']) + '%')

print('Types of cases: ')

print('\t' + str(case_stats['types'][0]))

print('\t' + str(case_stats['types'][1]))

print('\t' + str(case_stats['types'][2]))

The above code gives us the following output:

Month: June

Total cases: 21

Solved cases: 12

Unsolved cases: 8

Percent solved: 57.14%

Types of cases:

 forensics

 cryptography

 web app

Notice how we've embedded a list inside our dictionary linked to the key types ? We can access the

individual items in this list using the list index, which we've done here where we've called

case_stats['types'][0] . This tells the computer to look for the variable called 'case_stats' which is a

dictionary, and within that dictionary look for the key 'types', and within that list look for the item at index 0,

which is 'forensics' in our example above.

Dictionaries inside dictionaries

Unsurprisingly, we can also put dictionaries inside our dictionaries, like so:

case_stats = {'month': 'June', 'stats': {'total': 21, 'solved': 12, 'unsolved': 8,

'percent_solved': 57.14}, 'types': ['forensics', 'cryptography', 'web app']}

print('Month: ' + str(case_stats['month']))

print('Total cases: ' + str(case_stats['stats']['total']))

print('Solved cases: ' + str(case_stats['stats']['solved']))

print('Unsolved cases: ' + str(case_stats['stats']['unsolved']))

print('Percent solved: ' + str(case_stats['stats']['percent_solved']) + '%')

print('Types of cases: ')

print('\t' + str(case_stats['types'][0]))

print('\t' + str(case_stats['types'][1]))

print('\t' + str(case_stats['types'][2]))

This code will give us the exact same output we saw in our previous example, but gives our dictionary more

structure. We can start to see how powerful dictionaries can be when it comes to organizing our data. But we

can also see how quickly dictionaries can get large and dif!cult to read. Since programming languages are for

humans, let's use some formatting to make our code easier for us to read so we can see the structure of our

dictionary data more clearly.

case_stats = {

 'month': 'June',

 'stats': {

 'total': 21,

 'solved': 12,

 'unsolved': 8,

 'percent_solved': 57.14

 },

 'types': ['forensics', 'cryptography', 'web app']

 }

print('Month: ' + str(case_stats['month']))

print('Total cases: ' + str(case_stats['stats']['total']))

print('Solved cases: ' + str(case_stats['stats']['solved']))

print('Unsolved cases: ' + str(case_stats['stats']['unsolved']))

print('Percent solved: ' + str(case_stats['stats']['percent_solved']) + '%')

print('Types of cases: ')

print('\t' + str(case_stats['types'][0]))

print('\t' + str(case_stats['types'][1]))

print('\t' + str(case_stats['types'][2]))

There we go, that's a lot easier for us to read. Any time you're building a dictionary that's more than a few key-

value pairs long, it's helpful to format it like this to better understand what you're building.

Dictionaries inside lists

We can also create a list of dictionaries. Let's create a list with some simple case stats for Agent Q, Agent S,

and Agent J.

case_stats = [

 {'agent': 'Q', 'solved': 12, 'unsolved': 8},

 {'agent': 'S', 'solved': 15, 'unsolved': 5},

 {'agent': 'J', 'solved': 8, 'unsolved': 3}

]

print('Agent Q:')

print('\t Solved cases:' + str(case_stats[0]['solved']))

print('\t Unsolved cases:' + str(case_stats[0]['unsolved']))

print('Agent S:')

print('\t Solved cases:' + str(case_stats[1]['solved']))

print('\t Unsolved cases:' + str(case_stats[1]['unsolved']))

print('Agent J:')

print('\t Solved cases:' + str(case_stats[2]['solved']))

print('\t Unsolved cases:' + str(case_stats[2]['unsolved']))

This code gives us the below output:

Agent Q:

 Solved cases:12

 Unsolved cases:8

Agent S:

 Solved cases:15

 Unsolved cases:5

Agent J:

 Solved cases:8

 Unsolved cases:3

Mixing dictionaries and lists in different ways is incredibly powerful for us. For now, let's concentrate on how

we can modify and build dictionaries on the "y.

Modifying dictionaries

So what happens when Agent Q solves another case? Now we need to update her stats. Let's modify our

dictionary.

case_stats = {'month': 'June', 'total': 21, 'solved': 12, 'unsolved': 8}

print('Stats for ' + case_stats['month'] + ':')

print('\tTotal cases: ' + str(case_stats['total']))

print('\tSolved cases: ' + str(case_stats['solved']))

print('\tUnsolved cases: ' + str(case_stats['unsolved']))

case_stats['month'] = 'July'

case_stats['total'] = 22

case_stats['solved'] = 13

print('Stats for ' + case_stats['month'] + ':')

print('\tTotal cases: ' + str(case_stats['total']))

print('\tSolved cases: ' + str(case_stats['solved']))

print('\tUnsolved cases: ' + str(case_stats['unsolved']))

It's a new month, so we need to update a few pieces of information in Agent Q's stats. The !rst is, of course,

the month itself. We do that by calling on the month key in case_stats with case_stats['month'] and

giving it a new value, 'July': case_stats['month'] = 'July' . Then we also update 2 more pieces of

information in our dictionary following the same technique: the total case number needs to go up by 1, which

makes it 22, and the total number of solved cases also needs to go up by 1, which is 13. Agent Q's unsolved

cases number didn't change in July, so we can leave that one as it is.

The above code will output:

Stats for June:

 Total cases: 21

 Solved cases: 12

 Unsolved cases: 8

Stats for July:

 Total cases: 22

 Solved cases: 13

 Unsolved cases: 8

There's another way to update the numbers here that will prove very useful to us later, because it means we

don't have to do the math ourselves. We might as well let the computer do the arithmetic, and sometimes we

don't actually know what the original number was. We just know we want to increase whatever it was by a

speci!c value. In the example above, we want to increase Agent Q's total cases and solved cases both by 1.

