
100% complete

Steps

Editor - !le: ~/output.py

Terminal - user: VMY0hjfHJv

Completed

< back to module

Modules > Module 24 – Python Programming 4 > Section 24.8 – Programming Tips: Code Smells

Skip straight to editor/terminal

If you're familiar with programming and have been writing code for a while, even as a beginner, you may have

heard the term "code smell" before. This is a term programmers generally use to refer to visual symptoms

that code has deeper underlying problems. Often, code that "smells" is confusing to understand. And since

code is for humans, that often spells trouble. Code that is dif!cult to understand is hard to maintain, and

dif!cult to ensure is working properly, with each possible outcome fully tested.

This section will review some common code smells and why we try and avoid them.

Too much nesting

Let's consider this code:

for item in items:

 if a:

 if e or f:

 for thing in item:

 if g and h:

 if j:

 # Do this thing

 else:

 # Do this thing slightly differently

 else i or j:

 # Do something else

 else

 # Do something different

 else

 for other_thing in item:

 # Do another different thing

 elif b:

 for thing in item:

 if i or j:

 # Do another thing

 elif g:

 if h:

 # Do a thing

 else:

 # Do a different thing

 else:

 for other_thing in item:

 if g and h:

 # Do something

 if g or i:

 # Do another thing

 else

 # Do somethig different

Look at all that nesting! It gets 6 layers deep in some places. This kind of nesting of loops and if statements

inside each other generates a lot of indentation, which makes code dif!cult to read.

But - even more importantly - code that has been heavily nested makes it very dif!cult to understand how

many different paths your code has to follow, and dif!cult to tell if your code covers all the cases it needs to

cover.

Heavily nested code can almost always be simpli!ed and made easier to understand and test by breaking

apart the logic into smaller functions. If your code starts to look like the sample above, it's time to pick it apart

carefully and break your code down into smaller, easier to follow pieces.

Keep your functions small

Typically, the longer a function is, the less readable and less maintainable it is. This rule is similar to the rule

about nesting, and the 2 rules often go hand-in-hand: quite often one of the reasons functions get long is

because we have too many nested loops or conditionals, or are trying to have one function check too many

different cases. When you create functions, try to think about them as individual bricks. If bricks were huge

and had a complicated shape that only !t together in 1 way that would make them a lot less useful.

In a previous section, we wrote a little program to help Agent J decide if he had time to get coffee. In that

example, we broke down the code into smaller functions. Here's the same code in 1 larger function:

def can_agent_j_get_coffee(minutes_available):

 print('Does Agent J have enough time to get coffee this morning?')

 people_in_line = ['Unknown Person A', 'Agent M', 'Agent Q', 'Unknown Person B']

 estimated_wait_time = len(people_in_line) * 2

 if estimated_wait_time < minutes_available:

 print('Yes, plenty of time.')

 else:

 if 'Agent Q' not in people_in_line:

 print('Agent Q isn\'t in line... no coffee for Agent J today.')

 position_agent_q = people_in_line.index('Agent Q')

 wait_time_for_agent_q = (position_agent_q + 1) * 2

 if wait_time_for_agent_q < minutes_available:

 print('Agent J can swap places with Agent Q and get his coffee.')

 else:

 print('Not even Agent Q can save Agent J today... no coffee today.')

can_agent_j_get_coffee(8)

There's a lot going on in the can_agent_j_get_coffee() function, and if you have to work your way through

it to modify it, it will take extra time. Additionally, if you're trying to add a feature, you may !nd it dif!cult to

add. For example, what if we needed to add in some additional checks to see how badly J wanted coffee? Or

checks to see how important it was to be on time for his meeting? Adding these pieces of functionality into

this one function would really start to make things dif!cult to manage.

