
100% complete

Completed

< back to module

Modules > Module 24 – Python Programming 4 > Section 24.7 – Programming Tips: Getting Started

One of the most dif!cult transitions for a new programmer to make is switching from following a tutorial or

series of examples - like you've seen in this course - to creating your own program. When you look at code

someone else has written, it seems very straightforward and easy as long as you know the syntax. But as

soon as you have a blank code editor open, it can be dif!cult to know how to get started.

Be speci!c about the problem you are trying to solve

Programming is mostly about solving problems. If you want to build a program to do something, the !rst step

is to be as speci!c as you can about exactly what you want your program to do.

Perhaps we have a website that we want to ensure is always running, and if for any reason it goes down we

want to be noti!ed.

This is de!nitely a problem that code can help us solve! But before we can start writing any code, we have to

make some important decisions. For example, before we can write a single line of code, we have to decide:

How do we want to be noti!ed? Via email? Maybe via text message?

Do we want to be noti!ed if our website is only down for 1 minute? By the time we get to a computer to
look at the problem, maybe it will have already come back online. Maybe we only want it to alert us if the
site is down for at least 10 minutes.

If we can't get to a computer to look at the problem right away - perhaps it will take us an hour to drive
home to get to our computer - do we want to keep getting an email or text message every 10 minutes?

It's helpful to start by writing down exactly what you want the program to be able to do. In this example, we

might decide on the following pieces of functionality we want our program to have:

The program should check our site every 10 minutes. If it is down for at least 2 checks in a row - a
minimum of 10 minutes - it should send an alert.

The program should alert us via a text message.

The text message should include the date and time at which our program !rst detected our site was down.

No further text message should be sent after the !rst indicating our site is down, but the program should
keep checking it.

If the site comes back up after we have received a text message indicating it was down, our program
should send a text message letting us know, and include the date and time when the program detected
our site was back up.

These 5 bullet points give us a very clear idea of what we need to build, and exactly what we want it to do

when it's !nished. It always helps to think through what we want to achieve before we start writing any code.

Break down large problems into smaller ones

Ok, now we know what we want to build... but how do we know where to start?

Next, we should start breaking down our functionality into a smaller series of problems we have to solve. A

good way to do this is by writing pseudocode. Pseudocode is a way of starting to think like a programmer but

without worrying about syntax or the details around making real code work. It's all about wrapping our head

around the logic of what has to happen in order for our program to do what we need it to.

Let's create a little bit of pseudocode to help us understand the logic we'll need to implement for the

monitoring program we want to build.

EVERY 10 MINUTES, check if my website is still up.

IF website check fails:

 IF it is the first time in a row a check has failed:

 THEN remember one check has failed and store the date and time.

 ELSE IF it is the second time in a row a check has failed:

 THEN remember two checks have failed,

 AND send me a text message containing the date and time

 of the first check to fail.

 ELSE is more than the second time in a row a check has failed:

 THEN remember the number of times in a row the check has failed.

ELSE the check has passed:

 IF this check has passed after previously failing a min of 2 checks in a row:

 THEN send me a text message containing the date and time of this check.

 ELSE this check has previously failed only 1 check in a row,

 OR has not failed the previous check:

 THEN do nothing

You don't have to use a speci!c style of pseudocode or special syntax. The idea of pseudocode is to help us

understand in our own human brains what the broad structure of logic is, and to get an idea of what order we

should start solving our problems in.

This pseudocode gives us some idea of how we probably want to tackle this project. Here are some things we

can start to understand about our unwritten program looking at this pseudocode:

We'll need some kind of loop, which we can tell because we want something to happen every 10 minutes.
In this case, it's probably going to be an in!nite loop, because we want to just keep running until we shut it
down manually.

We need to be able to count and remember how many times our check has failed. We have a very speci!c
action we need to take at a speci!c count - when the check has failed 2 times in a row - so we need to
keep track of this.

We also need to save and keep track of the date and time of the !rst failed check. If the site fails twice in a
row, we want to send the date and time of the !rst failed check rather than the second.

If a check passes after having previously failing 2 checks in a row, we need to send another text message
and also reset our failed check counter back to 0, since in this program we only care about failed checks if
they happen one after the other.

These are all smaller, self-contained little problems we can solve one-by-one.

Work on 1 small piece at a time

Many new programmers try to write an entire program at once, but experienced programmers know that a

better strategy is to work on 1 piece at a time, and slowly build a program up piece by piece.

We know in this case we need a loop that will check if our website is up and responding every 10 minutes.