Let's modify our code to get the computer to do this addition for us.

case_stats = {'month': 'June', 'total': 21, 'solved': 12, 'unsolved': 8}

print('Stats for ' + case_stats['month'] + ':')

print('\tTotal cases: ' + str(case_stats['total']))

print('\tSolved cases: ' + str(case_stats['solved']))

print('\tUnsolved cases: ' + str(case_stats['unsolved']))

case_stats['month'] = 'July'

case_stats['total'] = case_stats['total'] + 1

case_stats['solved'] = case_stats['solved'] + 1

print('Stats for ' + case_stats['month'] + ':')

print('\tTotal cases: ' + str(case_stats['total']))

print('\tSolved cases: ' + str(case_stats['solved']))

print('\tUnsolved cases: ' + str(case_stats['unsolved']))

This will give us exactly the same output as before, but notice how we've modi!ed lines 9 and 10. In line 9

we're setting case_stats['total'] to itself plus 1. The computer will !rst retrieve the current value of

case_stats['total'] , which is 21, then it will add 1 to that value to get 22, and !nally it will set the new

value of case_stats['total'] to be 22.

There's actually a useful short-hand way of specifying exactly this kind of 'self-incrementing' behaviour so we

don't have to write out case_stats['total'] + 1 , which is a bit wordy. We can use the += notation in

Python to help us out here.

case_stats = {'month': 'June', 'total': 21, 'solved': 12, 'unsolved': 8}

print('Stats for ' + case_stats['month'] + ':')

print('\tTotal cases: ' + str(case_stats['total']))

print('\tSolved cases: ' + str(case_stats['solved']))

print('\tUnsolved cases: ' + str(case_stats['unsolved']))

case_stats['month'] = 'July'

case_stats['total'] += 1

case_stats['solved'] += 1

print('Stats for ' + case_stats['month'] + ':')

print('\tTotal cases: ' + str(case_stats['total']))

print('\tSolved cases: ' + str(case_stats['solved']))

print('\tUnsolved cases: ' + str(case_stats['unsolved']))

We've changed lines 9 and 10 to use the += notation, so now instead of the longer statement

case_stats['total'] = case_stats['total'] + 1 we can use our short hand

case_stats['total'] += 1 which does exactly the same thing.

Adding things to dictionaries

Like we did with lists before, we can add things to our dictionary and even start with an empty one if we want.

Let's build Agent Q's stats dictionary from the ground up. We'll build up our dictionary slowly and output it at

different states so we can watch how it's built.

case_stats = {}

case_stats['month'] = 'June'

print(case_stats)

case_stats['total'] = 21

print(case_stats)

case_stats['solved'] = 12

print(case_stats)

case_stats['unsolved'] = 8

print(case_stats)

The above code will output:

{'month': 'June'}

{'total': 21, 'month': 'June'}

{'solved': 12, 'total': 21, 'month': 'June'}

{'solved': 12, 'unsolved': 8, 'total': 21, 'month': 'June'}

Adding a new key-value pair to our dictionary is exactly the same as updating an existing key-value pair. If the

computer !nds the key in the dictionary, it will update the value. If it doesn't, it will add the key and value to

the front of the dictionary. And since order doesn't matter in dictionaries (because we access everything we

need with the key) we don't mind what order things are in.

Removing things from dictionaries

If you want to remove information from a dictionary, you can use del :

case_stats = {'month': 'June', 'total': 21, 'solved': 12, 'unsolved': 8}

print(case_stats)

del case_stats['unsolved']

print(case_stats)

In this example, we've printed out our case_stats dictionary before and after we've used del to remove

the 'unsolved' key and its corresponding value, which you can see in the output:

{'solved': 12, 'unsolved': 8, 'total': 21, 'month': 'June'}

{'solved': 12, 'total': 21, 'month': 'June'}

Pretty straightforward, but remember: once you've deleted a key-value pair from a dictionary it's gone for

good!

Time Remaining: 59 mins Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Dictionaries
Section 21.12

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Create a list and dictionary structure

that includes information about your

own week. For each day, add

information about that day, including

things like:

Whether it's a school day or
weekend

What time you wake up

Any other regular activities you do
regularly on that day, such as piano
lessons or sports.

If you're in school, for each day that
is a school day add in information
about what classes you have on each
day.

There are a few different ways you

could structure this using dictionaries

and arrays, and you'll likely require both.

Step 2

Once you've got a dictionary and list

structure you like, try modifying it with

the methods and functions we talked

about in this section. How easy is it to

change things about your week? Are

there any changes to the structure you

want to make now that you've tried

modifying it?

Save

 _____ __ ______ __
 / ___/_ __/ / ___ ____/ __/ /____ _____/ /_
/ /__/ // / _ \/ -_) __/\ \/ __/ _ `/ __/ __/
___/_, /_.__/__/_/ /___/__/_,_/_/ __/
 _/___/ __ _ __
 / __/__ ___ ___ ___ / /_(_)__ _/ /__
 / _/(_-<(_-</ -_) _ \/ __/ / _ `/ (_-<
/___/___/___/__/_//_/__/_/_,_/_/___/
CUV7STBgao@7bfebac129ee:~$

week = {'Monday': {'weekday':'y', 'wakeup':'7:30', 'activities':'school'}}

printprint(week['Monday']['wakeup']

1
2
3

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/51/section/12
https://essentials.joincyberdiscovery.com/course/module/51/section/12
https://essentials.joincyberdiscovery.com/course/module/51
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/51/section/12
https://essentials.joincyberdiscovery.com/course/module/51