Here's the code broken apart into smaller bits of functionality:

def can_wait_for_coffee(minutes_available, people_in_line):

 estimated_wait_time = len(people_in_line) * 2

 if estimated_wait_time < minutes_available:

 return 'Yes, plenty of time.'

 else:

 return can_swap_with_agent_q(minutes_available, people_in_line)

def can_swap_with_agent_q(minutes_available, people_in_line):

 if 'Agent Q' not in people_in_line:

 return 'Agent Q isn\'t in line... no coffee for Agent J today.'

 position_agent_q = people_in_line.index('Agent Q')

 wait_time_for_agent_q = (position_agent_q + 1) * 2

 if wait_time_for_agent_q < minutes_available:

 return 'Agent J can swap places with Agent Q and get his coffee.'

 else:

 return 'Not even Agent Q can save Agent J today... no coffee today.'

Ask our question

print('Does Agent J have enough time to get coffee this morning?')

Get our answer

people_in_line = ['Unknown Person A', 'Agent M', 'Agent Q', 'Unknown Person B']

print(can_wait_for_coffee(8, people_in_line))

This is already an improvement over having 1 large function. And even here we can spot another place where

we can further refactor to break apart another function that checks if Agent Q is in the line separate from the

logic that checks if she's far enough ahead in line to make the swap worth it. That would make our code even

more modular, and would later allow us to more easily allow J to check for other agents in line who owe him

a favour, not just Agent Q.

As a general rule, if your function starts to get more than 40 lines long then it's de!nitely time to roll up your

sleeves and start to do some refactoring, but as we can see above sometimes even a 10 line function can be

broken into smaller pieces. Break your big functions down into smaller ones that can work together to get the

job done, and can be useful to you in a larger variety of situations.

Avoid code duplication

Let's keep looking at the above example. What if both Agent Q and Agent S owe Agent J a favour? We have a

function can_swap_with_agent_q() that checks for Agent Q in the line, but not for anyone else. It's tempting

to just copy-paste this function and call it can_swap_with_agent_s() , change a few lines, and incorporate it

into the program too.

Ok... but what about other agents that might owe Agent J a favour in the future? What if 20 agents owe

Agent J a favour? We might have 20 different can_swap_with_agent_x() functions in our code, all basically

the same. And then what happens if we !nd a bug in that code and have to !x it? We'll have to change all 20

functions! What a terrible, tedious task!

If you !nd yourself tempted to copy and paste a piece of code in order to solve a problem, stop yourself if you

can. The better solution is to ask: what is the common task we need both of these pieces of code to do, and

how do we refactor our code so that if there's a bug or a change needed later, we only have to !x it in 1 place?

Your editor content has been saved, but we detected a problem with your server connection. Please reset your connection. [Info]

Time Remaining: 59 mins Language: Python 2 | Python 3 | C Theme: Dark | Light Status: Server: Reset Log: Download

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Programming Tips: Code Smells
Section 24.8

Editor

Completed

< back to module

Editor Terminal Server

Step 1

Use the editor below to refactor the

code in the third example above to

allow Agent J to check for a list of

agents who owe him favours and might

be willing to swap with him. Try to avoid

the 3 "code smells" above where you

can.

Save

 _____ __ ______ __
 / ___/_ __/ / ___ ____/ __/ /____ _____/ /_
/ /__/ // / _ \/ -_) __/\ \/ __/ _ `/ __/ __/
___/_, /_.__/__/_/ /___/__/_,_/_/ __/
 _/___/ __ _ __
 / __/__ ___ ___ ___ / /_(_)__ _/ /__
 / _/(_-<(_-</ -_) _ \/ __/ / _ `/ (_-<
/___/___/___/__/_//_/__/_/_,_/_/___/
VMY0hjfHJv@8ee397b89bc0:~$
Error

Your editor content has been saved, but we detected a problem with your server connection. Please reset your con
nection. [Info]

 1

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/54/section/7
https://essentials.joincyberdiscovery.com/course/module/54/section/7
https://essentials.joincyberdiscovery.com/course/module/54
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/editor-troubleshooting
https://essentials.joincyberdiscovery.com/course/module/54/section/7
https://essentials.joincyberdiscovery.com/course/module/54

