
100% complete

Completed

< back to module

Modules > Module 24 – Python Programming 4 > Section 24.5 – Defensive Programming

Defensive programming isn't really a paradigm like procedural or object-oriented, but it is a way of

programming that tries to expect the unexpected, in order to prevent bugs and unexpected behaviour from

occurring.

Assertions

For example, let's consider a function which takes an integer value and does something with it. When we

wrote the function, we expected only positive numbers would be passed in.

If later on we forgot about this assumption and pass in a negative integer, the function may not break, but it

might cause a subtle error in your program further down the line, which could take a long time to notice and

sort out.

Wouldn't it be better to check within your function if the value passed in was negative, and throw an error

with a useful error message at that time? The program would stop working, but we'd know clearly why it

stopped working. This is often better than introducing a subtle bug that is dif!cult to spot.

def no_negatives(number):

 assert number >= 0, 'negative value passed to the no_negatives() function!'

 print(number)

no_negatives(5)

no_negatives(-2)

And here's the output when we run this code:

$ python program.py

5

Traceback (most recent call last):

 File "program.py", line 7, in <module>

 no_negatives(-2)

 File "program.py", line 2, in no_negatives

 assert number >= 0, 'negative value passed to the no_negatives() function!'

AssertionError: negative value passed to the no_negatives() function!

Notice we have a useful error message here that tells us exactly why the program stopped working. The

assert function will cause the program to crash with the error message we provided if a condition is not met.

In this case, if the integer passed into the function is not 0 or more, then the program will crash.

We can also do multiple assertions like so:

def no_negatives(number):

 assert isinstance(number, int), 'non-integer value passed to noNegatives()

function!'

 assert number >= 0, 'negative value passed to the noNegatives() function!'

 print(number)

no_negatives(5)

no_negatives("hello")

no_negatives("-2")

Here, we are making sure that:

The data type passed into the function is an integer.

The data is a positive number.

Tests

So far, we've only been making sure variables within a function are appropriate values. How about testing if a

function is working as expected overall? We can write tests for a function to check their behaviour.

Take this function as an example:

def mult(x, y):

 a = abs(x)

 b = abs(y)

 return a * b

This function is supposed to take two parameters and multiply them together, but we've made an error here,

where any negative numbers passed into the function are positive.

If you test the function like this:

print(mult(5, 5))

We'll get the expected result of 25, so we might miss this subtle bug.

Let's write a test for this function.

def test_mult():

 assert mult(5, 5) == 25, 'mult test failed 5 * 5'

 assert mult(5, -5) == -25, 'mult test failed 5 * -5'

 assert mult(-5, -5) == 25, 'mult test failed -5 * -5'

When we run this test function, it will try a variety of possible combinations to make sure it's getting the

expected result. We can have these tests run every time you run the program and so we can be alerted if

someone makes a change in the code that breaks some functionality down the line.

These kinds of tests can be very useful, but they are only as useful if they are written well and cover all

possible test cases and pathways through the code. If we make a mistake in our test, then the test is going to

be useless.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Defensive Programming
Section 24.5

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/54/section/4
https://essentials.joincyberdiscovery.com/course/module/54
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/54/section/4
https://essentials.joincyberdiscovery.com/course/module/54

