H:\NATIONALS\2. DATABASE Topic\SQL 2019\SQL Db Practice\ Nat 5 SQL Practical Tasks 1 FM JS ANSWERS
SQL
Queries use a type of programming language called a "special purpose programming language". The name of this programming language is "SQL" which stands for Structured Query Language. It is pronounced either S-Q-L or "sequel".
Structured Query Language is a powerful tool used to manipulate databases.
Microsoft Access provides a graphical user interface to query our database without using SQL using the "Query Design View" and the "Query Wizard".
Any query created with these tools can be viewed in the SQL view to examine the code that Access generated. At National 5 level you will be expected to create queries without using the Graphical User Interface.
You will be expected to be able to describe, exemplify and implement queries using SQL.
About these activities
You will be constructing SQL queries in Microsoft Access using ‘Query Design’ then changing the view to ‘SQL’ view.
You will use the SHS database located in <directory>.
The queries have the following formatting in this booklet:
· Red – SQL command keyword
· Blue – table name
· Orange – field name
· Green – data values

To open SQL

[image:]Go to Create/Query Design

[image:]Select the ‘View Menu’ and select SQL

[image:]A blank screen like the one below should appear;

The SQL commands must be typed in.
Save each query every time.

SELECT Queries
The SELECT command is the command to show a set of records. For example, to show all the records in the ‘Houses’ table we would use the command:
SELECT * FROM Houses;
In the above command the * stands for ‘all’ and the FROM command is used to choose a table to return records from. A SQL statement must end with a ‘;’ (semi-colon).
In plain English: Show all records from the Houses table

[image:]Try this task as save it as ‘SQL Intro’.

Task 1
Copy and paste query ‘SQL Intro’, save as SQL Task 1 and you are ready to continue with SQL.
Amend the query to show all records from the Students table, and then execute this query in Microsoft Access.
[image:]SELECT * FROM Students;

Task 2 SELECT WHERE (Text values)
You can make your results more useful by using SELECT queries with a condition by using the WHERE command:
SELECT * FROM Houses WHERE house = "Fiddich";
(note: SQL is not case sensitive)
In the above command we are still showing all (*) records from the Houses table but only where the value in the ‘house’ column is equal to "Fiddich". Any text values must be enclosed within a set of speech marks.

Create a query to show all records from the Students table for pupils in ‘S3’. You must plan the query first below.
[image:]SELECT ______ FROM _________ WHERE __________________;

Now execute this query in SQL. Save your query as ‘SQL task 2’.
How many students are in this table? 34

Task 3
A note on WHERE
When possible, it would be best to use the WHERE command to find unique values such as the record's primary key, this becomes more necessary when working on updating records or deleting records.
SELECT WHERE (Number values)
Working with conditions with number values is very similar to the previous example.
To show all pupils aged 14 we would use the following query:
SELECT * FROM Students WHERE age = 14;
Note the number is not in speech marks (as it is not text).
3(a) Run this query in SQL.
[image:]How many students are aged 14? 19 students

[image:]Task 3(b)
In plain English: Show all the records from the Students table where the gender is male.
Write the query: SELECT ________ FROM _________ WHERE ________ = _________;
SELECT * FROM Students WHERE gender = "male";

How many male students are there? 100
3(c) In plain English: Show all the records from the Students table where the gender is female.
Write the query: _____________________________________
SELECT * FROM Students WHERE gender = "female";
[image:]How many female students are there? 100 and what is the full name of the last female student in the query. Laurel Whiting

[image:]3(d) In plain English: Show all the records from the Students table where the student is in S4 (hint: year is a text field).
Write the query: _____________________________________
SELECT * FROM Students WHERE year =”S4”;
How many students are in S4? 31 students

[image:]3(e) In plain English: Show all the records from the Students table where the student is in Rinnes house.
Write the query: _____________________________________
SELECT * FROM Students WHERE house=” Rinnes”;

How many students are in Rinnes? 63 students

Task 4
We do not always need to check for equality (something being equal-to, e.g: age = 14). We can use other operators such as less than (<), less than or equal to (<=), greater than (>) and greater than or equal to (>=).
SELECT * FROM Students WHERE age <14;

