N5 Computing:- Software Design & Development:- Standard Algorithms from 2018

In your final exams you will be expected to know in detail about 3 Standard Algorithms that are used in programming. These have been listed below for your reference. For each you should be able to: Write or Interpret either Program Code or Pseudocode - Interpret a program code to identify Input and Outputs - You may also have to describe their purpose or give an example of use.

1. Input Validation

2. Running Total

3. Traversing a 1 Dimensional Array

1
INPUT VALIDATION: - Is used to check that data entered is within a certain range.
	A data value is typed in to program

Value checked to see if it is within the acceptable range.)E.g. >12 and <18 for school pupils.)

Display error message to give a 2nd chance to enter correct data.

Program continuously loops asking for re-entry until acceptable data value entered. . –DO ….WHILE Loop.

Input validation helps to make a program more Robust by providing a loop to allow user to re-enter data within a specified range. It does not stop the program from crashing if string value entered.
Example 1.1 INPUT VALIDATION Algorithm and Program Code - Numeric Validation

Conditional Loop using a Do While Loop - if data entered correctly first time Loop will not be executed.
	
	Algorithm
	Program Code Example

	1.
	Get data input
	Mark =Input Box (“enter mark 0-100”)"

	2.
	While data value not in range
	
Do while Mark <0 or Mark >100

	3.
	Send Error Message (Optional)
	MsgBox “Sorry number is out of range”

	4.
	Give 2nd chance to enter data
	Mark =Input Box (“Re-enter mark 0-100”)"

	5.
	End While
	Loop

You can omit line 3 above but it is good practice to give users feedback so the error is recognised. .
Example 1.2 INPUT VALIDATION Algorithm and Program Code - String Validation

Conditional Loop – using Loop Until - Loop will always be executed at least once.
	1
	Start Conditional loop
	 Do

	2
	Get data
	CourseName(Index) = InputBox("Please Enter Course Choice up to 10 characters")

	3
	If character length > 10
	 If Len (CourseName(Index) > 10Then

	4
	Display error message
	Msgbox (“Please re-enter with maximum of 10 characters")

	5
	End if
	 End If

	6
	Repeat until 10 characters long
	 Loop Until Len (CourseName(Index) = 10

Note1: If a Complex condition is required code would be
Loop Until Len(Coursename(Index)) >= 4 And Len(Coursename(Index)) <= 10
2
RUNNING TOTALS: - used within a loop to repeatedly add a number (data value) to a total
	Initialises the Total variable (Set Total to 0, so that it does not carry forward any previous values)

Start a loop for a fixed number of times and take in a data value.
Assign the data value entered to the Total variable.
Each time the loop is actioned add the data entered to the existing total.
You could display all values and total, or display total, or use the total as part of a calculation.

Example 2.1 RUNNING TOTAL FIXED LOOP Algorithm and Program Code

	
	Algorithm
	Program Code Example

	1.
	SET total TO 0
	Let Total = 0

	2.
	FOR loop FROM 1 TO 10
	
FOR index = 1 to 10

	3.
	RECEIVE number FROM KEYBOARD
	Number = Inputbox(“Enter Number”)

	4.
	SET total TO total + number
	Total = Total + Number

	5.
	END FOR
	
Next Index

Example 2.2 RUNNING TOTAL CONDITIONAL LOOP Algorithm and Program Code

This program is used to calculate the sum of an unknown data values entered by the user one at a time.

	
	Algorithm
	Program Code Example

	1.
	SET Total to 0
	Let Total = 0

	2.
	DO
	
DO

	3.
	 RECEIVE number FROM KEYBOARD
	Number = Inputbox(“Enter Number”)

	4.
	 SET (Add) total TO total + number
	Total = Total + Number

	5.
	 SEND “Enter another value Y/N?” TO DISPLAY
	Msgbox”Do you want to enter another Number Y/N

	6
	RECEIVE choice FROM KEYBOARD
	Choice = Inputbox(“Enter Y/N”)

	7
	LOOP UNTIL choice = “N”
	
Loop until choice = “N”

Note: The above examples rely on data being entered from the keyboard in step 3 before adding adding up the values entered. It could equally be as simple as adding 1 to a counter to record each time a loop is traversed. See example an example of this in the Traversing an Array Program Example 3.2.

