
100% complete

Completed

< back to module

Modules > Module 24 – Python Programming 4 > Section 24.6 – Procedural vs Object-Oriented Programming Paradigms

When we talk about programming paradigms we're talking about the different approaches we can take in

general toward how we create programs. If we look up the word "paradigm" in the Oxford English Dictionary,

the !rst two de!nitions are:

A typical example or pattern of something; a pattern or model.

A world view underlying the theories and methodology of a particular subject.

So when we think about programming paradigms, what we're considering is the larger way in which we

structure and organize our code, especially when trying to build complex programs.

There are a several different programming paradigms, but in this course we're only going to talk about the 2

most common ones you're likely to hear about when writing Python programs: procedural programming and

object-oriented programming.

Procedural programming

Procedural programming is the paradigm that new programmers tend to gravitate toward, and is most often

represented in beginner tutorials and guides. We've regularly seen procedural programming in most of the

Python code examples found in this very course.

When we write procedural code, we break down tasks into a series of steps. Frequently repeated tasks are

split apart into reusable functions that can be called at any time, often by any other function. Both humans

and the computer run through the program step by step.

Another quality of procedural code is that the logic and the data are often quite separated. Each step gets

handed the speci!c data it needs to complete that step, and then hands off some data to the next step.

Procedural programming is where almost every programmer starts. That's because it's very good for creating

small to medium sized programs with minimal to moderate amounts of complexity. If you need a program to

parse a CSV !le and transform it into a slightly different CSV !le, or build a port scanner, or create a rock-

paper-scissors game, procedural programming will do the job very well for you.

Object-oriented programming

Object-oriented programming uses classes to model objects, capturing both their attributes - the data that

describes them - and their methods - the behaviours they have. By thinking about programs this way, we tie

together data with the functions that create and modify that data.

This style of programming thinks about most things as objects, and tries to model them as such. If we were

writing code to handle a registration system, we'd likely have a User() object. That object would know

everything about the user, such as their name, their email address, their account creation date and time, and

their password. But it would also know how to modify that data as well, using methods such as

change_user_name() and change_user_email() .

What's useful about this is we can now move this object through our program and use it in lots of different

ways. Registering a new user is about populating all the important attributes of the object before the data is

saved. Creating a sign in form for existing users can also make use of this same user object, accessing

information about the user's password and username. And a pro!le page that displays the user's information

to others can also use this same object. The logic we build in our program centres around creating,

manipulating, and passing around objects.

Object-oriented programming tends to require more abstract thinking, and a strong ability to spot reusable

patterns that can be reasonably grouped together into objects. But it can be very powerful, and make large,

complex programs much easier to understand and maintain.

Which paradigm should you use?

Well... it depends.

Some languages don't support object-oriented programming. C, for example, doesn't have a concept of

objects or classes. But many languages do allow for the object-oriented paradigm, and it is very popular

among experienced programmers.

It also depends on your experience. If you're brand new to writing code, procedural programming is a good

way to get better at understanding the basic concepts of how to program without having to also juggle the

extra abstraction that come with building things as objects.

Object-oriented programming is also quite a lot of setup. It can pay off big when we create large, complex

programs, but for smaller one-task problems that need solving, it's often too much overhead given a small

set of functionality. Simple programs are generally better suited to the procedural programming style.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Procedural vs Object-Oriented
Programming Paradigms
Section 24.6

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/54/section/5
https://essentials.joincyberdiscovery.com/course/module/54
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/54/section/5
https://essentials.joincyberdiscovery.com/course/module/54