4(a) In plain English: Show all the records from the Students table for each record where the value in the age column is greater or equal to 15.
[image:]Write the query: _____________________________________
SELECT * FROM Students WHERE age >=15;
How many students are aged 15 and above? 112 students

Selecting Individual Fields
The whole table does not need to be selected in a SQL query. One or more individual fields can be selected, with a comma between the name of each field (,). The field name has to be written exactly as it is stored in the database.
For example:
[image:]SELECT first_name, last_name FROM Students WHERE age <14;
In plain English: Show the first_name and last_name from the Students table for each record where the value in the age column is less than 14.

4(b) Create a query to show the fields id, first_name and last_name from the Students table for pupils aged greater than or equal to 16.

Write the query: ___
SELECT id, first_name, last_name FROM Students WHERE age >=16;
How many students are aged 16 and above? 92 students

[image:]4(c) Re-write the query above to show the fields already selected plus the age field to double check that these pupils are actually aged 16 and above.
Who is the first pupil on the list and how old is she/he? Pearl Chandler She is 18 years old.

Task 5
SELECT WHERE using AND/OR
We can have complex conditions where the results must match all (AND) or one of multiple criteria (OR).
We could show all Rinnes pupils aged 16 and up with the following query:
SELECT * FROM Students WHERE age >=16 AND house ="Rinnes";
In plain English: Show all details of students where the value in the age column is greater than or equal to 16 and the value in the house column is equal to Rinnes.
This returns values which match both criteria. If the command word was OR we would return results which matched age >=16 plus any results which matched house = "Rinnes" regardless of age.
5(a) Create a query to show only the id, first_name, last_name and age for pupils in Livet who are in S1.
Write the query: __
SELECT id, first_name, last_name, age FROM Students WHERE house =” Livet” and year = “S1”;
How many pupils fit this criteria? 10 pupils
[image:]

5(b) Create a query to show the id, first_name, last_name and age for pupils in Fiddich house who are 16 or older.
Write the query: __
SELECT id, first_name, last_name, age FROM Students WHERE house =”Fiddich” and age >= 16;
[image:]How many pupils fit this criteria? 38 pupils

Task 6
ORDER BY
We can sort our results using the ORDER BY command. For example:
SELECT first_name, last_name, age FROM Students WHERE age <14 ORDER BY age;
This would sort all records based on the values in the age field, defaulting to ascending order.
We can change between ascending or descending order by writing either ASC or DESC after the ORDER BY command, e.g:
SELECT * FROM Students WHERE age <14 ORDER BY age DESC;
We can also sort on multiple fields, e.g:
SELECT * FROM Students
WHERE age <14
ORDER BY year ASC, age DESC;

Notice the above command is split over multiple lines – SQL ignores new lines and white space, however, it makes it more readable for humans! The above command sorts the results by year ascending, then age descending.

6(a) Open your query from 5(a) and resave it as 6(a)
The query in 5(a) was to show the id, first_name, last_name and age for pupils in Livet who are in S1. Sort this query by age ascending.

SELECT ________________ ____________
WHERE ________________ AND __________________
ORDER BY ______________;

SELECT id, first_name, last_name, age FROM Students
WHERE house =” Livet” AND year = “S1”
ORDER BY age ASC;
[image:]
(Note to teachers: SQL may remove ASC as this is the default sort).
Who are the youngest and oldest pupils in the list?
Deva Billim = youngest
Lou Rowsel – oldest

6(b) Select all the students less than 14 years old, sorted by year ascending, and age ascending.

