
100% complete

Completed

< back to module

Modules > Module 24 – Python Programming 4 > Section 24.3 – Using Python Documentation

So far we've been highlighting which functions to use in our example programs, but as you start to write your

own programs, you'll need more than what we've covered in this course to solve some of the problems you

run into. Knowing which standard Python functions exist, which to use when, and how they work is

something that comes from a combination of practice, research, and knowing where to !nd the common

reference documents.

Python has an extensive documentation, which lists out the standard provided objects, functions, and

methods, as well as the parameters they accept and the values they return. This documentation is very

useful: experienced programmers have to look up information all the time, in particular when they need to

use some of the less-frequently used Python tools in their work.

The !rst step is to look up the documentation for the version of Python you have installed. We can !nd out

which version we have by bringing up the Python interactive console, accessed by running python on its

own in the terminal.

In the above example we are running Python 2.7.8. To exit out of the Python interactive console, you need to

use the quit() function, which is also pictured above.

So now let's !nd the documentation for Python 2.7 with a Google search. We quickly get a result of:

https://docs.python.org/2.7/

As an example, let's take a function from the math library and see if we can !nd out how to use it from the

documentation alone. Let's say we want to do a calculation such as 2 ^ 18 (2 to the power of 18).

We typed in 'power' into the quick search in the documentation, and the third result from the top was "9.2.

math - Mathematical functions". That sounds promising!

Clicking on it takes us to the page with a bunch of mathematical functions in it. Scrolling down, or using your

browser's !nd tool to !nd "power" on the page reveals the below text.

math.pow(x, y)

Return x raised to the power y. Exceptional cases follow Annex 'F' of the C99 standard

as far as possible.

In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or

a NaN.

If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is

undefined, and raises ValueError.

Unlike the built-in ** operator, math.pow() converts both its arguments to type float.

Use ** or the built-in pow() function for computing exact integer powers.

Changed in version 2.6: The outcome of 1**nan and nan**0 was undefined.

That is quite a lot of information. First of all, we can see that there is a built-in ** operator that we could use

instead of this function.

E.g. 2 ** 18

That could work. What other options do we have?

There is also a built-in pow() function, which could also work.

And !nally, there is this math.pow() function, which is similar to pow() except it converts both of the

arguments it receives to "oats (remember, these are numbers with a decimal point).

Notice the decimal point at the end of the result in this third example. It's a small, but subtle difference and

one we would likely never have known about without reading the documentation.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Using Python Documentation
Section 24.3

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/54/section/2
https://essentials.joincyberdiscovery.com/course/module/54
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/54/section/2
https://essentials.joincyberdiscovery.com/course/module/54