3
TRAVERSING AN ARRAY: -Search through an array list to find or display a value.
	A list exists in a string or Integer array within a program, OR a data value is typed in to populate an array.

The program uses a loop to step through the list of data values stored. 1 item after another.

You then need to decide what to do with the data. E.g. Display 20 pupils surname.

A 1D Array is a data structure used in software development which stores more than one variable value of the same name and data type. Using an array makes your program more efficient as it saves writing many lines of code which would require more processor time and storage.

Example 3.1 Traversing a 1D array: (Populating Array with Integers - Fixed loop)- This program is using a loop to access each element of an array, for the purposes of processing the data in the array.

	
	Algorithm
	Program Code Example

	
	DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]
	Dim AllScores() As Integer = {12, 34, 23, 54, 32, 67, 26, 23}

	
	DECLARE Index INITIALLY 0
	Dim Index as Integer

	
	SET Value of control variable to 0 (Optional)
	Index = 0

	
	FOR Index FROM 0 TO 7 DO
	For Index = 0 To 7

	
	
IF allScores[Index] >= 50 THEN
	If AllScores(Index) >= 50 Then

	
	

SEND “Great Score” & allScores[Index] TO DISPLAY
	lstDisplay.Items.Add("Great Score " & AllScores(Index))

	
	
END IF
	End If

	
	END FOR
	End For

More examples are available within the soft copy of this document on Pupil Share..

Traversing a 1D array: Example 2 (Populating array with Integers - Fixed ‘loop & running total included)

This program is using a loop to access each element of an array, for the purposes of processing the data in the array.

	
	Algorithm
	Program Code Example

	
	DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]
	Dim AllScores() As Integer = {12, 34, 23, 54, 32, 67, 26, 23}

	
	DECLARE Total INITIALLY 0
	Dim Total As Integer

	
	DECLARE Index INITIALLY 0
	Dim Index As Integer 'Control variable to record number of times loop will traverse.

	
	DECLARE Counter INITIALLY 0
	Dim Counter As Integer

	
	FOR EACH FROM AllScores DO
	 For Index = 0 To 7

	
	
	 Total = Total + AllScores(Index)

	
	
	 Counter = Counter + 1 'adds 1 each time loop has been traversed.

	
	
SEND data values to DISPLAY
	 LstDisplay.Items.Add(AllScores(Index) & vbTab & Total & vbTab & vbTab & Counter & vbTab & Index)

	
	END FOR
	Next

	
	
	

Traversing a 1D array: Example 3 (Populating array With String data values- Fixed ‘loop

	
	Algorithm
	Program Code Example

	
	DECLARE strWeekdays(6) INITIALLY [Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday]
	 Dim strWeekDays(6) As String

	
	
	'Populate a string array with data
 strWeekDays(0) = "Monday"
 strWeekDays(1) = "Tuesday"
 strWeekDays(2) = "Wednesday"
 strWeekDays(3) = "Thursday"
 strWeekDays(4) = "Friday"
 strWeekDays(5) = "Saturday"
 strWeekDays(6) = "Sunday"

	
	DECLARE index INITIALLY 0
	Dim Index as Integer

	
	FOR Index FROM 0 to 6
	 For index = 0 To 6' Start Loop

	
	SEND data values to DISPLAY
	LstDisplay.Items.Add(strWeekDays(index))

	
	END FOR
	Next index

Note: Remember you can also populate an array with the user entering data at the keyboard.
Traversing a 1D array: Example 4 (Populating array of Integers - Fixed ‘loop with running total included)

	
	Algorithm
	Program Code Example

	1
	DECLARE strWeekdays(6) INITIALLY [Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday]
	Dim strWeekDays() As String = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"} 'note there is no number within the parentheses this time)

	2
	DECLARE index INITIALLY 0
	Dim Index As Integer

	
	
	' Start loop to display data values from the populated array

	3
	FOR Index FROM 0 to 6
	 For Index = 0 To 6

	4
	SEND data values to DISPLAY
	 LstDisplay.Items.Add(strWeekDays(Index))

	5
	END FOR
	Next index

H:\NATIONALS\4. SDD Topic\VB 2010 SDD\SOLUTIONS\ALGORITHMS

Page 3 of 4