[image:]SELECT ________________
WHERE ________________
ORDER BY ______________, ____________________;

SELECT * FROM Students
WHERE age <14
ORDER BY year ASC, age ASC;

Who is the oldest person in S3? Renaud Rawcliffe

6(c) Give the full name of the oldest S4 female pupil in Fiddich house. Your search must use a complex condition using three fields, and a sort.
SELECT ________________
WHERE ________________ AND ________________ AND
ORDER BY ______________;

SELECT * FROM Students
where house = "Fiddich" and year = "S4" and gender = "female"
order by age desc

Number of S4 female pupil in Fiddich house = 3 pupils
Oldest pupil = Kelly Waistell, 16 years old

[image:]

Task 7

INSERT Statement
An INSERT statement is used to add a new record into the database.
INSERT INTO TableName (fieldname1, fieldname2 , fieldname3)
VALUES (value1, value2, value3");
We specify the table name, then in brackets the fields we wish to insert to (you can add to all or only some). Note – the values and field names must be in the same order.
Next, we must specify the values to add to the database.
For example, to add a new student to the Students table:
INSERT INTO Students (id, last_name, first_name, gender, house, year, age)
VALUES ("01-2484078", "Swanson", "Ron", "male","Rinnes", "S5", 17);
7(a)

Add a new record to the houses table. There is a new House called ‘Paisley’ house with ‘Mr McWhirter’ as the guidance teacher. It’s colour is ‘black’. (Note – all text fields must have inverted commas, and the ID field is a text field).
Give two reasons why the ID field a text field? – has a hyphen in it and also leading zeros.
INSERT INTO Houses (___________, ________________, ________________)
VALUES (_____________, ____________, _______________;

INSERT INTO Houses (_house, guidance_teacher, colour)
VALUES (“Bruce”, “Mr McWhirter”, “Black”);

[image:] When you run the query: Access will warn you that you are about to add data to a table.

Nothing else will appear to have happened but the data will be added to the Houses table.
[image:]

Save the query and note how it is stored. Try running the query again. What happens and why?___________________________________

[image:]7(b) J Two pupils are joining the school and are going into Bruce house. Use the insert command to amend the database accordingly.
	id
	last_name
	first_name
	gender
	house
	year
	age

	99-9288235
	Salmond
	Alex
	Male
	Bruce
	S1
	12

	99-9288236
	Black
	Mhairi
	Female
	Bruce
	S1
	13

Write the code for one pupil:-
INSERT INTO Students (__)
VALUES (__);

INSERT INTO Students (id, last_name, first_name, gender, house, year, age)
VALUES ("99-9288235", " Salmond ", " Alex ", "Male", "Bruce", "S1", 12);
INSERT INTO Students (id, last_name, first_name, gender, house, year, age)
VALUES ("99-9288236", "Black", "Mhairi", "Female", "Bruce", "S1", 13);

Run each INSERT individually but remember to use copy and paste in SQL to save typing this query out twice.
Screen shot the results of your insert.
[image:]

Task 8
UPDATE statement

An UPDATE statement is used to change the values of an already existing record. In order to locate the correct record, we must use a ‘WHERE’ command. Be careful with this, as the statement will update anything that matches the WHERE command.
E.G
UPDATE Students SET house = "The Best" WHERE house = "Rinnes";
In plain English: Update the students table, set the field house to 'The Best' for every record where the house is 'Rinnes'.
To update more than one field at a time you will have to use a comma, as below:
UPDATE Students
SET house = "The Best", colour = "Golden" WHERE house = "Rinnes";

(8) There was an error entering some data. Change the information for pupil ID 99-9288235 to Alan Kerr.

Write the code:-

UPDATE ___________
SET ________________, _______________________ WHERE __________________;

UPDATE Students
SET last_name = “Kerr”, first_name = “Alan” WHERE id = “99-9288235”
[image:]Screen shot the results of your update.

Task 9
DELETE statement

A SQL delete statement is permanent and dangerous! Be sure you know what you are doing before you execute this statement. Without backups, there may be no way to recover the data lost.
DELETE FROM Students WHERE first_name = "David";
This would delete any records in the Students table where the first_name matched 'David'.

There are two people called ‘Joe’ in the database. Find these two records only using a select query.
Select * from houses where first_name = “Joe”
[image:]

Write a query to delete both records.
DELETE FROM ___________
WHERE ________________

DELETE FROM Students
WHERE first_name = "Joe";

Access should tell you that two records are about to be deleted.
[image:]
Run the select query again to check that both Joe’s in the database have been deleted. Screenshot your output. It should be the same as below.
[image:]

Task 10

It was decided that the Bruce house was a terrible idea. Write and then create SQL statements to delete this house from the database, and to update, using SQL only, any Bruce pupils and transfer them to the unlucky Mrs MacInnes in Fiddich house.