Forget about everything else - all the functionality around what to do if the check succeeds or fails - and start

with solving just that problem. Create a little piece of code that just checks a website every X minutes and

returns a pass or fail if that website is up. Create a simple program that just prints PASS or FAIL at that point.

After we get that working nicely, what's next?

There are 2 paths to follow here, PASS or FAIL. Let's pick one and do the next piece of that path. In this case,

it's probably best to pick the FAIL path !rst. Why? Because of this bit of pseudocode we wrote:

ELSE this check has previously failed only 1 check in a row,

 OR has not failed the previous check:

 THEN do nothing

In order to go down the PASS path, at some point we need information from the FAIL path according to our

pseudocode logic. That means it makes more sense to work on the FAIL path !rst in this particular case.

In the FAIL path, all our options from here require us to be able to count the number of times a check has

failed in a row. So the next problem we can solve is to add a "fail counter" to our program that tracks the

number of times in a row our program fails, and if it passes after previously failing, we reset the counter.

After we get that bit working, we have a program that does only the following:

It checks to see if a website is up every 10 minutes.

If the website check fails, it increments a failed check counter, prints out the number of failed checks, and
prints the string FAIL.

If the website check passes, it resets the failed check counter to 0, prints out the number of failed checks,
and prints the string PASS.

Good progress!

After this, we would pick another small piece of the needed functionality and add that in. Eventually, after we

add little features one by one, we'll have our entire program.

Programming is best done iteratively. We isolate one small piece of functionality and write code to solve just

that problem, and only that problem, creating a very simple program. Then we tackle the next small piece of

functionality and add that into our program so it is slightly more complicated. We do this again and again,

slowly building up our program piece by piece and problem by problem.

Sometimes when we add a new piece of functionality we have to modify previous things we've built. That's

ok! Refactoring is an important part of making progress in programming.

Test your code frequently

It's tempting to try and write an entire program or feature from start to !nish in code before testing it... but

this is rarely a good strategy. It's better to make small changes, then run and test your code and see if that

change is doing what you expect.

The problem with making many changes at once before testing is it becomes more dif!cult to understand

which change caused the error. If you test after making a small change, you know right away that the change

you made is probably the reason for the error, so it becomes much easier to debug.

Quite a lot of the time programmers spend writing code is spent printing out variables, arrays, and object

attributes to the screen at various steps in the program so we can understand what's going on, and if it

matches what we're trying to do. It's a very rare programmer who can write 1000 lines of code and have it

work perfectly the !rst time... and if it did happen most people would consider it a "uke. Build in small pieces,

and test frequently.

Error messages are useful

Programmers love error messages - seriously. Error messages and exceptions are great helpers! They give us

helpful information about where our program has gone wrong so we can !x the problem more quickly. And

often they expose cases we haven't considered yet: such as when a user inputs a string like "zero" instead of

the number 0. When you see an error it doesn't mean failure, it means progress.

Always read your exception and error messages closely: they have helpful information to guide you on how to

!x them. They'll usually come with a traceback to show you where in the code the error occurred, and give

you some idea of what type of error it is, such as a syntax error or a divide by 0 error. If you haven't seen the

error message before, Google it! You'll almost certainly !nd someone who has had a similar problem before,

seen that error, and has !gured out how to solve it.

Revise, rebuild, refactor

As the saying goes, "Rome wasn't built in a day". That applies to programming too. Programming takes time,

and quite often requires a lot of revisions. Sometimes we have to start writing code that doesn't quite work in

order to understand how to build code that does work. This is entirely normal and every programmer - from

the beginner to the expert - has to regularly rewrite and refactor their code. If anything, experts probably

refactor their code more often than beginners do.

Sometimes we have to revise larger portions of our code when we add in new features. That's ok, and also

entirely normal! Adding new features often doesn't just add new functionality, it often changes existing

functionality, sometimes in subtle ways.

Because programming is iterative, we revise the same bit of code over and over again.

Back to main dashboard >

Copyright 2020 SANS. Version 1.8.1

Sign out

Programming Tips: Getting Started
Section 24.7

Text

Completed

< back to module

https://essentials.joincyberdiscovery.com/course/modules
https://essentials.joincyberdiscovery.com/course/module/54/section/6
https://essentials.joincyberdiscovery.com/course/module/54
https://hub.joincyberdiscovery.com/
https://essentials.joincyberdiscovery.com/sign-out
https://essentials.joincyberdiscovery.com/course/module/54/section/6
https://essentials.joincyberdiscovery.com/course/module/54

