
100% complete

Completed

< back to module

Modules > Module 24 – Python Programming 4 > Section 24.9 – Programming Tips: Debugging

If there's one thing that's inevitable when you're a programmer, it's bugs. There are always more bugs to !nd

and !x, in particular as your program starts to get more complex. And where there are bugs... we must debug!

Debugging is a skill like any other skill, and we get better at it with experience and practice. It's one of the

areas of programming that beginners can struggle with the most, and it's easy to understand why: debugging

can be hard! Sometimes it's a tricky combination of detective work and research to get to the bottom of a

particularly subtle bug.

So when something in our code is going wrong, how do we begin?

Step 1: !nd a way to replicate the issue reliably

The !rst step is to !gure out how to cause the bug to happen. If you can do this reliably - if you know the

exact sequence of steps that will get the bug to appear every time - that's the !rst big hurdle crossed.

Until we can reliably replicate a bug, it is very, very dif!cult to !x it. It's like trying to !nd a blue dot on a wall in

a dark room: if we can't see, how are we ever going to !nd it?

Some bugs are easy to replicate. They're usually the ones that are easy to !nd and easy to troubleshoot and

!x. The sneaky, intermittent bugs are more dif!cult. Sometimes programmers get reports of weird bugs from

other people, but if those people can't give us a way to replicate it and see the bug in action for ourselves,

then there isn't much we can do to !x it.

Step 2: !gure out where the bug is in the code

The next step when we can reliably recreate the bug is to start tracing it to the source. At this point we're not

trying to !gure out why it's happening, we're more concerned with understanding where in the code the bug

is being created.

Sometimes this is straightforward: a traceback or exception may direct you to the exact !le and line number

where the bug is. But sometimes it can be quite tricky to track a bug to its source.

What makes this extra tricky is when the error or exception getting thrown is at line 200, but it's not anything

in this code block that's actually causing the bug. The bug may be caused at line 50, and not revealing itself

until 150 lines later.

Consider the example of a ZeroDivisionError exception. This is caused if the program is asked to divide a

number by 0. The exception is thrown at line 200, but it's likely the 0 was created farther back in the stack.

The bug could be 10 steps before this, when a 0 value was assigned to a variable in an unexpected way, and

then this value was passed across several functions without causing a problem until it hit this one spot in the

code, where it was stopped in its tracks.

So how do we !gure out where a bug is happening in our code? It can take some detective work, but here are

some tips to help you track it down.

Step backward through your code. Start at the point in the code where the bug was exposed, then slowly
step backward through your program's logic, re-reading your code and reviewing it carefully.

Print out variable, list, and dictionary values at each step. As you walk back through your code, print out
the values of variables, lists and dictionaries at every point they are passed from function to function, or
modi!ed by a function, to make sure the values are as you expect at that point.

Comment out code to focus on and run only speci!c sections of your program. The beauty of
comments is that we can comment out anything: even code! We can turn off bits of functionality without
having to delete and re-write something we've already done. By commenting out sections of code, we can
"backtrack" and turn off functionality selectively to see how our program runs without it. If our bug
disappears after commenting out 1 particular line or a speci!c function... bingo! There's a good chance
that's the culprit.

Step 3: understand why the bug occurred

Once we've isolated exactly where the bug is happening, the next step is understanding why the bug is

happening. What's causing it, exactly? Sometimes this is very easy to see once you !nd where the bug is

happening, and other times the issue can be more complicated, or related to misunderstanding how a library

or function you're using works.

This is the step where you might end up having to spend a lot of time researching and searching on Google to

understand why the bug is happening. And it's important to understand why, because if we don't then we

might not !x it correctly.

Sometimes we think we're at this step, and then after some research we realize we haven't actually found the

bug yet, and it's still farther back in the stack. For tricky bugs, we may have to bounce between step 2 and

step 3 and back again a few times until we get to the heart of the problem.

In some cases we can eliminate the bug by guessing what the !x is and making it. And if the bug appears to

go away with this !x then the problem is solved... maybe. If we don't fully understand what went wrong in the

!rst place, we can't really be sure the bug is gone.

Step 4: refactor to eliminate the bug

Once we know exactly where the bug is and why it's happening, all that's left is to make revisions to our code

to eliminate the source of the bug.

Hopefully the bug you !nd is a relatively easy !x... but sometimes, a bug can be a bit of a nightmare to !x, in

particular if it's baked in at the most fundamental level of how your program works.

In some situations, it may be impossible to eliminate the bug entirely in the time you have to work on the

problem. If this is a situation you !nd yourself in - and all programmers do from time to time - then do what

you can to minimize the bug or create useful error messages to get the user back on track after an error as

smoothly as possible.

It's always better to !x a bug if you can, even if it means rewriting and reworking a large chunk of your code.

Otherwise, it will continue to be a thorn in your side, and will likely cause more problems down the road.

Take a break... but don't give up!

Debugging can be a frustrating exercise. Sometimes it can feel like an impossible task, and all we want to do is

throw our computer out a window and never program again.

Every developer feels this way from time to time when they hit a particularly troublesome bug. Sometimes

the best thing to do is to walk away from the problem for a little while. Do something else, and come back to

the problem the next day with a fresh outlook. Often a debugging problem that seemed unsolvable yesterday

is much easier to sort out when we come back refreshed and relaxed.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Programming Tips: Debugging
Section 24.9

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/54/section/8
https://essentials.joincyberdiscovery.com/course/module/54
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/54/section/8
https://essentials.joincyberdiscovery.com/course/module/54