SQL statement 1 - deletion
DELETE *
FROM ___________
WHERE _________ = ___________;

DELETE *
FROM houses
WHERE house = "Bruce";

SQL statement 2 – updating
UPDATE ___________
SET house = __________ WHERE house = ___________;

UPDATE Students
SET house = "Fiddich " WHERE house = "Bruce";

Delete from the House table first – what happens?

You have tried to delete a primary key which is being used in another table. So run the update query first, prove that your records have updated using SQL.

Then delete from the Houses table.

Screen shot the amended Houses tables showing only 3 houses and screen shot the amended Students table for Alan Kerr and Mhairi Black.
[image:]

Task 11

Equi-Join between tables

In SQL, we use a join to display results from different tables side by side. For example we might use an equi-join to display Students and Guidance information together. An equi-join works when there is matching data in both tables.
SELECT * FROM Houses
INNER JOIN Students ON Houses.house = Students.house;

In plain English: Show everything from the houses table and join it with the Students table, joining the records where the house field of the Houses table matches the house field on the Students table. (Try it!)

It should look like:-[image:]

Task 12
We can do more complex things, too, but we must specify field names with dot notation, e.g: Houses.house means the house field of the Houses table.
Look at the following query, what does it do?	
SELECT Students.first_name, Students.last_name, Students.gender, Houses.guidance_teacher, Students.year
FROM Houses INNER JOIN Students ON Houses.house = Students.house;

[image:]It joins two tables together using a common field. Try it and check your results are as below.

Task 13
Design and create a query which shows student and guidance information together for students in the year group S3 and gender female, ordered by age ascending, last_name ascending. Display only: Last_name, first_name, age, gender, guidance_teacher and house. (Hint: all field names must be in dot notation ie Students.last_name)
SELECT <all the fields to be shown>
FROM Houses INNER JOIN Students ON Houses.house = Students.house
WHERE _______________ AND _________________________
ORDER BY ________________________, _____________________________;

SELECT Students.last_name, Students.first_name, Students.age, Students.gender, Houses.guidance_teacher, Houses.house
FROM Houses INNER JOIN Students ON Houses.house = Students.house
WHERE Students.year = "S3" AND Students.gender = "female”
ORDER BY Students.age ASC, Students.last_name ASC;

Your answer should look like:-
[image:]

SQL is a compiler?
In additionVisual Basic for Applications (used by Office and some other programs) is not compiled into machine language. Instead it is compiled into something called P-code that is an abbreviated instruction set for a ficticious machine. A program called an interpreter then simulates the P-code machine. This is the way that many, but not all, variations of the Basic language are processed.

The exact details are of course Microsoft trade secrets, but SQL is not "executed" in the same sense as Cobol or Fortran or PL/I. Instead, Access uses a (large and complex) program called a "Database Engine" to parse the SQL and carry out the search.
One nice feature of Access is that the Access program itself doesn't need to be the engine. Older versions of Access used the JET engine common to many Microsoft operating system and application programs; with A2007 the Access team took ownership of the engine and renamed it ACE; but Access can also use the SQL/Server engine (in any of its many versions), or use the ODBC methodology to connect to many different (even non-Microsoft) engines.
So what Access does (as I understand it, from an outsider's viewpoint) is store the SQL as text; parse it into a more compact and computer-friendly version colloquially called "compiled SQL"; and pass this information to the appropriate database engine, which actually issues the instructions to read this particular index file from the disk, find the specified search term, read the needed records of the actual data file, and return that data record to Access.
In any case, the "compiled SQL" is stored internally in Access' system tables, not as an external disk file; it's all "under the hood" and dynamic, and isn't exposed anywhere for you to look at.

https://answers.microsoft.com/en-us/msoffice/forum/msoffice_access-mso_other/how-is-sql-translated-to-machine-language/e0c43170-298b-4b63-8d24-cb607cf4e0d2
[bookmark: _GoBack]
With many thanks to Speyside High School, who did the vast bulk of the work for this document and database, and without whom, this resource would have not been possible.
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image1.png

image2.png

